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Background and Objective: The rapid advancement of artificial intelligence (AI) has ushered in a 
new era in natural language processing (NLP), with large language models (LLMs) like ChatGPT leading 
the way. This paper explores the profound impact of AI, particularly LLMs, in the field of medical image 
processing. The objective is to provide insights into the transformative potential of AI in improving 
healthcare by addressing historical challenges associated with manual image interpretation.
Methods: A comprehensive literature search was conducted on the Web of Science and PubMed databases 
from 2013 to 2023, focusing on the transformations of LLMs in Medical Imaging Processing. Recent 
publications on the arXiv database were also reviewed. Our search criteria included all types of articles, 
including abstracts, review articles, letters, and editorials. The language of publications was restricted to 
English to facilitate further content analysis.
Key Content and Findings: The review reveals that AI, driven by LLMs, has revolutionized medical 
image processing by streamlining the interpretation process, traditionally characterized by time-intensive 
manual efforts. AI’s impact on medical care quality and patient well-being is substantial. With their robust 
interactivity and multimodal learning capabilities, LLMs offer immense potential for enhancing various 
aspects of medical image processing. Additionally, the Transformer architecture, foundational to LLMs, is 
gaining prominence in this domain.
Conclusions: In conclusion, this review underscores the pivotal role of AI, especially LLMs, in advancing 
medical image processing. These technologies have the capacity to enhance transfer learning efficiency, 
integrate multimodal data, facilitate clinical interactivity, and optimize cost-efficiency in healthcare. 
The potential applications of LLMs in clinical settings are promising, with far-reaching implications for 
future research, clinical practice, and healthcare policy. The transformative impact of AI in medical image 
processing is undeniable, and its continued development and implementation are poised to reshape the 
healthcare landscape for the better.
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Introduction

Medical image processing technology has rapidly evolved 
over the past few decades. The relentless advancement 
and upgrading of imaging modalities, including X-rays, 
computed tomography (CT), magnetic resonance imaging 
(MRI), and positron emission tomography (PET), have 
furnished increasingly precise image data for clinical 
diagnoses (1). The global medical image analysis software 
market size was valued at USD 2.80 billion in 2021 and 
is expected to grow at a compound annual growth rate of 
7.8% during the forecast period (from 2023 to 2030) (2). 
However, with the exponential surge in medical image data, 
traditional manual image recognition methods grapple 
with significant challenges, including diagnostic accuracy, 
reporting velocity, and manual image analysis’s labor-
intensive, inconsistent quality. The integration of artificial 
intelligence (AI) holds the potential to mitigate some of these 
issues effectively. For instance, specific AI-assisted software 
now available for X-ray interpretation can autonomously 
detect and highlight abnormalities, thus aiding physicians in 
rapidly locating problem areas and expediting diagnosis (3).  
As AI medical imaging extends its applicability across 
varied modalities, diseases, and scenarios, it substantially 
alters conventional image diagnostic analysis procedures. 
The image analysis paradigm is shifting from qualitative to 
quantitative, curbing the influence of doctors’ subjective 
judgments on diagnoses and lessening the workload of 
imaging departments.

Nonetheless, several impediments exist to applying 
current machine learning methods in radiological clinical 
diagnosis and treatment, including the uniqueness of data 
sources, the interpretability of models, and insufficient 
interaction with radiologists. Furthermore, existing models 
in clinical diagnosis lack broad applicability and necessitate 
vast quantities of high-quality labeled datasets for diverse 
diseases, the acquisition of which is often costly and 
challenging (4,5).

Conversely, large language models (LLMs), typified 
by the Generative Pre-trained Transformer (GPT) series 
models, have significantly progressed in interactivity, 
universality, and data diversity. These models exhibit 
powerful representational learning capabilities, enabling 
them to comprehend, generate, and process various text 
and image data types (6). Despite their limited utilization 
in medical image recognition, they have considerable 
application potential. 

This review focuses on the significant role of LLMs 

in enhancing transfer learning efficiency, integrating 
multimodal data, improving clinical interactivity, and 
reducing costs in medical image processing. Firstly, 
it explains the principles underlying LLMs and their 
advantages over previous models in medical image 
processing, including Transformer architecture and pre-
training. Secondly, it explores LLMs’ potential advancements, 
including improved transfer learning efficacy, multimodal 
data integration, and enhanced clinical interactivity through 
presented clinical cases. Lastly, it examines challenges facing 
LLMs in medical image processing, such as data privacy, 
model generalization, and clinician communication. We 
show in Figure 1 a potential flow chart for the clinical 
application of LLMs. Through this article, we aim to 
impart to researchers and practitioners a comprehensive 
understanding of LLMs’ application in medical image 
processing from a clinical standpoint, thereby contributing 
to the further progression of this field. We present this 
article in accordance with the Narrative Review reporting 
checklist (available at https://qims.amegroups.com/article/
view/10.21037/qims-23-892/rc).

Methods

We conducted a literature search on the Web of Science 
and PubMed electronic databases for articles published 
from 2013 to 2023 to include updated data on the 
transformations of LLMs in Medical Imaging Processing. 
The search included combinations of the keywords 
“transformer”,  “GPT”, “LLMs”,  “medical  image 
processing”, “segmentation”, “AI”, “neural network”, 
“machine learning”, “multimodal”, “transfer learning”, 
and “interpretability”. Recent publications on the arXiv 
database were also reviewed. There were no exclusions 
on article type, and abstracts, review articles, letters and 
editorials were also considered. The publication language 
was restricted to English to facilitate further literature 
content analysis. The summary of search strategy is 
illustrated in Table 1 and the detailed search strategy is 
shown in Table 2.

Transformer architecture, the principle  
of LLMs

Prevalent deep learning models in medical imaging 
encompass Convolutional Neural Networks (CNNs), 
Recurrent Neural Networks (RNNs), and U-Net. Despite 
significantly enhancing diagnostic efficiency compared 

https://qims.amegroups.com/article/view/10.21037/qims-23-892/rc
https://qims.amegroups.com/article/view/10.21037/qims-23-892/rc


Tian et al. LLMs bring transformations in medical image processing1110

© Quantitative Imaging in Medicine and Surgery. All rights reserved.   Quant Imaging Med Surg 2024;14(1):1108-1121 | https://dx.doi.org/10.21037/qims-23-892

to manual interpretation, these models still bear certain 
limitations in medical imaging processing, as delineated 
in Table 3 (7-10). These previous models rely on local and 
sequential operations that limit their ability to model long-
range dependencies and global context. Nevertheless, the 
Transformer architecture can capture global and long-
range dependencies among pixels or patches without 
using recurrence or convolutions through self-attention 
mechanisms, which allows model versatility (11,12).

Initially designed for natural language processing (NLP) 
tasks like machine translation and text summarization, 
the Transformer architecture comprises an encoder and 
a decoder, featuring multiple layers of self-attention and 
feed-forward sublayers. Self-attention enables the model 
to understand dependencies and relationships within input 
or output sequences without recurrent or convolutional 
operations (13). The feed-forward sublayers consist of fully 
connected layers with nonlinear activation functions. This 
architecture offers advantages over previous NLP models, 
including enhanced parallelization, reduced latency, and 
improved long-term dependency modeling (13). LLMs, 
a subset of NLP models, undergo training on extensive 
text corpora to grasp statistical patterns and semantic 

representations of natural language. They can be fine-tuned 
on task-specific data or employed as feature extractors. 
LLMs predominantly rely on the Transformer architecture 
due to their superior performance and adaptability. 
Utilizing the self-attention mechanism inherent to the 
Transformer, LLMs capture contextual and syntactic 
information in natural language at various levels of detail, 
enabling the generation of coherent and fluent text based 
on learned representations (14). The advancements in 
medical image recognition attributed to LLMs derive from 
the enhancement of NLP capabilities, the adoption of the 
Transformer architecture, and the value added through pre-
training and fine-tuning (15).

In the clinical process, medical image reports usually 
contain much textual information, including imaging 
findings, diagnoses, and medical treatment. Leveraging 
NLP techniques such as entity recognition, relation 
extraction, and text classification to analyze and mine these 
reports allows for the automatic extraction of essential 
information, thus alleviating physicians’ manual extraction 
workload. Furthermore, integrating NLP capabilities with 
image segmentation techniques enables the utilization 
of clinical data, such as patient history and examination 
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Figure 1 Potential advantages of LLMs over current medical image processing workflow. LLMs’ changes include diagnostic enhancement, 
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Table 1 The search strategy summary

Items Specification

Date of search Mar. 27th, 2023

Databases and other sources searched Web of Science, PubMed, arXiv

Search terms used “Transformer”, “GPT”, “LLMs”, “medical image processing”, “segmentation”, “AI”, “neural 
network”, “machine learning”, “multimodal”, “transfer learning”, “interpretability”

Timeframe From 2013 to 2023

Inclusion and exclusion criteria No study type exclusion, restricted to English articles

Selection process Two authors, Dianzhe Tian and Shitao Jiang, independently review for thematic 
relevance. In case of disagreement, a third author, Yiyao Xu, serves as an arbitrator, and 
the decision for inclusion is made only when all three authors are in an agreement

GPT, Generative Pre-trained Transformer; LLMs, large language models; AI, artificial intelligence.

Table 2 Detailed search strategy 

Set Search strategy of our study

#1 TS = (“segmentation” OR “AI” OR “neural network” OR “machine learning” OR “multimodal” OR “transfer learning” 
OR “interpretability”)

#2 TS = (“GPT” OR “LLMs” OR “transformer”)

#3 TS = (“medical image processing” OR “segmentation”)

#4 #1 AND #2 AND #3

TS, topic; AI, artificial intelligence; GPT, Generative Pre-trained Transformer; LLMs, large language models.

outcomes, to aid image analysis, thereby augmenting the 
accuracy of image diagnoses (16).

Current applications of transformer architecture 
in medical image processing

Despite the original design of the Transformer architecture 
to address NLP challenges, researchers have efficaciously 
extended its application to medical image processing tasks 
in recent years. Within medical image processing, the 
Transformer architecture can deconstruct images into a 
succession of local features and apprehend the interrelations 
among these features via self-attention mechanisms. This 
capability allows the model to comprehend and process 
image data more effectively, enhancing image recognition 
and analysis accuracy. Furthermore, the amalgamation 
of image features with textual information permits 
the Transformer architecture to integrate and merge 
multimodal data, thereby providing a more comprehensive 
basis for clinical diagnosis (17).

Within the domain of medical imaging, several models 
predicated on the Transformer architecture, like Vision 

Transformer (ViT), Data-efficient Image Transformer 
(DeiT), Transformer U-Net (TransUNet) and Radiology 
Transformer (RadFormer), have found applications in image 
analysis and natural language generation, as exemplified 
in Table 4 (7,17-20). In practical deployments, the task’s 
characteristics and requirements should be thoroughly 
contemplated to select an appropriate neural network 
architecture. Simultaneously, careful parameter tuning 
and optimization should be conducted to achieve superior 
performance.

Pre-training and fine-tuning stand as principal factors 
underpinning the success of LLMs. The model can 
assimilate extensive language knowledge and generalized 
representations by pre-training on a vast corpus. Then, 
by fine-tuning specific tasks, the model can apply these 
general representations to concrete problems, thus 
achieving efficient transfer learning (15). In medical 
image processing, pre-training and fine-tuning also hold 
substantial potential value. Primarily, through pre-training, 
LLMs can glean comprehensive medical knowledge from 
a considerable quantity of medical text, encompassing 
pathological features, clinical manifestations, and 
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Table 3 Current deep learning models in medical imaging

Architecture
First applied in medical 
image processing

Features Difficulties

CNN 1998 1. Suitable for image classification, 
segmentation, and detection

1. Extract local detailed information from 
images

2. Extract image features through multiple 
layers of convolutional and pooling operations

2. Sensitive to changes in the input image 
size

3. Pretrained models for transfer learning

RNN 2001 1. Handle text and speech 1. Long sequential data

2. Model input data through the calculation  
of recurrent neurons

2. Tackle noise or outliers in the input 
data

3. Able to process current information while 
retaining historical information

3. Training process is prone to the 
vanishing or exploding gradient problem

U-Net 2015 1. Specialized for medical image  
segmentation

Extract complex shapes and texture 
information from images

2. Effectively compress image information  
while preserving high-resolution features

3. Fewer parameters and trained faster

Transformer 2021 1. Handle text, audio, and images 1. A lot of computing resources and time

2. Self-attention to learn global  
dependencies

2. Long-term dependency problems 
when processing long sequential data

3. Parallelizes the processing of multiple 
sequence elements

3. Extract local information in input data

4. Pretrained models for transfer learning

CNN, Convolutional Neural Network; RNN, Recurrent Neural Network.

Table 4 Current models in medical imaging which are based on the Transformer architecture

Models Year Provided by Functions

ViT 2020 Google 1. Converting the pixel data in medical images into a set of feature vectors, 
and then using Transformer to classify or predict these feature vectors

2. Better performance than traditional CNNs in many computer vision tasks

3. Strong scalability

DeiT 2021 Facebook 1. Apply Transformer to learn features from medical images and then uses 
them for classification tasks

2. Comparable performance to traditional CNNs with less training data

TransUNet 2021 Max Planck Society of Germany 1. Perform semantic segmentation tasks in medical images while 
generating natural language descriptions

2. Use Transformer in the encoder to combine medical image feature 
extraction and semantic segmentation processes

RadFormer 2021 University of Toronto & University  
of North Carolina in Canada

1. Segment different parts of medical images and generate corresponding 
natural language descriptions

2. Applied to tasks such as segmentation, registration, and classification in 
medical imaging

ViT, Vision Transformer; CNN, Convolutional Neural Network; DeiT, Data-efficient Image Transformer; TransUNet, Transformer U-Net; 
RadFormer, Radiology Transformer.
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treatment methodologies of diseases. Then, by fine-
tuning specific medical image processing tasks, the 
model can apply this knowledge to problems, improving 
diagnostic accuracy and efficiency. In addition, pre-
training and fine-tuning can also reduce the cost of data 
annotation in medical image processing. The annotation 
of medical image data usually requires the participation 
of professional doctors, making data annotation a time-
consuming and costly process (21).

Nevertheless, the model can leverage actual annotated 
data for transfer learning through pre-training and fine-
tuning, accomplishing commendable performance even 
with a limited quantity of annotated data. This provision 
presents a more cost-effective and efficient solution for 
research and applications within medical image processing. 
Finally, pre-training and fine-tuning also help speed up 
model training. Since LLMs have already been trained on 
large-scale corpora, the training process on specific tasks 
can be relatively short (15). This enables researchers and 
developers to quickly develop and optimize medical image 
processing systems and better meet clinical and research 
needs.

In conclusion, the enhancement of NLP capabilities, the 
deployment of the Transformer architecture for processing 
image data, and the efficient transfer learning realized 
through pre-training and fine-tuning lay the theoretical 
groundwork for the progressively important role of LLMs 
in medical image processing.

Potential advantages of LLMs

Leveraging the potent NLP capabilities and Transformer 
architecture inherent in LLMs such as GPT-4, these 
models demonstrate numerous unique advantages 
over preceding deep learning models. These benefits 
encompass, but are not confined to, the integration of 
multimodal data, pre-training and transfer learning, 
greatest generality, and enhanced interactivity (22). 
Collectively, these benefits lay a robust foundation for 
their further utilization in medical imaging.

Multimodal data integration

Multimodal data integration involves amalgamating data 
from disparate sensors, mediums, or formats to create a 
more comprehensive and enriched view of the data. These 
data may include various forms, such as images, videos, 
audio, and texts, which can describe the same event, 

scene, or object from multiple perspectives. By integrating 
such data, we can enhance the accuracy, reliability, and 
usability of the data, thus supporting an expanded array of 
applications and analyses. In medical imaging, multimodal 
data takes the form of medical imaging data combined with 
other types of data, such as medical records and laboratory 
results. LLMs enable multimodal data integration aided 
by the Transformer architecture. This principle involves 
employing the Transformer model to encode data from 
various modalities. For instance, in medical image 
processing, the model can use the Transformer model to 
encode medical images and use the encoded features for 
downstream tasks such as classification, segmentation, 
and registration. Additionally, the model can use the 
Transformer model to encode natural language text and 
combine the encoded features with the encoded image 
features to achieve joint processing of images and text. 
This multimodal encoding approach can efficiently 
harness the correlations between different data modalities, 
enhancing the model’s performance and generalization 
ability (23,24).

From a clinical standpoint, integrating medical text data 
with medical imaging data empowers the model to furnish 
more comprehensive diagnostic evidence, thereby bolstering 
clinical decision-making. Different data modalities can yield 
diverse information; for instance, the fusion of MRI and 
PET images could enhance the accuracy of tumor detection, 
or the amalgamation of MRI and electroencephalogram 
(EEG) data could improve diagnostic precision in brain 
diseases (3). When paired with the contextual memory 
capability of LLMs, the system can address issues caused by 
inadequate or missing data through multiple information 
sources. Moreover, when sufficient data are available, it can 
synthesize diagnostic information from various sources, 
thereby mimicking a clinician’s diagnostic and therapeutic 
processes and objectively augmenting the application’s 
usability, accuracy, and robustness.

Multiple research teams are currently developing 
Interactive Computer-Aided Diagnosis systems that utilize 
multimodal features and LLMs. One such system is Chat 
Computer-aided Diagnosis (ChatCAD) (25). This research 
has proposed an initial method for incorporating LLMs into 
medical image Computer-Aided Diagnosis (CAD) networks. 
The technique involves using LLMs to enhance the output 
of various CAD networks by combining and reformatting 
information in natural language text format. With this 
approach, the system can take an X-ray image, generate an 
analysis report, and facilitate multiple rounds of dialogue 
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and question-answering about the disease. This study has 
successfully established a strong correlation between image 
and text data. To convert medical images into text content 
for input to the LLM, the researchers used a trained CAD 
model to produce natural language output. The LLM was 
then employed to summarize the results and generate the 
final summary. Finally, using these results and a language 
model pre-trained on medical knowledge, the system 
engaged in conversations about symptoms, diagnosis, and 
treatment (25). It is noteworthy that this system replicated a 
clinician’s diagnostic and therapeutic process, even without 
chief complaints serving as prompts due to the lack of 
suitable datasets. This underscores the immense potential 
of multimodal data integration for assisted diagnosis in 
medical imaging.

The effectiveness of transfer learning

Before executing their tasks, numerous contemporary deep 
learning models necessitate vast amounts of labeled training 
data to yield effective outcomes. This limitation hampers 
the effectiveness of models in applications where acquiring 
expert annotation is challenging and leads to prolonged 
model training cycles. However, leveraging the advantages 
of the Transformer architecture, the pre-training and fine-
tuning strategies employed by LLMs facilitate transfer 
learning, thereby expediting model training and reducing 
annotation costs (15). This shortens the training process 
on specific tasks, enabling researchers and developers to 
develop and optimize medical image processing systems 
more economically and efficiently.

Although the effectiveness of transfer learning and semi-
supervised self-training has yet to be maturely evaluated in 
the medical imaging field, the studies conducted by Shang 
Gao and J. Blair Christian’s team exploring the efficacy 
of early LLM Bidirectional Encoder Representations 
from Transformers (BERT) transfer learning and semi-
supervised self-training in Named Entity Recognition 
(NER) could be a reference point (26). They enhanced 
the performance of the NER model within a biomedical 
environment with minimal labeled data. Initially, they 
pre-trained BiLSTM-Conditional Random Field (CRF) 
and BERT models on extensive general biomedical NER 
corpora such as MedMentions or Semantic Medline. They 
then fine-tuned these models on more specific target 
NER tasks with limited training data. They ultimately 
utilized semi-supervised self-training with unlabeled data 
to further enhance model performance. The experimental 

results showed that combining transfer learning with self-
training can enable NER models to perform the same 
as models trained on 3 to 8 times more labeled data in 
NER tasks focusing on common biomedical entity types. 
This underscores the effectiveness of transfer learning in 
LLMs within the NER realm. Analogous assertions can be 
made in the field of medical image recognition. Recently, 
attempts have been made in medical image segmentation. 
A new medical image segmentation model called MedSAM 
was introduced. Segment Anything Model (SAM) is a 
foundation model for natural image segmentation trained 
on more than 1 billion masks and has strong capabilities for 
generating accurate object masks based on prompts or in a 
fully automatic manner (27). 

Nevertheless, the team developed a simple fine-tuning 
method to adapt the SAM for general medical image 
segmentation. Experimental results show that MedSAM 
achieves an average Dice similarity coefficient of 22.5% 
and 17.6% in 3D and 2D segmentation tasks, respectively, 
outperforming the default SAM (27,28). This research 
outcome demonstrates the tremendous potential of fine-
tuning LLMs in medical imaging. 

In addition, by using LLMs for transfer learning, 
researchers and developers can quickly transfer knowledge 
between different medical image processing tasks, further 
improving model performance and universality (29). A 
groundbreaking initiative, the cross-lingual biomedical 
entity linking project XL-BEL, has been introduced, 
accompanied by a comprehensive ten-language XL-
BEL benchmark. This novel approach leverages external, 
domain-specific knowledge to enhance the proficiency 
of pre-trained language models in managing complex 
professional tasks, spanning multiple languages. Advancing 
the scope of knowledge transfer capabilities across diverse 
medical imaging disciplines is a critical area of inquiry in 
the sphere of LLM transfer learning.

Enhanced clinical interactivity

LLMs, like ChatGPT, derive their interactivity from 
powerful NLP abilities, enabling them to engage in 
natural language dialogues with users. These models can 
receive user text inputs, interpret their intent through 
prompts, and generate corresponding text responses. Such 
interactivity is accomplished by training these models on 
language processing tasks like understanding language 
rules, grammar, and vocabulary, thereby simulating human-
like response patterns in natural language dialogues. This 
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level of interactivity signifies an advancement in computer-
aided diagnosis in the medical field. Current advanced 
AI interactive applications in clinical medical imaging, 
including DeepLesion, Med3D, CIRRUS AI, and EnvoyAI, 
incorporate tools for 2D and 3D tumor localization 
and annotation, 3D segmentation and reconstruction, 
visualization, and visual analysis (30-32). Although these 
interactions can assist doctors in their work, they are 
limited to providing all image information to doctors 
without selection, more convenient tools, and more precise 
visual effects. However, these systems cannot optimize 
the diagnosis and treatment plan or selectively provide 
information according to the doctor’s specific needs. The 
robust interactivity of LLMs makes all this possible. Doctors 
can select imaging data from distinct areas, structures, and 
tissues using specific prompts for closer examination. With 
current 3D segmentation and reconstruction techniques, the 
diagnosis and treatment process can be more targeted. Of 
course, achieving this vision requires further improvement 
in image segmentation technology. However, the advanced 
segmentation capabilities of models like SAM have begun 
to reveal the potential of future versatile segmentation  
models (27,28).

Furthermore, LLMs boost their transparency during 
the interaction. While the decision-making process of 
LLMs, akin to other deep learning algorithms, is only 
partially comprehensible for humans, these models can 
offer in-depth text explanations and reasoning processes for 
diagnostic results through natural language generation (14).  
This enables clinicians to better grasp the basis of the 
model’s decision-making process. Additionally, by utilizing 
visualization techniques and attention mechanism analysis, 
researchers can probe into the specific regions and features 
the model prioritizes when processing medical images, 

thus gaining a deeper understanding of the model’s 
performance.

Practical applications and potential  
scenarios of LLMs 

A series of LLMs in biomedical science have been 
developed based on Google’s BERT model and OpenAI’s 
GPT model. These can serve as foundational resources for 
future applications in Medical Image Analysis. Initial LLMs 
based on BERT (ClinicalBERT, BioBERT) were smaller in 
scope, focusing primarily on biomedical text-mining tasks. 
However, contemporary models built on GPT (BioMedLM, 
GeneGPT) display more versatility in their functionality 
(33-35), as illustrated in Table 5.

The size of the LLM plays a crucial role in determining 
the final processing performance of the model. Compared 
to BERT-based models from two years ago, GPT-based 
models have shown significant performance improvements. 
Specifically, ChatGPT, built on the GPT-4 model, can 
achieve high-quality processing and question-answering of 
relevant medical texts, even without specialized training in 
the biomedical field. This suggests that LLMs are poised to 
drive significant changes in the field of medical imaging in 
the future.

Although some clinical practitioners have given objective 
and positive feedback on the potential applications of 
LLMs (36,37), a comprehensive evaluation of the model’s 
performance and accuracy across all aspects remains to 
be carried out. As such, it remains crucial to rigorously 
evaluate the performance and effectiveness of LLMs in 
medical image processing.

Nevertheless, new trials in the field of medical image 
analysis have been emerging recently at a surprisingly fast rate. 

Table 5 Comparison of current functions of LLMs in the biomedical field

Current LLMs ClinicalBERT BioBERT ChatGPT BioMedLM GeneGPT

Use of clinical notes √ √ √ √ √

Biomedical text mining N/A √ √ √ √

Biomedical Q&A N/A N/A √ √ √

Multimodal integration × × √ N/A √

Interactivity × × √ √ √

Domain-specific √ √ × √ √

√, have the function; ×, do not have the function. LLMs, large language models; GPT, Generative Pre-trained Transformer; BERT, 
Bidirectional Encoder Representations from Transformers; Q&A, Questions and Answers; N/A, not applicable. 
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MedSAM, as mentioned above, is a successful attempt (28).  
The authors present the design and implementation of 
MedSAM, as well as its performance in 3D segmentation 
tasks and 2D segmentation tasks. As an extension of 
SAM, MedSAM demonstrates the power of fine-tuning 
adaptation on LLMs. Since the experimental results show 
its superiority over the default SAM model,

they further perform a decomposition analysis of 
SAM and evaluate its potential utility in medical image 
segmentation tasks. MedSAM shows us how to bridge the 
gap between general LLMs and professional fields like 
medical image processing, aimed at creating a universal tool 
for segmenting various medical objects. 

Another method, UniverSeg, addresses new medical 
image segmentation tasks without requiring additional 
training (38). UniverSeg employs a novel CrossBlock 
mechanism to generate accurate segmentation maps. To 
achieve task generalization, the authors gathered and 
standardized 53 open-access medical segmentation datasets 
with over 22,000 scans. They used this dataset to train the 
UniverSeg model for generalization across various anatomies 
and imaging modalities. The primary advantage of the 
UniverSeg method lies in its ability to handle new medical 
image segmentation tasks by learning task-agnostic models 
and applying them to medical image segmentation, thereby 
eliminating the need for additional training. When provided 
with a query image and a set of image-label pairs defining 
the new segmentation task, UniverSeg uses the novel 
CrossBlock mechanism to generate accurate segmentation 
maps, eliminating additional training. The researchers 
demonstrated that UniverSeg significantly outperforms 
various related methods on unseen tasks. Inspired by LLMs’ 
approach, other medical image segmentation models like 
STU-Net also emerged (39). This model has parameter 
sizes ranging from 14 million to 1.4 billion. Upon training 
the scalable and transferable STU-Net model on large-
scale datasets, the authors found that an increase in model 
size resulted in substantial performance improvements. 
They assessed the transferability of their model across 14 
downstream datasets, observing a favorable performance 
in direct inference and fine-tuning scenarios. All these 
emerging models aim to enhance Medical Artificial General 
Intelligence in medical image processing.

The MedSAM and UniverSeg mentioned above and 
similar LLMs have promising applications on the horizon. 
Take MedSAM for example, here are some potential 
clinical application prospects. Firstly, in the domain of 
Medical Image Segmentation, it assumes a pivotal role by 

precisely segmenting organs within CT or MRI images. 
This proficiency not only aids doctors in gaining a more 
comprehensive understanding of patients’ conditions but 
also assists in the formulation of treatment strategies and 
surgical preparations. Moreover, MedSAM facilitates 
Natural Language Interaction, fostering seamless dialogues 
between healthcare professionals and patients. It promptly 
offers real-time explanations and addresses inquiries, 
thereby enhancing communication and rendering medical 
information more comprehensible. Beyond this, in the 
realm of Personalized Healthcare, LLMs come to the 
forefront. Leveraging patients’ medical histories and clinical 
data, they provide tailored medical counsel and treatment 
regimens, thereby amplifying treatment effectiveness and 
curbing unnecessary interventions. Furthermore, as an 
asset for Clinical Decision Support, MedSAM empowers 
healthcare providers with access to the latest medical 
research and guidelines. This empowers doctors to make 
well-informed choices regarding treatment strategies (28). 
Lastly, in terms of Medical Knowledge Management, 
LLMs serve as valuable tools for healthcare professionals, 
facilitating the organization and updating of medical 
knowledge. This ensures that healthcare practitioners 
remain well-versed in the latest developments and practices 
in the medical field. These applications have the potential 
to transform healthcare by improving diagnosis, treatment, 
and patient-doctor interactions while keeping medical 
professionals up-to-date with the latest research and 
guidelines.

Discussion

As the application of LLMs in medical image processing 
continues to expand, the present challenges are anticipated 
to be significantly mitigated in the foreseeable future. 
Furthermore, it is expected that the principles of digital 
medicine will be further implemented with the support of 
LLMs. By combining patients’ information like genetic 
data, medical history, and chief complaints, the models can 
assist doctors in providing more accurate and personalized 
diagnoses for each patient. However, LLMs still have many 
challenges to overcome to achieve personalized medicine.

High-quality annotated datasets represent a significant 
investment and are a crucial resource in machine learning. 
However, many factors in practical applications may affect 
data quality and annotation accuracy. Beyond the inherent 
differences in equipment between hospitals, managing large-
scale hospital imaging data presents numerous challenges. 
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The adoption rate of Picture Archiving and Communication 
System (PACS) is currently only 50–60% (40), suggesting 
that effective sharing of hospital data across different 
institutions remains a challenge. Meanwhile, the cost of 
storing and operating hospital data is exceptionally high. 
Without a robust digital medical infrastructure, the potential 
of advanced tools such as AI cannot be fully realized.

Consequently, future developments should focus on 
providing more enterprise-level medical imaging services 
to replace traditional PACS, thus bridging the gap between 
disparate medical imaging modalities. Ideally, clinicians 
should be able to access images and reports from anywhere, 
not confined to specific workstations. With advancements 
in digital medical infrastructure, acquiring high-quality 
datasets and performing highly accurate analyses can be 
significantly facilitated.

Furthermore, there are areas in which current AI 
technology could see enhancement.

(I) Interpretability of LLMs 

Given the direct impact of clinical applications on patient 
safety, the interpretability of AI models becomes a critical 
requirement. While LLMs can assist users in interpreting 
diagnostic results through language interaction, enhancing 
model interpretability remains challenging. These models’ 
“black box” nature needs further elucidation, particularly 
in medicine (17). New techniques should be explored to 
improve the interpretability of LLMs in medical image 
processing. This includes using attention and gradient 
visualization to reveal how the model focuses on essential 
features. Additionally, adversarial testing and natural 
language explanations can help detect model weaknesses 
and provide more precise, confidence-based results.

(II) The quality of hardware infrastructure

The hardware infrastructure supporting digital medical 
facilities is still under development. Factors such as noise, 
blur, and artifacts can affect the quality of images in medical 
image processing. Therefore, future research must improve 
the model’s anti-interference ability and generalization 
performance to ensure stability and reliability in actual 
applications (41). Collaboration among engineers is crucial 
for developing imaging systems and software that yield 
high-quality and artifact-free medical images. Research 
efforts should create robust machine learning algorithms 
to enhance the model’s anti-interference ability and 

generalization performance. This requires training models 
on diverse datasets encompassing various image qualities 
and addressing noisy or imperfect input data issues. 
Techniques like data augmentation and transfer learning 
can also help improve model stability and reliability in real-
world applications (42).

(III) The real-time performance of LLMs

Suppose LLMs will play a more significant role in real-
time diagnosis and treatment in the future. In that case, this 
places higher demands on the more effective integration and 
utilization of multimodal data, the model’s computational 
efficiency, and real-time performance (17). It is crucial to 
develop new data fusion technologies, establish multimodal 
data standardization methods, utilize advanced deep learning 
algorithms for feature extraction and representation learning, 
and devise optimization strategies to enhance the model’s 
operating speed. To provide healthcare professionals with a 
complete understanding of patient data, it is imperative to 
seamlessly merge information from various sources, such as 
medical images, patient records, and real-time monitoring 
data. This is where Multimodal Data Standardization 
comes into play. By defining data formats, metadata, and 
protocols, healthcare institutions, data scientists, and 
regulatory bodies can ensure compatibility and consistency 
across different sources through collaboration. Advanced 
deep learning algorithms require feature extraction and 
representation learning to extract significant information 
from complex multimodal data. Research and development 
should focus on algorithms that can effectively handle 
various data types, including images, text, and numerical 
data (42). Optimization strategies are necessary to enhance 
the model’s operating speed, including optimizing the 
model architecture, implementing efficient algorithms for 
inference, and utilizing hardware acceleration techniques 
like Graphics Processing Units (GPUs) (14). For real-
time capabilities, continuous performance monitoring and 
fine-tuning are critical. By implementing these strategies, 
healthcare professionals can gain comprehensive insights 
into patient data, enabling them to make informed decisions 
that improve patient outcomes.

(IV) Ethical considerations 

Lastly, applying LLMs involves addressing a range of ethical 
considerations. Concerns like data privacy protection, 
algorithmic bias, and model accountability necessitate 
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significant attention. Medical imaging data comprise 
sensitive personal health information; if mishandled or 
misused, it could compromise patient privacy and rights. 
Concurrently, potential bias in training data sources for AI 
algorithms can propagate bias into the resulting models. In 
medical imaging, some algorithms may be more responsive 
to specific populations’ data, potentially leading to 
accidental neglect or prejudice against the health conditions 
of other groups (43,44). 

Nevertheless, determining responsibility for AI-assisted 
medical care is one of the most pressing challenges. 
Although AI algorithms may achieve a high level of 
medical imaging diagnosis, they still cannot avoid mistakes. 
It becomes tricky when medical negligence happens. 
Therefore, before the large-scale application of AI in 
medical imaging, it is vital to establish transparent systems 
for model responsibility and risk management to safeguard 
patients’ rights (43,44). To address the ethical concerns 
associated with applying LLMs in medical imaging, 
robust data privacy measures should be implemented 
to protect sensitive medical imaging data. This involves 
encryption, strict access controls, and compliance with 
privacy regulations to protect patient privacy and rights. 
Careful data selection and preprocessing during model 
training are crucial to mitigate algorithmic bias. Monitoring 
and auditing model outputs are essential to identify and 
rectify biases, ensuring fair and unbiased medical decisions. 
Ensuring model accountability involves making the model’s 
decision-making processes transparent and interpretable. 
When a model provides a diagnosis or recommendation, 
it should explain its decision, promoting trust and 
accountability. Diverse and representative datasets should 
be employed to prevent potential biases in training data. 
Models should be rigorously evaluated across various 
demographic groups to identify and rectify potential biases, 
preventing neglect or discrimination against specific health 
conditions.

In conclusion, promoting LLMs in medical imaging 
requires developers, regulatory agencies, and medical 
institutions to collaborate, ensuring that technology 
applications adhere to legal and ethical principles.

We acknowledge that this study has certain limitations. 
Firstly, our inclusion criteria were confined to articles and 
reviews authored in English and indexed mainly within 
the Web of Science, and PubMed databases. While this 
approach may have unintentionally omitted some valuable 
studies, it is noteworthy that the Web of Science and 
PubMed databases stand as the most employed databases. 

As such, we anticipate any potential impact on overall 
trends to be relatively minimal. Secondly, since the 
development of LLMs is quite rapid, it is important to 
recognize that the delay in citation volume might have 
resulted in most recent high-quality studies not receiving 
the immediate recognition they merit. Acknowledging this, 
we anticipate the need to update our findings accordingly in 
subsequent research endeavors. Thirdly, to better showcase 
the cutting-edge advancements of LLMs in the field of 
Medical Image Processing, we have referenced some of the 
latest research from the preprint website arXiv database. 
While these applications in arXiv effectively highlight the 
most recent explorations, it is important to note that the 
reliability of preprint studies still requires further validation 
in subsequent research. Nevertheless, this study stands 
as a significant contribution with substantial benefits for 
pertinent researchers. It offers valuable and cutting-edge 
insights into LLMs’ potential advancements in Medical 
Imaging Processing. Furthermore, it aids in pinpointing 
areas where additional research remains imperative.

Conclusions

In this paper, we aim to delve into the potential applications 
of LLMs within medical image processing. Starting 
with the foundational principles of LLMs, we highlight 
their merits in this field, such as the capacity to integrate 
multimodal data, the efficacy of transfer learning, and 
robust interactivity. Using practical examples, we illustrate 
the specific impacts of LLM applications in this domain. 
Concurrently, we delve into their future potential and the 
challenges ahead. These prospects and challenges provide 
valuable references for researchers and developers to 
promote technological innovation and the application of 
LLMs in medical image processing. Through an extensive 
literature review, we found that numerous teams are already 
employing LLMs, such as ChatGPT, in the biomedical 
field, with some garnering recognition within the medical 
community.

Nonetheless,  applying LLMs in medical  image 
processing still has significant room for growth and 
development. Future research should aim to develop more 
efficient, accurate, and reliable medical image processing 
techniques by continuously optimizing model performance, 
improving data quality, enhancing model interpretability, 
and addressing ethical challenges. Simultaneously, we aspire 
to incorporate more medical literature, experimental data, 
and professional treatments into future medical LLMs. 
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This would allow professionals to participate in the model 
training process and provide feedback on the results. This 
will generate considerable medical value, which makes AI 
diagnosis and treatment recommendations based on patients’ 
multimodal information. We are confident that LLMs, 
such as ChatGPT, will evolve into powerful assistants in the 
medical field in the foreseeable future, potentially driving 
revolutionary changes in medical imaging. Hence, we 
advocate for intensified interdisciplinary collaboration and 
research endeavors that unite experts from NLP, computer 
vision, and medical domains. This collaborative effort is 
imperative to propel the development and assessment of 
LLMs in medical image processing. Hopefully, this article 
will serve as a valuable reference and source of inspiration 
for researchers and practitioners interested in this emerging 
and promising field.
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