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Background: Hip fractures, including femoral neck fractures, are a significant cause of morbidity and 
mortality in the elderly population and are typically diagnosed using plain radiography. However, diagnosing 
non-displaced femoral neck fractures can be challenging due to their subtle appearance on hip radiographs. 
Previous deep-learning models have shown low accuracy in identifying these fractures on anteroposterior (AP) 
radiographs; however, no studies have used lateral radiographs. This study aimed to evaluate the potential of 
using deep-learning with both AP and lateral hip radiographs to automatically identify non-displaced femoral 
neck fractures.
Methods: We conducted a retrospective analysis of patients with femoral neck fractures at The First 
Affiliated Hospital of Xiamen University. All the hip radiographs were reviewed, and cases of non-displaced 
femoral neck fractures were included in the study. Additionally, 439 participants with normal hip radiographs 
were also included in the study. A vision transformer (Vit) model was developed using 1,536 AP and lateral 
hip radiograph. The model’s performance was compared to the performance of two groups of human 
observers: an expert group comprising orthopedic surgeons and radiologists, and a non-expert group, 
including emergency physicians and general practice doctors. We also carried out the external validation 
using two additional data sets to assess the generalizability of the model.
Results: The Vit model showed exceptional performance in detecting non-displaced femoral neck fractures 
on paired AP and lateral hip radiographs, achieving a binary accuracy of 95.8% [95% confidence interval (CI): 
94.9%, 96.8%] and an area under the curve (AUC) of 0.988. Compared to the human observers, the model 
had a higher accuracy of 96.7% (95% CI: 93.9%, 99.5%) on the paired AP and lateral hip radiographs, while 
the accuracy of the expert group was 90.5% (95% CI: 85.7%, 95.2%). Further, the model maintained good 
performance during the external validation, with an AUC of 0.959 on the paired AP and lateral views.
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Introduction

Hip fractures are a significant cause of morbidity and 
mortality worldwide (1-4). Older adults are particularly 
vulnerable to hip fractures with as many as 30% dying 
within one year of sustaining a hip fracture (5,6). Early 
diagnosis is crucial for good outcomes, as delayed diagnosis 
can lead to the displacement of the fracture, malunion, 
and arthritis, which can lead to a poor prognosis (7).  
Unfortunately, previous studies have reported misdiagnosis 
rates ranging from 7% to 14% for all types of hip 
fractures (8,9). Of all hip fractures, non-displaced femoral 
neck fracture is a major cause of misdiagnosis on hip 
radiographs (7,10). Displaced femoral neck fractures 
and intertrochanteric fractures can be easy to identify on 
radiographs; however, non-displaced femoral neck fractures 
can present as subtle changes in bone structure that are 
difficult to distinguish from normal anatomy (Figure 1). As a 
result, additional tests such as computed tomography (CT) 
scans, bone scans, and magnetic resonance imaging (MRI) 
are often required for diagnosis, which can increase surgery 
time and overall care costs (11).

Deep learning is a type of machine learning that uses 
artificial neural networks to learn from large data sets and 
make predictions based on new data. In recent years, deep 
convolutional neural networks (CNNs) have shown promise 
in medical image analysis (12-16). Many radiographic 
studies have used CNNs for hip fracture detection 
(6,17-24). However, the sensitivity of identifying non-
displaced femoral neck fractures using CNNs is around 
50% (6,18), and previous studies have not used lateral 
radiographs. Recently, vision transformer (Vit) models 
have been developed that can completely replace standard 
convolutions in deep neural networks by operating on a 
series of image patches. Further, the latest studies indicate 
that the prediction errors of Vit models are more consistent 
with those of humans than CNNs (25-27). If an algorithm 

can achieve expert-level accuracy, the automated detection 
of non-displaced femoral neck fractures has the potential 
to reduce missed diagnoses. Thus, Vit models have the 
capability to minimize delayed management and enhance 
patient outcomes.

In this study, we evaluated the diagnostic performance 
of a Vit model for detecting non-displaced femoral neck 
fractures using plain anteroposterior (AP) and lateral hip 
radiographs. We also compared the performance of our 
model to that of 16 clinical physicians with varying levels 
of experience in musculoskeletal imaging. The overall 
objective of this study was to develop a Vit model that can 
help clinical physicians quickly and accurately diagnose non-
displaced femoral neck fractures. We present this article in 
accordance with the TRIPOD reporting checklist (available 
at https://qims.amegroups.com/article/view/10.21037/
qims-23-814/rc).

Methods

This study was conducted in accordance with the 
Declaration of Helsinki (as revised in 2013). The study 
was approved by The First Affiliated Hospital of Xiamen 
University and the requirement of individual consent for 
this retrospective analysis was waived.

Data set acquisition

We retrospectively searched the radiology reports of 
The First Affiliated Hospital of Xiamen University for 
hip or pelvic radiographs using the words “femoral neck 
fracture” from June 2009 to May 2022. Hip radiographs 
were obtained from the following four manufacturers of 
radiologic data sources: GE Healthcare, Philips Medical 
Systems, Kodak, and Canon. The following images were 
excluded: (I) images of poor quality (e.g., images with poor 

Conclusions: Our Vit model showed expert-level performance in identifying non-displaced femoral 
neck fractures on paired AP and lateral hip radiographs. This model has the potential to enhance diagnosis 
accuracy and improve patient outcomes by reducing the need for additional examinations and preoperative 
time.
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detail, contrast, or inappropriate film darkness); (II) images 
of fractures older than four weeks; (III) images of chronic 
hip diseases; and (IV) images of patients with hardware (e.g., 
screws, plates, wires, or pins).

A total of 1,889 patients (aged 18 years or older) were 
identified as having a femoral neck fracture based on a 
review of the reports by an orthopedic surgeon with 6 years 
of experience (Wang LX). Two board-certified orthopedic 
surgeons (Wang LX and Sun NK, with 6 and 15 years of 
experience, respectively) excluded 1,264 cases of displaced 
femoral neck fractures (Garden III/IV) from all the femoral 
neck fractures on hip radiographs. An additional 296 cases 
without lateral views were then excluded, resulting in  
329 cases of non-displaced femoral neck fractures (Garden I/
II). The ground truth for the fracture status was determined 
by CT scans (148 cases, 45.0%), MRI scans (4 cases, 
1.2%), and postoperative radiographs (107 cases, 32.5%). 
For the remaining 70 cases (21.3%) without CT, MRI, 

or postoperative images, two board-certified orthopedic 
surgeons (Wang LX and Sun NK) reached a consensus 
on the fracture status. Radiographs of normal hips were 
obtained from patients diagnosed as normal on reports 
by two board-certified radiologists and reviewed by an 
orthopedic surgeon (Wang LX) to exclude the presence 
of a fracture. The data set for this study included 1,536 
hip radiographs, consisting of 768 pairs of AP and lateral 
femoral neck radiographs (439 pairs of radiographs of 
normal hips, and 329 pairs of radiographs of hip fractures). 
The workflow for this study, including data inclusion, image 
pre-processing, training, validation, and testing of the 
model, is shown in Figure 2.

Image pre-processing

All the hip radiographs were extracted as Digital Imaging 
and Communications in Medicine (DICOM) files from 

Figure 1 Representative radiographs of different hip fracture cases. (A) A normal hip. (B) A radiograph of a femoral intertrochanteric 
fracture. (C,D) Non-displaced femoral neck fractures (Garden I/II). (E,F) Displaced femoral neck fractures (Garden III/IV). (G,H) The CT 
scan and MRI scan of the non-displaced femoral neck fracture in (D), respectively. The blue arrows show the position of the fracture. CT, 
computed tomography; MRI, magnetic resonance imaging.
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Figure 2 Development and testing for the vision transformer model. (A) A total of 768 pairs of AP and lateral hip radiographs, comprising 
329 pairs of non-displaced fractures and 439 normal hips. (B) We cropped the images to a region containing the femoral head and the 
greater and lesser trochanters. (C) The dual-view DAT model was trained by 10-fold cross-validation. (D) The model was tested on two 
independent test sets and two external data sets. AUC, area under the curve; PE, Performance evaluation; PPV, positive predicted value; 
NPV, negative predicted value; Pair, paired AP and lateral views. 
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the picture archiving and communication system (PACS). 
An orthopedic surgeon (Wang LX) drew bounding boxes 
around each femoral neck, encompassing the femoral head 
and the greater and lesser trochanters in both the AP and 
lateral hip radiographs. The images were then cropped out 
of the bounding box area, and truncated normalization, 
contrast enhancement, and colormap transformation were 
applied to generate pseudo red, green, and blue (pseudo-
RGB) three-channel images for model training. All the 
images were randomly split into a training set (80%), a 
validation set (10%), and a test set (10%).

Model architecture

We trained and val idated a  deep-learning image 
classification algorithm based on the deformable attention 
transformer (DAT) framework, which proposes a new 
deformable self-attention module based on the swim-
transformer (28). It allows the self-attention module to 
focus on relevant areas and capture more information. 
The DAT framework comprises a feature extraction 
module with four stages. The first two stages use classic 
shift-window attention, while the remaining stages use 
deformable attention. The prediction results were obtained 
by feeding high-level features extracted from the previous 
four stages into a fully-connected network. When there 
were only AP or lateral radiographs, we used a single DAT 
model to generate the predictions. When there were AP 
and lateral hip radiographs, we used two individual DAT 
models to extract features from the AP and lateral hip 
radiographs separately and then fused these features to 
produce predictions. During training, the model underwent 
100 epochs, with the parameters updated using a stochastic 
gradient algorithm and a batch size of 32. The network 
trained a dual-view DAT model and used 10-fold cross-
validation to ensure fairness. The final pipeline’s accuracy 
can be adjusted by setting thresholds on the scores returned 
by the softmax algorithm for each input X-ray image, 
providing accurate results for different X-ray images. The 
testing model is available at https://github.com/qc-sw/non-
displaced-femoral-neck-fracture.

Model evaluation

The performance of the model was evaluated in relation to 
the: (I) AP hip radiographs; (II) lateral hip radiographs; (III) 
paired AP and lateral hip radiographs. The probabilities 
of fracture were determined for each view, and the final 

decision was based on the average performance of ten 
individual test groups. For visualization, we used Gradient-
weighted Class Activation Mapping (Grad-CAM) to 
characterize the model’s behavior (29).

In clinical practice, clinicians make the diagnosis of 
femoral neck fracture based on AP hip radiographs or paired 
hip radiographs. So we also compared the performance of 
our model with that of 16 clinicians using two independent 
testing data sets from June 2022 to October 2022. The 
first data set comprised AP hip radiographs alone (n=50, 
of which 25 were normal cases and 25 were fracture cases), 
while the second data set comprised paired AP and lateral 
hip radiographs (n=21, of which nine were normal cases 
and 12 were fracture cases). The expert group included 
four orthopedic surgeons (with 16–30 years of experience) 
and four radiologists (with 4–10 years of experience), while 
the non-expert group included four emergency physicians 
(with 5–8 years of experience) and four general practice 
doctors (with 1–8 years of experience). Each physician 
was shown the images exactly as they were input into the 
model (model-quality images) and asked to classify each 
image as “fracture” or “no fracture.” To ensure fairness, 
the comparison was conducted excluding the orthopedic 
surgeons who determined the ground truth.

In addition, we used two external data sets to test the 
performance of our model: one from The Second Hospital 
of Jilin University (n=109, comprising 55 normal hips 
and 54 fractured hips), and one from The Zhongshan 
Hospital of Xiamen University (n=100, comprising 50 pairs 
of normal hips and 50 pairs of fractured hips). The two 
external data sets were acquired by experienced orthopedic 
surgeons following the same protocol as that for the 
internal data sets. The ground truth for the non-displaced 
femoral neck fractures was determined by CT scan, MRI 
scans, postoperative radiographs, and the consensus of four 
experienced orthopedic surgeons (Wang LX, Sun NK, 
Wang YZ, and Jiang WB).

To evaluate the performance of our model, we calculated 
several metrics, including sensitivity, specificity, accuracy, 
F1 score, receiver operating characteristic (ROC) curve, and 
area under the curve (AUC). We compared the performance 
of our model with that of the clinicians using accuracy, 
sensitivity, specificity, positive predicted value (PPV) and 
negative predicted value (NPV). All the statistical analyses 
were performed using the extension packages “scikit-learn”, 
“scipy” and “pandas”. The pipeline used to build the Vit 
model was based on an Ubuntu 18.04 operating system with 
PyTorch 1.12.1+cu113 open-source library with Python 

h﻿ttps://github.com/qc-sw/non-displaced-femoral-neck-fracture
h﻿ttps://github.com/qc-sw/non-displaced-femoral-neck-fracture
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3.9.0 (Python Software Foundation).

Results

Table 1 presents the numbers of patients and images for 
the development data set, independent test data set, and 
the external validation data set, along with their respective 
clinical characteristics.

Performance of the AI model

We evaluated the performance of our AI model using 10-
fold cross-validation and found that its performance on the 
AP and paired views was much better than its performance 
on the lateral view (Table 2). The model’s binary accuracy 
on the AP view was 93.4% [95% confidence interval (CI): 
92.0%, 94.8%], with an average F1 score of 0.921. When 
using paired AP and lateral views, the model achieved a 
higher accuracy of 95.8% (95% CI: 94.9%, 96.8%), and an 
average F1 score of 0.950. The binary classification ROC 
curve of the model on AP and paired views had AUCs 
of 0.981 and 0.988, respectively (Figure 3). These results 
demonstrate the model’s excellent agreement with the 
ground truth.

Table 1 Characteristics of the data sets

Parameters Development data set (n=768) Independent test data set (n=30) External validation data set (n=155)

Age (years) 58.0±18.7 73.9±13.3 70.9±14.0

Sex 

Female 449 (58.5) 19 (63.3) 94 (60.6)

Male 319 (41.5) 11 (36.7) 61 (39.4)

Unilateral hip image 1,536 91 309

No fracture 878 (57.2) 42 (46.2) 155 (50.2)

Fracture 658 (42.8) 49 (53.8) 154 (49.8)

The data are presented as the mean ± standard deviation, number of patients/images with percentages in parentheses.

Table 2 Diagnostic performance of the model on different views

Views Sensitivity (%) Specificity (%) Accuracy (%) F1 Score (%)

AP 91.3 (88.9, 93.8) 95.1 (92.7, 97.6) 93.4 (92.0, 94.8) 92.1 (90.4, 93.8)

Lateral 78.0 (72.1, 83.9) 89.1 (85.7, 92.5) 84.4 (81.6, 87.1) 80.7 (76.7, 84.7)

Pair 94.0 (91.9, 96.2) 97.5 (95.6, 99.3) 95.8 (94.9, 96.8) 95.0 (93.6, 96.3)

Numbers in parentheses are 95% CIs. AP, anteroposterior view; Pair, paired AP and lateral views; CI, confidence interval.

Figure 3 The model’s ROC curves for the three different 
views. The binary classification ROC curves of the model for 
the AP, lateral and paired views had AUCs of 0.981, 0.930, and 
0.988, respectively. ROC, receiver operating characteristic; AP, 
anteroposterior; AUC, area under the curve; Pair, paired AP and 
lateral views.
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We also used Grad-CAM maps to further analyze the 
behavior of our model (Figure 4). On the AP view, the 
model tended to focus on a large area that included the 
basal part, inner cortex, and outer cortex of the femoral 
neck, as well as the deviation of the trabecular bone, which 
is important for diagnosing non-displaced femoral neck 
fractures. On the lateral hip radiographs, the model tended 
to focus on the cortex and trabecular bone on both sides of 
the femoral neck. However, the lucency of the fracture line 
received little attention, possibly due to the affected and 
non-displaced morphology of the fracture.

Comparison with clinical physicians on independent  
data sets

The performance of the model compared with that of all 

16 physicians is shown in Table 3, and the sensitivity and 
specificity of each individual physician’s performance are 
plotted on the model’s ROC curve in Figure 5. On the AP 
view, the model had a sensitivity of 98.4% (95% CI: 96.9%, 
99.9%), a specificity of 72.4% (95% CI: 68.3%, 76.6%), 
and an accuracy of 85.4% (95% CI: 83.3%, 87.5%). 
However, the average PPV of the model was 78.1% on 
the AP view (Appendix 1, Table S1). The sensitivity of the 
expert group was 95.5% (95% CI: 92.7%, 98.3%), while 
the sensitivity of the non-expert group was only 73.0% 
(95% CI: 62.2%, 83.8%). The average NPV was 76.1% for 
the non-expert group (Appendix 1, Table S1), indicating a 
high risk of missed diagnosis. The average specificity was 
86% for the expert group and 86.5% for the non-expert 
group. The accuracy of the expert group and non-expert 
group was 90.8% (95% CI: 84.4%, 97.1%) and 79.8% (95% 

Figure 4 Examples of heatmaps for the model’s predictions for three cases of fractures on AP and lateral hip radiographs. AP hip radiograph 
heatmap (A) and lateral hip radiograph heatmap (B) of a 91-year-old male patient. AP hip radiograph heatmap (C) and lateral hip radiograph 
heatmap (D) of a 76-year-old male patient. AP hip radiograph heatmap (E) and lateral hip radiograph heatmap (F) of a 71-year-old male 
patient. AP, anteroposterior.
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CI: 76.7%, 82.8%), respectively. The model achieved an 
AUC of 0.954 on the AP view. The 95% CIs of both the 
mean sensitivity and mean specificity of the non-expert 
group were below the ROC curve of the model, and the 
mean performance of the expert group was better than 
that of the model. These results suggest that our AI model 
outperformed the non-expert physicians but would need to 
be improved to outperform the expert physicians on the AP 
radiographs.

On the paired AP and lateral views, the model achieved a 
sensitivity of 95.0% (95% CI: 90.8%, 99.2%), a specificity 
of 98.9% (95% CI: 96.4%, 100.0%), and an accuracy of 
96.7% (95% CI: 93.9%, 99.5%). The average PPV and 

NPV of the model were 99.1% and 93.7%, respectively 
(Appendix 1, Table S2). The sensitivity of the expert group 
and non-expert group was 92.7% (95% CI: 86.9%, 98.5%) 
and 80.2% (95% CI: 71.9%, 88.5%), respectively. The 
specificity of both the expert and non-expert groups were 
not much improved on the paired views, and was 87.5% 
(95% CI: 74.9%, 100.0%) and 80.6% (95% CI: 65.9%, 
95.3%) for the experts and non-expert groups, respectively. 
The NPV was 75.3% for the non-expert group on the 
paired views (Appendix 1, Table S2), which was similar to 
the NPV on the AP view. The accuracy of the expert group 
and non-expert group was 90.5% (95% CI: 85.7%, 95.2%) 
and 80.4% (95% CI: 75.9%, 84.9%), respectively. The 95% 

Table 3 Diagnostic performance of AI model and 16 physicians on the AP and paired views

AI/physicians
AP view Paired views

Sensitivity (%) Specificity (%) Accuracy (%) Sensitivity (%) Specificity (%) Accuracy (%)

AI 98.4 (96.9, 99.9) 72.4 (68.3, 76.6) 85.4 (83.3, 87.5) 95.0 (90.8, 99.2) 98.9 (96.4, 100.0) 96.7 (93.9, 99.5)

Experts 95.5 (92.7, 98.3) 
[0.037]

86.0 (74.3, 97.7) 
[0.012]

90.8 (84.4, 97.1) 
[0.056]

92.7 (86.9, 98.5) 
[0.459]

87.5 (74.9, 100.0) 
[0.033]

90.5 (85.7, 95.2) 
[0.015]

Non-experts 73.0 (62.2, 83.8) 
[<0.001]

86.5 (76.2, 96.8) 
[0.005]

79.8 (76.7, 82.8) 
[0.002]

80.2 (71.9, 88.5) 
[0.001]

80.6 (65.9, 95.3) 
[0.005]

80.4 (75.9, 84.9) 
[<0.001]

The numbers in the round brackets are the 95% CIs. The numbers in the square brackets are the P values compared to the AI model. AP, 
anteroposterior; Paired, paired AP and lateral; AI, artificial intelligence; CI, confidence interval.

Figure 5 The ROC curve of the model versus that of the experts (orthopedic surgeons and radiologists, in red) and non-experts (emergency 
physicians and general practice doctors, in blue). (A) The AUC of the model was 0.954 on the AP view. (B) The AUC of the model was 0.996 
on the paired views. ROC, receiver operating characteristic; AP, anteroposterior; AUC, area under the curve; Pair, paired AP and lateral views.
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CIs of both the mean sensitivity and mean specificity of 
the expert group were below the ROC curve of the model. 
The AUC of the model was 0.996, indicating excellent 
performance on the paired views. Further, we observed that 
a few clinicians may have mistakenly classified certain cases 
of fractures as normal as illustrated in Figure 6. However, 
it is worth noting that all three cases presented in the 
figure were accurately diagnosed as fractures. These results 
highlight the potential value of our AI model in improving 
diagnostic accuracy and reducing the risk of missed 
diagnosis for femoral neck fractures.

Performance of the AI model in external validation

To further evaluate the generalizability of our AI model, 
we tested it on two external data sets. Table 4 shows the 
performance of the model on these data sets. The model 
achieved an average binary accuracy above 87%, with an 
average sensitivity higher than 93%, and a specificity of 
approximately 80%. The average F1 score of the model 
was above 0.88, indicating good overall performance. The 
AUCs were 0.923 and 0.959 on the AP view and paired 
views, respectively. These results demonstrate that our 
AI model has good generalizability and can perform well 
on different data sets, suggesting its potential for use in 
different clinical institutions.

Discussion

Our study demonstrated the effectiveness of a Vit model in 
differentiating non-displaced femoral neck fractures from 
normal hips using both AP and lateral hip radiographs, 
achieving an accuracy of 95.8% and an AUC of 0.988 on 
the paired AP and lateral views. To our knowledge, this is 
the first report of deep learning being used to detect non-
displaced hip fractures on both AP and lateral radiographs. 
The high accuracy and AUC values achieved by our model 
on different test data sets highlight the potential of this 
approach to improve diagnostic accuracy.

Non-displaced femoral neck fractures can be difficult to 
diagnose on hip radiographs, particularly for non-expert 
physicians, as also evidenced by our results. Several studies 
have used CNNs to identify non-displaced hip fractures on 
AP hip radiographs. Krogue et al. [2020] presented a CNN 
model that predicted non-displaced femoral neck fractures 
with a sensitivity of only 51.2% using 182 cases for training 
and validation (6). Mutasa et al. [2020] also used a CNN 
model to diagnose non-displaced femoral neck fractures 

with a sensitivity of 54% using 127 cases for training and 
validation (18). Their performance was unsatisfactory on 
single AP hip radiographs, but this was likely due to small 
data sets and the lack of a lateral view.

Our study demonstrated that the performance of 
clinicians was not much improved when incorporating 
lateral views, but the addition of lateral views significantly 
improved the performance of our model. This highlights 
the importance of paired AP and lateral radiographs for 
detecting such fractures, as well as the potential of deep-
learning models in improving diagnostic accuracy. The 
reason for the improved performance of our model on the 
paired views may be due to the fused features that went 
through a series of non-linear activation functions, rather 
than simply combining two predicted probabilities using 
thresholds. Further, concerns about the routine use of 
lateral hip radiographs due to discomfort (30-32) can be 
mitigated by the potential benefits of improved diagnostic 
accuracy and the reduced need for additional examinations.

Our model has potential applications as a second reader 
in clinical settings to minimize missed diagnosis and 
provide an outcome at the expert level for non-displaced 
femoral neck fractures. By identifying fractures in real time, 
our model could reduce both harm and costs, potentially 
improving patient outcomes. Additionally, our model 
may function as an aid to enhance the performance of all 
physicians, including the radiologists who give the final 
report of the radiographs.

Nevertheless, it is important to recognize the limitations 
of our study. First, the retrospective design introduces 
potential biases. By selecting cases with both AP and 
lateral hip radiographs, there is a risk that we overlooked 
additional non-displaced fractures in our data set. To obtain 
a more comprehensive understanding, larger prospective 
studies involving diverse cohorts are necessary to evaluate 
the performance of our model and verify its generalizability. 
Second, it is worth noting that fracture diagnosis relies 
not only on radiological features but also on the patient’s 
history and clinical presentation. Our study focused solely 
on radiological features, which might have restricted the 
accuracy of the clinical physicians. Further, our study lacked 
age-specific comparisons, despite the distinct presentation 
and management of femoral neck fractures in different age 
groups. Additionally, variations in the technique used for 
capturing lateral radiographs by different operators during 
examinations introduced inconsistencies in our results and 
limit the reliability of our findings. Moreover, efforts to 
enhance the decreased specificity observed in our model 
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Figure 6 Representative radiographs of three non-displaced femoral neck fracture cases that were diagnosed as normal by some clinicians 
on paired AP and lateral hip views. The blue arrows show the fractured site. AP (A) and lateral (B) hip radiograph of a 66-year-old female 
patient. AP (C) and lateral (D) hip radiograph heatmap of an 80-year-old male patient. AP (E) and lateral (F) hip radiograph of a 65-year-old 
male patient. AP, anteroposterior.
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when applied to external data sets could include using larger 
data sets or refining image acquisition protocols.

Conclusions

In conclusion, our study demonstrates the potential of 
deep learning to improve diagnostic accuracy for non-
displaced femoral neck fractures using paired AP and lateral 
hip radiographs. Our model has the potential to minimize 
diagnostic errors, which may have a significant effect on 
patient recovery and morbidity. Further research is needed 
to validate the generalizability of our findings and to address 
the limitations of our study.
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Appendix 1

Confusion matrix demonstrates the average true positive, 
true negative, false positive, and false negative values for 
the artificial intelligence (AI) model, the expert group, and 
the non-expert group on the independent test data set. 
The average positive predicted value (PPV) and negative 

predicted value (NPV) of the model were 78.1% (24.6/31.5) 
and 97.8% (18.1/18.5), respectively on the anteroposterior 
(AP) view. While on the paired views, the average PPV 
(11.4/11.5) and NPV (8.9/9.5) of the model were 99.1% 
and 93.7%, respectively. The average NPV for the non-
expert group was 76.1% (21.6/28.4) and 75.3% on the AP 
and paired views, respectively.

Table S1 Confusion matrix for the AI model, the expert group and 
the non-expert group on the AP view

Predicted
Actual

Normal Fracture

AI

Normal 18.1 0.4

Fracture 6.9 24.6

Experts

Normal 21.5 1.1

Fracture 3.5 23.9

Non-experts

Normal 21.6 6.8

Fracture 3.4 18.2

AP, anteroposterior; AI, artificial intelligence.

Table S2 Confusion matrix for the AI model, the expert group, and 
the non-expert group on the paired AP and lateral view

Predicted
Actual

Normal Fracture

AI

Normal 8.9 0.6

Fracture 0.1 11.4

Experts

Normal 7.9 0.9

Fracture 1.1 11.1

Non-experts

Normal 7.3 2.4

Fracture 1.7 9.6

AP, anteroposterior; AI, artificial intelligence.
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