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Introduction

Meningiomas are the most common primary tumors of 
the central nervous system, accounting for 37% of all 
intracranial neoplasms (1). Most meningiomas (>80%) 
are benign, slow-growing lesions (WHO grade I) that can 

be effectively treated with complete surgical excision (2). 
Radiotherapy is another viable option when there is a 
residual tumor after surgery, when the location and size 
of the tumor are unfavorable for the surgical approach, 
or when the patient does not want surgery. For active 
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surveillance with or without radiotherapy, routine imaging 
follow-up and accompanying growth assessment are crucial. 
Magnetic resonance imaging (MRI) is the gold standard for 
diagnosis, surveillance, and treatment planning (3).

The “dural tail sign” is a classic radiologic finding of 
meningioma. The term “dural tail sign” was first used by 
Wilms et al. (4) in reference to meningioma, referring to the 
thickening of the dura adjacent to the tumor in contrast-
enhanced T1 weighted image (CE T1WI) (5). This thickening 
has a tapering rim, with a smooth or slightly nodular internal 
surface and a length ranging from 0.5 to 3 cm (4). When the 
sign was first described, it was considered pathognomonic 
of meningioma, but it has since been reported in other 
diseases, including sarcoidosis, lymphoma, and metastases, as 
well as infectious, autoimmune, and vascular diseases (6). The 
prevalence of the dural tail sign in brain tumors ranges from 
22% to 32% (7,8). Data regarding the exact prevalence of 
dural lesions is limited since most examples in the literature 
exist in case reports and small case series (9). Ghosal et al. (10),  
the largest study consist of 1,000 cases of dural-based lesions 
initially diagnosed as meningiomas, showed that only 2% 
of resected dural masses are other pathologies. Rokni-Yazdi 
et al. (8) reported that among 22 cases with intracranial 
masses exhibiting the dural tail sign, 81.8% (18 out of 22 
cases) were meningiomas, and the prevalence of the dural 
tail sign in biopsy-proven meningioma was about 58.6%. 
Dural tail sign is not pathognomonic of meningioma, 
nor all meningiomas have dural tail sign. However, with 
high incidence of meningioma among brain tumors and 
high prevalence of the meningioma in the dural tail sign-
exhibiting intracranial tumors, the detection of the dural tail 
sign on screening MRI is highly indicative of meningioma.

Recently, deep-learning technology, which has shown 
remarkable performance in medical image analyses, has 
been applied in neuroimaging analyses (11). Previous 
studies on meningioma have reported pronounced 
performance in tasks such as classifying different brain 
tumors (12-14) including glioma, meningioma, and 
pituitary gland tumor (15). Some recent studies investigated 
on detection and segmentation of meningiomas using deep 
learning model and have shown very high precision as high 
as 98% and strong correlation with manual segmentation  
(16-18). However, despite their outstanding performances, 
the deep learning models have a limitation in that humans 
cannot understand the intermediate processes of the 
models, which is referred as the black-box problem (19). In 
medical imaging, this lack of understanding in intermediate 
process, or lack of interpretability for humans in predictive 

models, undermine trust in such models and limit the 
clinical actionability of model predictions, which further 
undermines their usefulness to clinicians. In response to 
the significant challenges posed by black-box models, there 
has been a number of research in recent years in the field 
of explainable medical machine learning (20). Much of this 
research (21) is focused on creating intelligible explanations 
of how a model works and why it makes specific individual 
predictions by identifying the variables most driving model 
predictions.

The objective of this study is to develop a deep learning 
model for the dural tail sign using CE T1WI. To evaluate 
the performance of the dural tail sign detection model, both 
meningioma patients and healthy individuals were tested. 
Moreover, we observed the performance of the model in a 
different brain tumor group other than meningioma, and 
conducted external validation using an open dataset. To our 
knowledge, no studies have developed a fully automated 
deep-learning model for meningioma detection with 
primary use of the dural tail sign on CE T1WI. We present 
this article in accordance with the TRIPOD reporting 
checklist (available at https://qims.amegroups.com/article/
view/10.21037/qims-23-114/rc).

Methods

Patient population

The study was conducted in accordance with the 
Declaration of Helsinki (as revised in 2013). This 
retrospective, single-center study was approved by the 
Institutional Review Board of Kyung Hee University, and 
the requirement for informed consent was waived. Figure 1 
shows a diagram of the study population. All the data were 
from an afflicted university hospital’s registry (tertiary care) 
with the approval from the Institutional Review Board. 
It consists of a total of 183 patients with 248 CE T1WI 
scans who were incidentally diagnosed with intracranial 
meningioma between December 2009 and September 
2022. The inclusion criteria were preoperative contrast-
enhanced brain MRI including sagittal CE T1WI scans, 
and pathologic confirmation of meningioma after surgical 
resection. Sixty patients with 93 CE T1WI scans were 
excluded because their contrast-enhanced sagittal scans 
did not show the dural tail sign. For more convenient and 
consistent training purpose for the model, only sagittal CE 
T1WI images were used in the study. The dural tail sign 
dataset included 123 patients, with 155 sagittal CE T1WI 

https://qims.amegroups.com/article/view/10.21037/qims-23-114/rc
https://qims.amegroups.com/article/view/10.21037/qims-23-114/rc


Kim et al. Deep-learning model for the dural tail sign8134

© Quantitative Imaging in Medicine and Surgery. All rights reserved.   Quant Imaging Med Surg 2023;13(12):8132-8143 | https://dx.doi.org/10.21037/qims-23-114

scans comprising a total of 42,684 slices. Among them, 2,760 
slices contained 3,824 labeled boxes for dural tail signs. Then, 
the dural tail sign dataset was divided into the training and 
test datasets based on specific time points. For the training 
dataset, 78 patients (110 scans; 26,464 slices; including 1,863 
slices with 2,623 labeled boxes for dural tail signs) were 
selected between December 2009 and August 2019. Only 

slices with dural tail signs were used for training. For the 
test dataset, 45 patients (45 scans; 16,220 slices; including 
897 slices with 1,201 labeled boxes for dural tail signs) 
were included between September 2019 and September 
2022. The details of these datasets are listed in Table 1. To 
compensate for the small sample size of the training dataset, 
we performed the labeling for confirmed meningioma 
cases from the Cheng group dataset (22-24). Additional 
39 patients and their selected 69 CE 3DWI slices with 
the dural tail signs were included in the training dataset. 
To evaluate the specificity of the trained model, 51 patients  
(51 scans; 16,592 slices) with no abnormal finding on 
MRI were randomly selected as the normal group dataset 
between February 2022 and July 2022.

In this study, we performed two additional experiments 
to investigate distinguishability for other tumor and the 
generalizability of the model. To assess the ability to 
distinguish meningiomas from other types of tumors, a 
non-meningioma tumor dataset was collected, and details 
were described in Appendix 1. For generalizability, the 
meningioma dataset (25) from The Cancer Imaging Archive 
(TCIA) (26) was used as an external validation dataset and 
the details were listed in Appendix 2.

Open dataset from Cheng group 
include 82 meningioma scans 

(n=82)

Patient with dural tail sign (n=39)

Patients who underwent preoperative 
contrast-enhanced brain MRI between 
December 2009 and September 2022

Patients who was incidentally found 
with intracranial meningioma, and later 
pathologically confirmed after surgical 

resection  (n=183)

Patients who had conclusion with any 
finding abnormal lesions between 

February 2022 and July 2022 (n=51)

Patient with dural tail sign (n=123)

Exclusion criteria
• Patients who did not feature 

dural tail sign on their contrast-
enhanced sagittal scans (n=60)

Exclusion criteria
• Patients who did not feature 

dural tail sign on their contrast-
enhanced sagittal scans (n=43)

From open 
dataset (n=39)

From single 
institution (n=78)

Training dataset (n=117) Test dataset 
(n=45)

Normal dataset 
(n=51)

December 2009 to August 2019 September 2019 to September 2022

Figure 1 Diagram of the study population. MRI, magnetic resonance imaging.

Table 1 Characteristics of the training and temporal test datasets

Characteristics Training set Test dataset Normal group

No. of individuals 78 45 51

No. of scans 110 45 51

No. of images 26,464 16,220 16,592

No. of labeled images 1,863 897 –

No. of dural tail sign 
labels

2,623 1,201 –

Age (year), mean ± SD 61.1±12.49 58.69±12.02 55.73±11.69

Age (year), range 27–82 26–76 29–78

Sex (female/male) 71/39 33/12 27/24

SD, standard deviation.

https://cdn.amegroups.cn/static/public/QIMS-23-114-Supplementary.pdf
https://cdn.amegroups.cn/static/public/QIMS-23-114-Supplementary.pdf
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Image acquisition

For the in-house dataset, most MRI scans were acquired 
using a 3T MR system (MAGNETOM VIDA, Siemens, 
Erlangen, Germany). The MRI protocol for brain tumor 
included CE T1WI sequence, and for gadolinium (Gd)-
enhanced imaging, a dose of 0.1 mmol/kg body weight of 
gadobenate dimeglumine (MultiHance, Bracco Diagnostics, 
Princeton, NJ, USA) was intravenously administered. The 
imaging parameters were as follows: repetition time (TR), 
2,000 ms; echo time (TE), 3 ms; slice thickness, 0.9 mm; flip 
angle, 120°; matrix size, 512×512; field of view, 230×230 mm2;  
voxel size, 0.8×0.8 mm2.

Data labeling

For the object detection deep-learning algorithm, two 
expert neuroradiologists with 10 and 30 years of experience 

reviewed the images independently, detected extra-axial 
brain tumors on the CE T1WI in the training and external 
validation dataset, and labeled dural tail signs in every 
single slice with a rectangular region of interest boundary 
box using the Image Labeler application included in the 
Matlab program (Math Works, R2020b, Natick, MA, 
USA). One reader, of 10 years of the experience, reviewed 
the images and labelled the dural tail sign with rectangular 
region of interest boundary box first. Then, the second 
reader, of 30 years of the experience, reviewed the images 
and the pre-drawn region of interest boundary boxes. 
Any conflicts or discrepancies in the labeling were settled 
down through discussion between the two readers. Figure 2 
shows an example of dural tail sign labeling. To prevent the 
misdetection of enhancing vessels as false positives, dural 
tail sign label boxes were drawn to include a portion of the 
meningioma lesion.

A B C

D E F

Figure 2 Labeling example of the dural tail sign on contrast-enhanced T1-weighted images. (A-D) Examples of dural tail sign labeling 
obtained from a medical institution and (E,F) obtained from an open dataset from the Cheng group. Dural tail sign labeling is represented 
by the blue-boundary boxes.
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Training the proposed deep-learning algorithm

A major drawback of utilizing deep-learning algorithms in 
meningioma detection is its varying anatomic locations, 
especially for lesions in proximity to important vascular 
structures such as the venous sinus, prominent cortical 
veins, or the circle of Willis. To reduce such false-positive 
cases, skull stripping was performed using SPM 12 (http://
www.fil.ion.ucl.ac.uk/spm/software/spm12/) for all test 
dataset cases before evaluation. The skull stripping process 
comprises segmenting the skull on non-enhanced T1WI, 
generating brain mask using the gray matter, white matter, 
and cerebrospinal fluid maps. After that, the T1WI with 
segmented images and brain mask were co-registered to the 
segmented image on CE T1WI. As a final step, the trained 
model predicted the dural tail sign on CE T1WI, and the 
prediction boxes in locations other than brain tissue were 
eliminated.

You Only Look Once (YOLO) v4 (27), a state-of-the-
art convolutional neural network (CNN) object detection 
algorithm that can simultaneously detect the location of 
objects in input images and classify them into different 
categories, was used for the deep-learning algorithm 
architecture. We used the “Deep Learning Toolbox” in 
Matlab to train the YOLOv4 model, and a YOLO v4 
network was initialized using the transfer learning method 
based on a pre-trained DarkNet53 (27) with the following 
parameters: nine anchor boxes, Adam optimizer, mini-
batch size of 4, initial learning rate of 1×10−3, factor for 
L2 regularization of 5×10−4, and 50 epochs at maximum. 
All parameters not described in the manuscript were set 
to default values. The data augmentation was randomly 
applied including left-to-right flipping (RandXReflection 
in MATLAB) and image rotation (0, 90, 180, 270 degrees; 
in-house function). All images with at least one dural tail 
sign were used as the input data for training the YOLO v4 
network.

All preprocessing, labeling, and training processes were 
performed on a single-server computer running a Windows 
operating system (Windows Server 2016) with a double 
NVIDIA V100 GPU with 32 GB of memory (Nvidia 
Corporation). All image labeling, processing, and training 
networks were based on Matlab (MathWorks, R2020a, 
Natick, MA, USA).

Performance evaluation of the deep-learning algorithm

We assumed that radiologists do not require every slice with 
the dural tail sign to make a diagnosis and that only one 

slice is sufficient to recognize the dural tail sign. To develop 
the dural tail sign detection model as an assistant software 
under this assumption, the algorithm’s performance was 
evaluated at the subject level, not at the slice level. For the 
meningioma test dataset, any subjects in which the ground 
truth overlapped with the prediction boxes in one or more 
than one slices were evaluated as true positive; otherwise, it 
was evaluated as a false negative. For the normal dataset, a 
subject that had none of the predicted boxes by the trained 
model was evaluated as a true negative; otherwise, it was 
evaluated as a false positive (i.e., if one or more dural tail 
signs were predicted by the model, then it was considered 
a false positive). For evaluation of the model performance, 
the sensitivity and false-positive average were calculated as 
follows:

TPSensitivity
TP FN

=
+  [1]

TNSpecificity
TN FP

=
+

 [2]

slice
avg

FPFP
N

=  [3]

(TP = true positive, FP = false positive, FN = false 
negative, TN = true negative, FPavg = false positive in 
slice levels averaged by the number of individuals, FPslice = 
number of false positive in slice level, and N = the number 
of individuals)

TP was determined when the intersection over union 
(IoU) between the predicted box and ground truth was >0.1. 
To investigate the performance related to the confidence 
score for each boundary box that is predicted by the trained 
model, the performance was evaluated with a confidence 
score cutoff between 0.5 and 0.95 with 0.05 increments.

Results

Table 2 presents the results of dural tail sign detection for 
the test and normal datasets. The sensitivity and false-
positive average were 82.22% and 29.73, respectively, for 
the test dataset, and the specificity and false-positive average 
were 17.65% and 3.16, respectively, for the normal dataset, 
with confidence score cutoff of 0.5. The IoU between the 
predicted DTS boxes and ground truth were measured in 
the range from 0.59 to 0.86, and the mean IoU was 0.72. 
Figures 3,4 show examples of true and false positives for 
the test and normal datasets, respectively, at the slice level. 
The majority of false-positive cases in the test dataset were 
enhancing vessels, misinterpreted as dural thickening. For 

http://www.fil.ion.ucl.ac.uk/spm/software/spm12/
http://www.fil.ion.ucl.ac.uk/spm/software/spm12/


Quantitative Imaging in Medicine and Surgery, Vol 13, No 12 December 2023 8137

© Quantitative Imaging in Medicine and Surgery. All rights reserved.   Quant Imaging Med Surg 2023;13(12):8132-8143 | https://dx.doi.org/10.21037/qims-23-114

the normal dataset, most false-positives were detected 
around the transverse sinus and superior sagittal sinus 
regions. There was no missing data during the process.

The confidence score of the predicted results, which 
can affect the performance by applying the cutoff threshold, 
shows different distributions between true positives in the 
test dataset and false positives in the normal dataset (Figure 5).  
The average confidence scores of the true positives in 
the test dataset and false positives in the normal dataset 
were 0.85 and 0.71, respectively, and the sensitivity was 
decreased to 26.67% for the test dataset, and the specificity 
was increased to 76.47% for the normal dataset, while 
increasing the cutoff threshold from 0.5 to 0.95.

For the external validation, a sensitivity and false-positive 
average were measured as 36.84% and 9.21, respectively. 
Table S1 demonstrated the manufacturer and scan parameters 
for internal and external validation datasets.

For the other tumor dataset, false positives were observed 
around the brain tumor lesions in 26 scans out of 45 scans 
and some false positives were due to peritumoral enhancing 
vessels in clearly parenchymal locations, not near the dura. 
Figure S1 shows examples of these particular false-positive 
cases.

Discussion

Artificial intelligence-based image analysis has been 
extensively applied in neuro-oncology in recent years, 

primarily in gliomas, through the use of radiomics (16). 
Such models (28-30) have been developed by extracting 
features from MR images through a CNN and then 
applying supervised learning to predict the tumor grade, 
genotype, and prognosis. Few studies (31-34) have 
addressed meningiomas, and existing deep-learning 
models for meningioma have focused on distinguishing 
malignant meningiomas from nonmalignant meningiomas 
or differentiating meningiomas from other tumors. More 
recent studies (16,35) on meningioma have attempted 
to achieve an automated volumetric measurement of 
meningioma for accurate tumor volume measurement in 
serial MR images. Laukamp et al. (16) investigated the 
automated detection and segmentation of meningiomas 
using a deep-learning model and reported excellent 
detection accuracy as high as >98%. However, even 
these studies dealt with only pathologically confirmed 
meningioma cases, thus the true detection accuracy of any 
routine brain MR scan remains still unknown.

In this study, we proposed a fully automated detection 
program that can directly facilitate the radiologic reading 
process by rendering an easy and fast screening tool. A 
meningioma is an extra-axial dural-based tumor with broad 
dural attachments on the edges. Based on this characteristic 
feature of the tumor along with its high incidence, 
the presence of a dural tail sign is highly indicative of 
meningioma, and is suitable as differential diagnostic 
imaging evidence for the tumor. Our deep-learning model 
detected the dural tail sign using YOLO v4, and showed 
reasonable sensitivity (82.22%) with a false-positive average 
of 29.73 for the test dataset. Our model was not only tested 
on pathologically confirmed meningioma cases, but also on 
the normal dataset to better demonstrate its superior initial 
detection performance.

Our model can be an efficient adjuvant tool for the 
radiologists in routine screening MRI, since the model 
can point out the priority patients and lesions before the 
actual manual reading process. In clinical settings where 
large amount of screening brain MRI is done, such as in 
South Korea where screening brain MRI in symptomatic 
patients is mostly covered with public medical insurance, 
radiologists are exposed to laborious and tedious process of 
detecting incidental lesions through many of normal MRI 
scans. Our model can be used before actual manual reading 
process, and give an advance warning, if present, of possible 
incidental dural lesion. It can significantly reduce the 
searching times and alleviate the fatigue of the radiologists 
from the large workload. 

Table 2 Performance on applying the cutoff predicted confidence 
scores

Confidence 
score cutoff

Test dataset Normal group

Sensitivity, % FPavg Specificity, % FPavg

0.5 82.22 29.73 17.65 3.16

0.55 80.00 27.93 25.49 2.63

0.6 80.00 25.89 29.41 2.28

0.65 80.00 23.82 37.25 1.88

0.7 77.78 21.36 45.10 1.63

0.75 75.56 19.00 52.94 1.24

0.8 75.56 16.82 58.82 0.96

0.85 73.33 13.89 62.75 0.69

0.9 68.89 10.58 68.63 0.49

0.95 55.56 5.44 94.12 0.08

FPavg, false positive average.

https://cdn.amegroups.cn/static/public/QIMS-23-114-Supplementary.pdf
https://cdn.amegroups.cn/static/public/QIMS-23-114-Supplementary.pdf
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Figure 3 Examples of true positive cases from the test dataset. The ground truth and predicted box are represented by the blue- and green-
boundary boxes, respectively.

A B C

D E F

Figure 4 Examples of false-positive cases from the normal dataset. False positive around the (A) transverse sinus, (B) superior sagittal sinus, 
and (C) enhanced meningeal vessel are represented by the green-boundary boxes; (D-F) other examples observed at low frequencies.
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Accurate detection of a cerebral tumor is clinically 
important as it permits the preselection of priority lesions 
and patients, and the model’s performance can affect 
patient’s clinical decision. A well-trained deep-learning 
model can provide reliability with good performance. 
According to one recent study (21) about deep-learning 
model utilized in medical imaging, a developed model gives 
out prediction results very similar to long-experienced 
radiologic experts, and the model’s performance was 
even more concordant with the expert group than less 
experienced group. By developing deep learning model 
focusing on dural tail sign detection, we are trying to lay 
the foundation stone for the development of a brain tumor 
detection model based on diagnostic clue. Recently, there 
has been much effort to develop a medical deep learning 
model with transparency and apprehensibility, reliable 
enough to be used in real clinical setting. One of the ways 
is providing some kind of explainability measure like class 
activation maps (CAM) (36) to demonstrate how the model 
is making the classification. Many XAI (Explainable Artificial 
Intelligence) studies provide explanations by providing the 
activated regions within the layers of deep learning models, 
such as CAM. According to the recent research (37), 65% 
of XAI studies reported using CAM. However, even if we 
know which regions are activated by using CAM, it can still 
be difficult to understand why a certain decision was made. 
For this reason, we plan to develop a framework that makes 
decisions based on diagnostic clues, and explainable AI that 
provides evidence-based reasoning for the final decision can 
be a solution to the black-box problem. Our model itself 

does not provide a solution to the black-box problem, and 
it is aiming for further research which focuses on detection 
and classification meningioma based on the dural tail sign 
detection.

The main purpose of this research is to present a deep-
learning model capable of detecting dural tail sign. Our goal 
is to develop a framework that makes decisions based on 
diagnostic clues, and this model is an initiative point for us 
to develop a meningioma classification model with medical 
relevance and transparency. In the prospective studies, 
we are planning to further expand the model’s role from 
simple detection of dural tail sign to a screening tool for 
meningioma. With improved diagnostic performance of the 
model, the model’s efficacy can be further evaluated through 
comparison of reading time and diagnostic performance 
between reader groups with and without deep learning 
model.

Skull stripping (38) or brain extraction of MR images is 
often a fundamental step in many neuroimaging processing 
pipelines. It usually results in a binary brain mask of an MR 
image after the removal of nonbrain structures, such as eyes, 
fat, bone, and marrow. In this study, we generated the brain 
mask by skull strip processing, and applied brain mask to 
eliminate false positives from nonbrain regions. Combining 
the object detection algorithm with skull stripping, 121 and 
115 false positives were eliminated from the test and normal 
datasets, respectively, and the specificity was increased by 
5.8%.

For the experiment for other tumor dataset, we 
hypothesized that with relatively low incidence of dural 
tail sign in non-meningioma tumors, and the model would 
not detect dural tail signs in the other tumor dataset. 
However, false positives were detected in more than half 
of the other tumor dataset. For those cases in which the 
model mistakenly detects peritumoral vessels as dural tail 
sign, we can solve this problem by training the model 
to learn the overall anatomy of brain and recognize the 
constitutional structure of dura in prospective studies. 
Also, there are some dural-based brain lesions, other than 
meningioma, also featuring the dural tail sign, and the 
differential diagnosis can be difficult. In such confusing 
cases, other sequences or other imaging modalities can be 
helpful. For example, most dural metastases exhibit reduced 
perfusion when compared with meningiomas, with typical 
rCBV values of less than 2. On MRS, metastases have low 
NAA:creatine ratios and high lipid:creatine rations without 
the alanine peak characteristic of meningiomas. Primary 
dural lymphomas are more commonly associated with larger 

1.0

0.9

0.8

0.7

0.6

0.5

C
on

fid
en

ce
 s

co
re

True positive False positive
Prediction result

Prediction result
True positive
False positive

Figure 5 Distribution of predicted confidence scores for the 
meningioma and normal group datasets. The confidence score of 
the predicted box evaluated as true positive in the test dataset is 
recorded as a point (left), and the confidence score of the predicted 
box evaluated as false positive in the normal dataset is recorded as a 
point (right).
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extent of vasogenic edema than meningiomas, and tend to 
show more diffusion restriction due to high cellularity (9).  
Moreover, meningiomas and surrounding tissues may 
appear heterogeneous and less distinguishable when 
peritumoral edema and/or necrosis are present in proximity 
to the enhancing tumor. Prospective studies with our dural 
tail sign detection model combined with other analyzing 
models trained on other MR sequences or imaging 
modalities would better distinguish meningioma from other 
brain tumors, and can serve as a clinically relevant assistant 
tool with even more radiological evidences.

For the external validation, our model shows poor 
performances, and the performance degradation in external 
validation can be attributed to inductive bias (39), which 
refers to the assumptions that a model relies on when 
inferring on unseen data during training process. Based on 
the inductive bias of CNN (40), differences in the pattern 
of the dural tail sign between the validation dataset and 
the test dataset could result in differences in pixel locality, 
and the difference of image resolution can be a cause of 
performance degradation in evaluating deep learning 
models. Furthermore, differences in the manufacturer and 
scan parameters (41,42) may also affect the non-biological 
variance. Prospective studies applying the fine-tuning 
technique (43), training the model with a larger dataset 
from multiple institutions, including various manufacturers, 
and using the model based on vision transformer (44), 
which minimizes the inductive bias, would improve the 
model’s generalizability.

This study had several limitations. First of all, our model 
was trained primarily with MRI data acquired from a single 
institution. Although an open dataset was added to the 
training dataset, the sample size was still small. Second, 
the dural tail sign is not always present in the brain MR 
images of patients with meningiomas. In fact, significant 
portions of our model’s study population (60 out of 183 
patients from our hospital database, and 43 out of 82 for 
the open dataset from Cheng group) were excluded because 
these patients’ images did not show the dural tail sign. 
If the radiologists are not meticulous, the relatively low 
sensitivity of the model may entail a considerably high risk 
of missing the tumor. While enjoying the convenience of 
the model’s preselection of priority patients and lesions on 
screening MRI, the radiologists should still stay focused 
and be able to detect any missing lesions through manual 
reading process. Further, if the radiologists are notified by 
the model that there is a positive dural tail sign, they may be 
inclined to describe the lesion as a meningioma even though 

numerous other intracranial pathologies can exhibit dural 
tail sign. However, the main purpose of our model was 
to detect the dural tail sign in screening MRI, if present, 
highly indicative of meningioma. This model is an assistant 
tool for radiologists in routine screening, not a definite 
diagnostic tool. Prospective studies with larger dataset 
consist of a variety of other intracranial entities featuring 
the dural tail sign would improve the model’s performance. 
Another limiting factor in this study was that only sagittal 
scans were used for training and test datasets, except for the 
open dataset. Finally, hyperparameter optimization was not 
performed in this study. The hyperparameters used in this 
deep learning model training were default parameters, and 
the model performance could be improved by performing 
hyperparameter optimization.

Conclusions

In this study, we proposed an automated deep-learning 
model to detect dural tail signs, which is highly indicative 
of meningiomas. It can be used as a medically evident and 
apprehensible artificial intelligence model for meningioma 
detection. Through preselection of priority patients and 
lesions suspicious for such dural mass, our model can reduce 
the workload of radiologists and facilitate the manual 
reading process with convenience and high reproducibility.
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Supplementary

Appendix 1 Additional experiment to investigate the performance of dural tail sign detection model 
for other tumors

Our model was also tested on other tumor groups to verify its ability to distinguish meningiomas from other tumors. The 
hypothesis of the additional experiment was that most other types of brain tumors do not exhibit the dural tail sign, unlike 
meningiomas, and therefore the trained model may not be able to predict the dural tail sign in other tumor dataset. 

The other tumor group dataset consists of 41 patients (45 scan; 15,260 images) who were pathologically confirmed as 
having non-meningioma tumors (e.g. metastatic carcinoma, glioblastoma, and adenoma), with brain magnetic resonance 
imaging (MRI) taken from single institution between March 2016 and June 2022. The MRI acquisition for the other tumor 
dataset was the same as the dural tail sign dataset and normal dataset in the manuscript, and the preprocessing such as 
applying the brain mask for false positive reduction were performed the same as the test and normal dataset.

For evaluation, to investigate whether that the trained model detects dural tail signs around other tumor lesions, we 
manually evaluated the predicted boxes where the dural tail sign was detected around the lesion as false positives, instead of 
evaluating entire false positives for each scan.

As a result, false positives were observed around the tumor lesion in 26 patients, and some false positives around other 
tumor lesion were due to peritumoral enhancing vessels in clearly parenchymal locations, not near the dura.

Appendix 2 External validation

The total 96 scans in meningioma dataset from The Cancer Imaging Archive, we excluded 20 scans without the observation 
of dural tail sign through the labeling process, and selected 76 scans for the external validation set. The external validation 
dataset consisted mostly of axial contrast-enhanced 3 dimensional T1 weighted image (CE 3D T1WI) with an image matrix 
size of 256×256. Each image was resliced into the sagittal plane for evaluation using the trained model. We performed the 
evaluation process for the external validation set using the same procedure as that used for the internal test dataset, excluding 
the brain masking process because the external validation dataset does not include 3D T1WI. As a results for the external 
validation, a sensitivity and false positive average were measured as 36.84% and 9.21, respectively.

Table S1 Manufacture and scan parameters for internal and external validation datasets

Manufacturer

Internal validation dataset  
(testset; 45 scans)

External validation dataset (76 scans)

Philips Medical Systems
GE Medical 

Systems
GE Medical 

Systems
GE Medical 

Systems
Siemens Toshiba

Manufacturer model Achieva DISCOVERY 
MR750

SIGNA EXCITE Signa HDxt Symphony Titan

Study description T1 3D TFE SAG-Prohence Ax FSPGR 
BRAVO post

AX 3D FSPGR, 
AX 3D stealth

AX 3D stealth t1_mpr_ns_ax 
stealth

3D T1 AX 
STEALTH

Number of scans 45 1 23 50 1 1

Field strength (T) 3.0 3.0 3.0 3.0 1.5 1.5

Repetition time (ms) 9.43 8.13 7.94 8.00 2.14 6.20

Echo time (ms) 4.60 3.16 3.06 3.06 3.93 3.20

Inversion time (ms) – 450.00 450.00 450.00 1,100.00 600.00

Resolution 512×512 256×256 256×256 256×256 256×256 256×256

Pixel spacing 0.49 1.02 1.02 1.01 1.02 1.00

Intensity range 1,933.04 16,091.00 18,513.52 19,620.82 352.00 4,295.00
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Figure S1 Examples of false-positive cases from the normal dataset. False positive around the (A) transverse sinus, (B) superior sagittal sinus, 
and (C) enhanced meningeal vessel are represented by the green-boundary boxes; (D-F) other examples observed at low frequencies.


