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Background: The imaging dose of cone-beam computed tomography (CBCT) in image-guided 
radiotherapy (IGRT) poses adverse effects on patient health. To improve the quality of sparse-view low-dose 
CBCT images, a projection synthesis convolutional neural network (SynCNN) model is proposed.
Methods: Included in this retrospective, single-center study were 223 patients diagnosed with brain tumours 
from Beijing Cancer Hospital. The proposed SynCNN model estimated two pairs of orthogonally direction-
separable spatial kernels to synthesize the missing projection in between the input neighboring sparse-
view projections via local convolution operations. The SynCNN model was trained on 150 real patients to 
learn patterns for inter-view projection synthesis. CBCT data from 30 real patients were used to validate 
the SynCNN, while data from a phantom and 43 real patients were used to test the SynCNN externally. 
Sparse-view projection datasets with 1/2, 1/4, and 1/8 of the original sampling rate were simulated, and the 
corresponding full-view projection datasets were restored using the SynCNN model. The tomographic 
images were then reconstructed with the Feldkamp-Davis-Kress algorithm. The root-mean-square error 
(RMSE), peak signal-to-noise ratio (PSNR), and structural similarity (SSIM) metrics were measured in both 
the projection and image domains. Five experts were invited to grade the image quality blindly for 40 randomly 
selected evaluation groups with a four-level rubric, where a score greater than or equal to 2 was considered 
acceptable image quality. The running time of the SynCNN model was recorded. The SynCNN model was 
directly compared with the three other methods on 1/4 sparse-view reconstructions.
Results: The phantom and patient studies showed that the missing projections were accurately synthesized. 
In the image domain, for the phantom study, compared with images reconstructed from sparse-view 
projections, images with SynCNN synthesis exhibited significantly improved qualities with decreased values 
in RMSE and increased values in PSNR and SSIM. For the patient study, between the results with and 
without the SynCNN synthesis, the averaged RMSE decreased by 3.4×10−4, 10.3×10−4, and 21.7×10−4, the 
averaged PSNR increased by 3.4, 6.6, and 9.4 dB, and the averaged SSIM increased by 5.2×10−2, 18.9×10−2 
and 33.9×10−2, for the 1/2, 1/4, and 1/8 sparse-view reconstructions, respectively. In expert subjective 
evaluation, both the median scores and acceptance rates of the images with SynCNN synthesis were higher 
than those reconstructed from sparse-view projections. It took the model less than 0.01 s to synthesize an 
inter-view projection. Compared with the three other methods, the SynCNN model obtained the best scores 
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Introduction

On-board cone-beam computed tomography (CBCT) has 
been widely used as the gold standard for online positioning 
verification in image-guided radiotherapy (IGRT) (1). 
And recurrent CBCT scans are routinely scheduled over 
the treatment course (2). For radiotherapy patients with 
planning target volume (PTV) margins in centimeters, 
CBCT is usually performed weekly for the first few 
fractions. However, for patients with head and neck tumors 
or high-dose fractions, due to the long list of organs-at-
risk (OAR) and tight PTV margins, positioning tolerance 
is very strict. As a result, CBCT is typically scheduled 
for every fraction. Although the dose of a single CBCT 
scan is generally low (3), considering that the imaging 
field is typically much larger than target volumes and in-
field OARs are unshielded, adverse radiation dose from 
recurrent CBCT scans over the whole course can be easily 
accumulated to a level that may cause radiobiological effects 
(4,5). Therefore, the non-negligible risk of the accumulative 
CBCT imaging dose on patients’ health in long term 
has raised growing concerns from researchers (6,7) and 
professional societies (8).

Fortunately, increasing efforts have been directed to 
low-dose CBCT. Dose reduction strategies generally 
fall into several approaches (9), including tube current 
reduction, optimal selection of tube voltage, and sparse-
view sampling. Among these approaches, sparse-view 
sampling as a straightforward strategy is highly efficient 
in reducing radiation exposure. However, insufficient 
projection data induce severe streak artifacts and noise 
in reconstructed images (10). To address this issue, many 
iterative reconstruction (IR) algorithms have been developed 
(11-17) to compensate the image quality deterioration. For 
instance, Varian commercializes an IR module, iCBCT®, 
which delivers comparable pelvis images with as much as 

33% reduction in projection views and 50% reduction in 
CT dose index (18). In spite of this, successful deployments 
of IR on commercial on-board CBCT are limited for several 
reasons, such as high computation complexity, long time 
consumption, latent new artifacts patterns, and unnatural 
“plastic” image textures (19).

Deep learning (DL) achieved breakthroughs in computer 
vision as well as medical imaging, providing powerful tools 
for sparse-view CT imaging (20). DL-based methods might 
be grouped into two types: image-domain refinement (21-30)  
and projection-domain augmentation (31-37). Image-
domain refinement methods are applied to enhance 
the coarse CT images reconstructed from insufficient 
projections, which is an intuitive way to improve the quality 
of sparse-view CT images. Representative convolutional 
neural network (CNN) models include FBPConvNet (21),  
which combines the filtered-back-projection (FBP) algorithm 
with a multiresolution U-Net model, DD-Net (22),  
which takes advantage of the DenseNet model and 
deconvolution operation, framing U-Net (23), which is 
a variant of the original U-Net model, GoogleNet (24), 
which is characterized by multiscale inception modules, R2-
Net (25), which contains several recurrent and recursive 
stages, SR-CNN (26), which contains symmetric network 
layers with residual connection, and FRCNN (27), which 
consists of a residual CNN model with a fractional total-
variance loss. The objective of these models is to minimize 
the pixel-wise L2 distance between the refined sparse-view 
and reference full-view CT images. While image noise is 
efficiently reduced, over-smoothed patterns are yielded (28).  
To address the over-smoothing issue, Yang et al. (28) 
developed a generative adversarial network (GAN) model 
with VGG-based perceptual loss. Meanwhile, Li et al. (29) 
developed a 3-dimensional (2D) self-attention CNN model 
with autoencoder perceptual loss, and Huang et al. (30) 
developed an attributed-augmented Wasserstein GAN 

in terms of the three metrics in both domains.
Conclusions: The proposed SynCNN model effectively improves the quality of sparse-view CBCT 
images at a low time cost. With the SynCNN model, the CBCT imaging dose in IGRT could be reduced 
potentially.
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model which took the anatomical prior information into 
account.

Projection-domain augmentation restores ful l-
view projections from sparse-view projections prior 
to reconstruction, which outperforms image-domain 
refinement in suppressing streak artifacts (38). Lee et al. (31),  
Dong et al. (32) and Yuan et al. (33) developed U-Net 
models, Liang et al. (34) developed a DLI-Net model, and 
Yin et al. (35) developed a SD-Net model for sinogram 
interpolation where equivalent image qualities were 
presented. Dong et al. (36) improved the quality of sparse-
view micro-CT images by restoring full-view sinograms 
with linear interpolation techniques and a U-Net model. 
Note that the above-mentioned studies were all in fan-
beam CT and could not be applied to CBCT directly. Hu 
et al. (37) proposed a hybrid strategy combining projection 
augmentation together with an image-domain refinement 
method. In the projection augmentation stage of their study, 
inter-view projections were linearly interpolated at first and 
then refined by a CNN model.

I n  t h i s  s t u d y,  w e  p r o p o s e  a  n o v e l  D L - b a s e d 
projection synthesis model, SynCNN, to restore full-
view CBCT projections from sparse-view projections, 
thereby improving the image quality to an extent that 
is comparable to the full-view reconstruction but with 
reduced dose. The proposed SynCNN model is inspired 
in part by a video frame interpolation technique (39-41).  
The sequence  of  CBCT pro ject ions  i s  acquired 
consecutively over a circular scan trajectory, similar to a 
sequence of video frames in terms of dynamic features 
between the neighboring projections/frames. The inter-
view projections are directly synthesized by the proposed 
SynCNN model without a pre-step of linear interpolation 
as adopted in studies (31,36,37). Moreover, the proposed 
model is fully trained using real patients’ data, and its 
performance is systematically evaluated using an image 
quality test phantom and real patients’ data in both the 
projection and image domains.

The main contributions of this work are as follows:
(I) The proposed SynCNN model improves the 

quality of the sparse-view low-dose CBCT images 
for IGRT using an innovative DL framework to 
synthesize missing projections.

(II) The originality of the proposed SynCNN model is 
that the missing CBCT projections are synthesized 
with local convolution operations between the 
input neighboring sparse-view projections and 
orthogonally direction-separable spatial kernels.

The highlights of this work are as follows:
(I) The proposed SynCNN model is fully trained with 

clinical CBCT scans from real patients, and its 
performance is evaluated in both the projection and 
image domains.

(II) Blind and randomized expert scoring is utilized 
to assess the image quality of authentic full-view 
reconstructions, sparse-view reconstructions, and 
composite full-view reconstructions.

(III) The results indicate that the proposed SynCNN 
model improves the quality of sparse-view CBCT 
images comparable to that of regular CBCT 
images.

(IV) The proposed SynCNN model synthesizes the 
missing projections at a low time cost, which is 
crucial for enabling online imaging in IGRT.

We present this article in accordance with the TRIPOD 
reporting checklist (available at https://qims.amegroups.
com/article/view/10.21037/qims-23-759/rc).

Methods

Sparse-view CBCT imaging chain using DL model

Figure 1 shows the imaging chain for sparse-view CBCT 
using the proposed SynCNN model. First, the sparse-
view projections were acquired by CBCT using the sparse-
view scanning protocol. Then, the missing projections 
were synthesized with the SynCNN model to restore full-
view projections. Finally, tomographic CBCT images were 
reconstructed from the restored full-view projections.

DL model architecture

Figure 2 shows the overall architecture of the proposed 
SynCNN model. Inspired in part by previous studies (39,42), 
a U-shaped structure was used as the backbone. The 
SynCNN model consisted of both an encoder component 
and a decoder component. Taking neighboring sparse-view 
projections, P1 and P3, as the input, the SynCNN model was 

designed to synthesize the inter-view projection 2P  similar 
to the actual middle view projection P2. 

The encoder component consisted of five levels 
of down-sampling steps, which reduced the H×W×2 
input to a (H/32)×(W/32)×512 representation, and the 
decoder component consisted of five corresponding 
levels of up-sampling steps to up-sample the encoded 
representation into four H×W×51 spatial kernels. Each 

https://qims.amegroups.com/article/view/10.21037/qims-23-759/rc
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CBCT: Sparse-view scanning protocol
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Figure 1 Schematic of deep learning-based projection synthesis for sparse-view CBCT imaging. CBCT, cone-beam computed tomography; 
SynCNN, synthesis convolutional neural network. 

Figure 2 Overall architecture of the proposed SynCNN model for CBCT projection synthesis. CBCT, cone-beam computed tomography; 
SynCNN, synthesis convolutional neural network.
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down or up-sampling step consisted of three consecutive  
3×3 convolutions (zero-padded), followed by a rectified 
linear units (ReLU) activation function and either an 
average-pooling with a kernel size of 2×2 in the encoder 
component or up-sampling operations via 2×2 bilinear 
interpolation in the decoder component. The skip 
connections (43) were used to let the decoding steps 
incorporate features from the encoding component of the 
network, which helped preserve the details of the input 

projections.
Assuming that the relation between the neighboring 

input projections and the synthesized projection could be 
described with local convolution operations (44,45), as



2 1 1 2 3P K P K P= +∗ ∗   [1]

where P1 and P3 are the neighboring input projections, K1 
and K2 are associated 2-dimensional (2D) spatial kernels, ∗  
is the local convolution operator, and 2P  is the synthesized 
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projection.
Patients were scanned by CBCT with a circular 

trajectory, and the resulting consecutive projections were 
correlated in orthogonal directions (46). These directions 
were parallel and perpendicular to the trajectory plane, 
denoted as horizontal and vertical directions, respectively. 
To take advantage of the circular scan trajectory in CBCT 
acquisition, the 2D spatial kernels were decomposed into 
two orthogonal directional (vertical and horizontal) kernels, 
respectively (39). Therefore, the relation between the 
neighboring input projections and the synthesized one was 
approximated with two pairs of direction-separable spatial 
kernels, as



2 1, 1 1, 1 2, 3 2, 3v h v hP K P K P K P K P∗ ∗ ∗= + +∗+     [2]

where Kv and Kh are the spatial kernels in the vertical and 
horizontal directions.

The information flow in the last decoder step in Figure 2 
was directed into four sub-networks, estimating one of the 
direction-separable spatial kernels, respectively. Finally, the 
output synthesized projection was calculated as in Eq. [2]. 
Note that the estimated spatial kernels were applied to the 
input projections using local convolution operations, which 
were implemented as dynamic convolution layers (47) in the 
SynCNN model. This implementation allowed for end-to-
end training of the SynCNN model.

Loss function of DL model

To train the SynCNN model, we adopted the mean square 

error (MSE) loss. The MSE loss is formulated as

( ),1 ,3M
1

2

2
SE ,2,1

m m

M

m
m

P P P
MN =

Θ= −∑    [3]

where 


 represents concatenation of the two input 
projections, M is the mini-batch size, and N is the number 
of pixels in a projection.

Data preparation

The study was conducted in accordance with the 
Declaration of Helsinki (as revised in 2013). The study 
was approved by the institutional review board (IRB) at 
Beijing Cancer Hospital and individual consent for this 
retrospective analysis was waived. The patient inclusion 
criteria of this study were: (I) age >18 years, and (II) 
immobilized with double-shell positioning system 
(MacroMedics, Moordrecht, The Netherlands). The 
exclusion criteria were: (I) tumour sites on parietal lobe 
only, and (II) with metal implants. A total of 223 patients 
diagnosed with brain tumours (glioma and metastases) at 
the hospital from March 2021 to April 2021 were finally 
enrolled. The real CBCT scan data were anonymously 
collected from all 223 patients using an Edge linac (Varian 
Medical Systems, Inc., Palo Alto, CA, USA). All these scans 
were performed on the default half-scan head protocol, the 
details of which are listed in Table 1. Note that the imaging 
centers were all around the nasal midline, and the issue of 
shoulder-head transition was not applicable. In addition 
to patients, a CatPhan-504 phantom was also scanned 
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Figure 3 Overall training workflow of the proposed SynCNN model. SynCNN, synthesis convolutional neural network.
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on the identical linac using the same protocol. The raw 
scan data were preprocessed in a typical workflow using a 
validated open-source toolkit, TIGRE-VarianCBCT (48). 
The preprocessing procedure included dead-pixel removal, 
beam-hardening correction (49), scatter reduction (50), 
logarithmic operation, and negative pixel value cutoff.

The full-view projections were acquired at an interval 
of 0.4 degrees, yielding 501 views. Sparse-view projections 
were down-sampled from the full-view projections. For 
each full-view projection dataset, denoted as S1, three 
sparse-view projection datasets were decimated and denoted 
as S1/2, for 251 projections sampled at 0.8 degrees, S1/4, for 
126 projections at 1.6 degrees, and S1/8, for 63 projections at 
3.2 degrees.

For the model training, a total of 150 patients were 
randomly selected from the whole patient cohort (150/223, 
67%) using the Fisher-Yates shuffle (51). For each patient, 
every three adjacent projections in either S1, S1/2 or S1/4 were 
independently grouped into a triplet, resulting in 167, 83 
and 42 triplets, respectively. Therefore, a total of 25,050, 
12,490, and 6,300 triplets were generated from all S1, S1/2 
and S1/4 in the training set. An additional 30 patients (30/223, 
13%) were set aside as the validation set, which was used for 
hyperparameter optimization and to prevent overfitting of 
the model. The CatPhan phantom and the rest 43 patients 
were used to test the SynCNN model.

Model training and implementation details

Figure 3 shows the workflow of the model training. 
Triplets were fed to train the proposed model. For each 

triplet, the start and end view projections served as the 
input, and the middle view projection served as the 
corresponding ground truth label. The model encoded the 
input projections to gain high-level feature representation 
and then decoded back to synthesize the inter-view 
projections. The model weights were updated iteratively 
till the synthesized projections were close enough to the 
ground truth labels.

Three different models, referred to as SynCNN1/2, 
SynCNN1/4, and SynCNN1/8, were trained using all triplets 
from S1, S1/2 and S1/4 in the training set, respectively. These 
models were independently implemented using Python 
V3.8.13, Pytorch V1.10.1, and Cuda V11.1.74. The Adam 
optimizer (52) was utilized with an initial learning rate 10−5, 
β1 =0.9, and β2 =0.999. The mini-batch size was set to 6 
triplets. For the training process, a learning rate scheduler 
was employed. If the average loss on the validation set did 
not decrease over 10 consecutive epochs, the learning rate 
was reduced to one-tenth of its previous value. Furthermore, 
an early stopping mechanism was incorporated to prevent 
potential overfitting. If the average loss on the validation set 
did not decrease over 20 consecutive epochs, the training 
was terminated. The SynCNN1/2, SynCNN1/4, and 
SynCNN1/8 models were all trained with a maximum of 
200 epochs. All experiments were carried out on a single 
NVIDIA RTX3090 GPU with 24 GB memory.

Performance evaluation

The performance of the proposed SynCNN model was 
evaluated at three levels, i.e., objective assessment with a 
phantom data, objective assessment with real patients’ data, 
and subjective assessment given by experts. Besides, the 
running time of the SynCNN models was recorded as an 
indicator of computation complexity.

Evaluation metrics
For objective evaluation, quantitative metrics including 
root-mean-square error (RMSE), peak signal-to-noise ratio 
(PSNR), and structural similarity (SSIM) (53) were used. 

The RMSE and PSNR are defined below: 

( )2

1

1 ˆ
N

n n
n

RMSE I I
N =

= −∑  [4]

( )2

10 2

max
10log

I
PSNR

RMSE
 

=   
 

 [5]

where N is the number of pixels, n̂I  and In are the values 
of pixel n in the evaluated image and reference image, and 

Table 1 Acquisition parameters of the CBCT head-scan protocol

Acquisition parameters Values

Scan range (°) 200

Interval (°) 0.4

Tube voltage (kVp) 120

Tube current (mA) 15 

Pulse length (ms) 20

Detector array dimension, (R) × (C) 768×1,024

Detector pixel size (mm2) 0.388×0.388

Source-to-isocenter distance (mm) 1,000

Source-to-detector distance (mm) 1,500

CBCT, cone-beam computed tomography; R, row; C, column. 
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max(I) is the maximum pixel value of the reference image.
The SSIM is defined as 

( )( )
( )( )

ˆ ˆ1 2

2 2 2 2
ˆ ˆ1 2

2 2II II

I II I

C C
SSIM

C C

µ µ σ

µ µ σ σ

+ +
=

+ + + +
 [6]

where Îµ  and Iµ  are the mean values of local windows for 
the evaluated image and reference image, respectively, Îσ  
and Iσ  are the respective standard deviations, ÎIσ  is the 
covariance, and C1 and C2 are constants of (0.01×L)2 and 
(0.03×L)2, respectively, where L equals to the dynamic range 
of pixel-values in the reference image (53). The SSIM 
computation employs an 11×11 window size.

Phantom and patient studies
The CatPhan phantom and 43 patients were used to 
evaluate the performance of the proposed model in both 
the projection and image domains. Figure 4 shows the 
corresponding workflow. In the projection domain, the 
composite full-view projection dataset was generated by 
feeding the sparse-view projection dataset to the trained 
models. The corresponding projection synthesis process 
is shown in Figure 5. Specifically, the S1/2 was fed into the 
trained SynCNN1/2 model to obtain the composite full-view 
projection dataset denoted as Syn1/2. The S1/4 was fed into 
a cascade of trained SynCNN1/4 and SynCNN1/2 models to 
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Figure 4 Overall performance evaluation workflow of the proposed SynCNN model. DL, deep learning;  SynCNN, synthesis convolutional 
neural network. 

Figure 5 Schematic of generating composite full-view projection datasets by feeding sparse-view projection datasets to the trained SynCNN 
models. SynCNN, synthesis convolutional neural network.
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obtain the composite full-view projection dataset denoted as 
Syn1/4. The S1/8 was fed into a cascade of trained SynCNN1/8, 
SynCNN1/4 and SynCNN1/2 models to obtain the composite 
full-view projection dataset denoted as Syn1/8. The 
projections in the authentic full-view projection dataset, S1, 
were used as the reference benchmark, and the synthesized 
projections in the composite full-view projection datasets, 
Syn1/2, Syn1/4, and Syn1/8, were compared with the projections 
in S1, both qualitatively and quantitatively. The RMSE, 
PSNR and SSIM values were calculated.

In the image domain, seven 3D tomographic CBCT 
images were reconstructed from projection datasets 
S1, S1/2, S1/4, S1/8, Syn1/2, Syn1/4, and Syn1/8. These 3D 
images were denoted as IMG(S1), IMG(S1/2), IMG(S1/4), 
IMG(S1/8), IMG(Syn1/2), IMG(Syn1/4), and IMG(Syn1/8), 
respectively. The Feldkamp-Davis-Kress algorithm was 
used for reconstruction (48,54), and the resulting images 
had a matrix size of 512×512×93 and a voxel size of 
0.511×0.511×1.990 mm3. The axial images in IMG(S1) were 
used as the reference benchmark, and the axial images in 
IMG(S1/2), IMG(S1/4), IMG(S1/8), IMG(Syn1/2), IMG(Syn1/4), 
and IMG(Syn1/8) were qualitatively and quantitatively 
compared with the images in IMG(S1). The RMSE, PSNR 
and SSIM values were calculated.

Blind and randomized expert scoring
Five radiation oncology experts were invited herein. 
Three experts were radiation oncologists (physicians) 
with more than 11 years of experience, and the other two 
were senior medical physicist with more than 8 years of 
experience. The qualities of reconstructed CBCT images 
were subjectively assessed by the five experts. The expert 
scoring was organized in a blind and randomized fashion 
as follows: 
 Step 1: twenty patients were randomly selected 

from the 43 test patients, i.e., (20/43).
 Step 2: for each patient, two axial locations were 

randomly selected for 93 cross-section images, i.e., 
(2/93).

 Step 3: for each selected location, seven axial images 
from IMG(S1), IMG(S1/2), IMG(S1/4), IMG(S1/8), 
IMG(Syn1/2), IMG(Syn1/4), and IMG(Syn1/8) were 
combined to form one evaluation group, i.e., a total 
of 40 evaluation groups were generated.

 Step 4: within each evaluation group, the seven 
images were shuffled and labelled from (a) to (g).

 Step 5: the 40 evaluation groups were packed in a 
random order and sent to one expert for scoring.

 Step 6: repeat Step 4 to 5 till the five experts all 
received their own evaluation dataset.

The image quality was scored using a four-level rubric: 
excellent (score 3), good (score 2), suboptimal (score 1), and 
poor (score 0). Images quality with a score ≥2 were regarded 
as acceptable. The median scores and acceptance rates of 
the seven image categories were compared.

Comparison study

The proposed SynCNN model was directly compared with 
three other methods for sparse-view CBCT reconstruction 
using our patient CBCT scan data: the projection-domain 
linear interpolation method, and the image-domain 
refinement methods utilizing the FBPConvNet (21) and 
IDU-Net (37) models. The focus of these comparisons 
was on the 1/4 sparse-view reconstructions, given the 
encouraging results from SynCNN, which delivered image 
quality comparable to that of full-view reconstructions (as 
detailed in the Expert scoring section). Table 2 provides the 
descriptions of different methods. The source codes for both 
the FBPConvNet and IDU-Net models were not accessible. 
They were re-implemented and fine-tuned according to 
the descriptions provided in their original papers (21,37). 
To ensure consistency, the training, validation, and test 
sets used for the FBPConvNet and IDU-Net models were 

Table 2 Descriptions of comparison methods

Methods Descriptions

Linear interpolation Linear interpolation from S1/4 to full-view projections, followed by FDK reconstruction

FBPConvNet (21) FDK reconstruction with S1/4, followed by 2D U-Net refinement

IDU-Net (37) FDK reconstruction with S1/4, followed by 3D U-Net refinement

SynCNN (proposed) SynCNN synthesis from S1/4 to full-view projections, followed by FDK reconstruction

FDK, Feldkamp-Davis-Kress algorithm. SynCNN, synthesis convolutional neural network.
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identical to those used for the proposed SynCNN model.

Results

Phantom study

Projection domain
Figure 6 shows the representative synthesized projections 
of the CatPhan phantom and the corresponding absolute 
differences from the reference projection. The RMSE, 
PSNR and SSIM values of the synthesized projections in 
composite full-view projection datasets Syn1/2, Syn1/4, and 
Syn1/8 were also given [Figure 6 (D1-D3)]. The synthesized 
projections in Syn1/2, Syn1/4, and Syn1/8 [Figure 6 (B1-B3)] 
were close to the reference projection in S1 (Figure 6A). 
As depicted in Figure 6 (C1-C3), the disparity between the 
synthesized projections and the reference projection mainly 
resided around the sharp edges. When the down-sampling 
rate decreased, the disparity became greater, along with the 

deterioration of the RMSE, PSNR and SSIM values.

Image domain
Figure 7 shows the representative axial images of the 
CatPhan phantom, reconstructed from the projection 
datasets S1,  S1/2,  S1/4,  S1/8,  Syn1/2,  Syn1/4,  and Syn1/8, 
respectively. The RMSE, PSNR and SSIM values of the 
images in IMG(S1/2), IMG(S1/4), IMG(S1/8), IMG(Syn1/2), 
IMG(Syn1/4), and IMG(Syn1/8) were also given. As depicted 
in Figure 7 (B1-B3,C1-C3), when the number of projections 
was reduced, the radial streak artifacts and noise induced 
by under-sampling became greater, and the RMSE, PSNR 
and SSIM values deteriorated accordingly. However, 
with the aid of the proposed SynCNN model, the overall 
image qualities of the composite full-view reconstructions 
were significantly improved upon the original sparse-view 
reconstructions, accompanied by the improvement of the 
RMSE, PSNR and SSIM values.
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Figure 6 Representative projections on CatPhan phantom: (A) reference projection in authentic full-view projection dataset S1; (B1-B3) 
synthesized projections in composite full-view projection datasets Syn1/2, Syn1/4, and Syn1/8, respectively; (C1-C3) absolute difference maps 
between (B1-B3) and (A); (D1-D3) RMSE, PSNR and SSIM values of synthesized projections in Syn1/2, Syn1/4, and Syn1/8 with projection in 
S1 as the reference. The display gray scale of (A,B1-B3) is [0, 5.554] and the display grayscale of (C1-C3) is [0, 0.162]. RMSE, root-mean-
square error; PSNR, peak signal-to-noise ratio; SSIM, structural similarity.
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Figure 7 Representative axial images on CatPhan phantom: (A) reference image reconstructed from authentic full-view projection dataset S1; 
(B1-B3) images reconstructed from sparse-view projection datasets S1/2, S1/4, and S1/8; (C1-C3) absolute difference maps between (B1-B3) and 
(A); (D1-D3) images reconstructed from composite full-view projection datasets Syn1/2, Syn1/4, and Syn1/8; (E1-E3) absolute difference maps 
between (D1-D3) and (A); (F1-F3) RMSE, PSNR and SSIM values of images in IMG(S1/2), IMG(S1/4), IMG(S1/8), IMG(Syn1/2), IMG(Syn1/4), 
and IMG(Syn1/8) with image in IMG(S1) as the reference. The display gray scale of (A,B1-B3,D1-D3) is [0, 0.030] and the display grayscale 
of (C1-C3,E1-E3) is [0, 0.004]. RMSE, root-mean-square error; PSNR, peak signal-to-noise ratio; SSIM, structural similarity. 
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Patient study

Projection domain
The composite full-view projection datasets Syn1/2 achieved 
the best RMSE, PSNR and SSIM values, shown in Table 3, 
indicating that the synthesized projections in Syn1/2 were 
closest to the reference projections. Besides, as the down-
sampling rate decreased, the accuracies of the synthesized 
projections in Syn1/4 and Syn1/8 also decreased in a sequential 
manner.

Figure 8 shows the representative projections of a patient. 
The absolute difference maps [Figure 8 (C1-C3)] exhibited 

that the major discrepancies between the synthesized 
projections and the reference projection were around the 
structure edges, similar to the patterns observed in the 
phantom study.

Image domain
A few trends can be observed from the numerical results 
shown in Table 4. First of all, the image qualities of the 
sparse-view reconstructions deteriorated as the down-
sampling rate decreased. Second, the image qualities of 
sparse-view reconstructions improved with DL-based 

Table 3 Quantitative evaluation of synthesized projections in composite full-view projection datasets for all patient studies in the test set 

Projection dataset RMSE (×10−2) PSNR (dB) SSIM (×10−2)

Syn1/2* 2.6±1.2 46.2±1.6 98.3±0.6

Syn1/4 2.8±1.2 45.7±1.6 98.1±0.6

Syn1/8 3.3±1.2 44.2±1.7 97.8±0.7

All values are reported as mean ± standard deviation. Best results are indicated with an asterisk (*). RMSE, root-mean-square error; PSNR, 
peak signal-to-noise ratio; SSIM, structural similarity.
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Figure 8 Representative patient projections: (A) reference projection in authentic full-view projection dataset S1; (B1-B3) synthesized 
projections in composite full-view projection datasets Syn1/2, Syn1/4, and Syn1/8, respectively; (C1-C3) absolute difference maps between (B1-B3) 
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The display gray scale of (A,B1-B3) is [0, 4.718] and the display grayscale of (C1-C3) is [0, 0.086]. RMSE, root-mean-square error; PSNR, 
peak signal-to-noise ratio; SSIM, structural similarity. 
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Table 4 Quantitative evaluation of spare-view reconstructions with or without DL-based projection synthesis for all patient studies in the test set 

Reconstructed image RMSE (×10−4) PSNR (dB) SSIM (×10−2)

IMG(S1/2) 10.5±2.9 36.1±2.5 88.9±2.8

IMG(S1/4) 19.6±5.0 30.6±2.5 71.2±5.4

IMG(S1/8) 33.1±7.6 26.0±2.4 52.9±6.0

IMG(Syn1/2)* 7.1±2.2 39.5±2.7 94.1±1.9

IMG(Syn1/4) 9.3±2.6 37.2±2.6 90.1±3.2

IMG(Syn1/8) 11.4±3.0 35.4±2.6 86.8±4.2

All values are reported as mean ± standard deviation. Best results are indicated with an asterisk (*). DL, deep learning; RMSE, root-mean-
square error; PSNR, peak signal-to-noise ratio; SSIM, structural similarity. 

projection synthesis, and the improvement increased as the 
down-sampling rate decreased. The difference between 
IMG(Syn1/2) and IMG(S1/2), IMG(Syn1/4) and IMG(S1/4), and 
IMG(Syn1/8) and IMG(S1/8) were 3.4×10−4, 10.3×10−4, and 
21.7×10−4 for the averaged RMSE, 3.4, 6.6, and 9.4 dB for 
the averaged PSNR, and 5.2×10−2, 18.9×10−2 and 33.9×10−2 
for the averaged SSIM, respectively.

Figures 9-11 show the representative axial, coronal, 
and sagittal images of three different patients. Sparse-
view reconstructions with or without DL-based projection 
synthesis showed substantially different properties of streak 
artifacts and noise, as depicted in Figure 9 (B1-B3,D1-D3), 
Figure 10 (B1-B3,D1-D3), and Figure 11 (B1-B3,D1-D3). In 
addition, the integrity of the patient anatomical structures 
in sparse-view reconstructions was effectively preserved by 
using the proposed model. In all three patients, despite slight 
blurring of bone or other tissues, images reconstructed from 
Syn1/4 delivered reasonable integrity of anatomical details and 
exhibited good contrast against streak artifacts and noise.

Expert scoring

Figure 12 shows the results of blind and randomized 
expert scoring for the seven categories of reconstructed 
images. The median scores were 3, 2, 3, 1, 3, 0, and 
2, respectively, for IMG(S1), IMG(S1/2), IMG(Syn1/2), 
IMG(S1/4), IMG(Syn1/4), IMG(S1/8), and IMG(Syn1/8). The 
utilization of DL-based projection synthesis in sparse-view 
reconstructions achieved higher median scores compared 
to those without this technique. Moreover, the proposed 
model increased the rates of image quality acceptance from 
69.5% to 99%, 17% to 95.5%, 1% to 61.5%, respectively, 
for images reconstructed from half, quarter, and one-eighth 
sparse-view projections. The acceptance rate for IMG(S1) 

was 95.5%, which was even lower than that of IMG(S1/2).

Time cost

Table 5 shows the average running time of the SynCNN 
models. The projection synthesis from sparse-view 
projection datasets S1/2, S1/4, and S1/8 to composite full-view 
projection datasets Syn1/2, Syn1/4, and Syn1/8 took 1.8, 2.6 and 
2.9 s, respectively. Moreover, the projection synthesis per 
frame required less than 0.01 s.

Comparison study

Tables 6,7 show the quantitative comparison results of 
different methods in the projection and image domains, 
respectively. The SynCNN model obtained the best scores 
in terms of the three metrics in both domains.

Discussion

CBCT is an important imaging modality in IGRT (1). 
The accumulative CBCT imaging dose poses a risk to 
patient health (2-5). Sparse-view sampling is a reduced-dose 
strategy that results in compromised image quality (10). In 
this study, we propose a DL-based model, SynCNN, that 
can synthesize missing CBCT projections to improve the 
image quality. The SynCNN architecture takes advantage 
of the circular scan trajectory in CBCT acquisition, where 
projection synthesis is formulated as local convolution 
operations between the input neighboring sparse-view 
projections and orthogonally direction-separable spatial 
kernels.

The direct comparisons highlighted the superior 
performance of the proposed SynCNN model over the 
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Figure 9 Representative patient axial images: (A) reference image reconstructed from authentic full-view projection dataset S1; (B1-B3) 
images reconstructed from sparse-view projection datasets S1/2, S1/4, and S1/8; (C1-C3) absolute difference maps between (B1-B3) and (A); 
(D1-D3) images reconstructed from composite full-view projection datasets Syn1/2, Syn1/4, and Syn1/8; (E1-E3) absolute difference maps 
between (D1-D3) and (A); (F1-F3) RMSE, PSNR and SSIM values of images in IMG(S1/2), IMG(S1/4), IMG(S1/8), IMG(Syn1/2), IMG(Syn1/4), 
and IMG(Syn1/8) with image in IMG(S1) as the reference. The display gray scale of (A,B1-B3,D1-D3) is [0, 0.041] and the display grayscale 
of (C1-C3,E1-E3) is [0, 0.009]. RMSE, root-mean-square error; PSNR, peak signal-to-noise ratio; SSIM, structural similarity. 
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Figure 10 Representative patient coronal images: (A) reference image reconstructed from authentic full-view projection dataset S1; (B1-
B3) images reconstructed from sparse-view projection datasets S1/2, S1/4, and S1/8; (C1-C3) absolute difference maps between (B1-B3) and 
(A); (D1-D3) images reconstructed from composite full-view projection datasets Syn1/2, Syn1/4, and Syn1/8; (E1-E3) absolute difference maps 
between (D1-D3) and (A); (F1-F3) RMSE, PSNR and SSIM values of images in IMG(S1/2), IMG(S1/4), IMG(S1/8), IMG(Syn1/2), IMG(Syn1/4), 
and IMG(Syn1/8) with image in IMG(S1) as the reference. The display gray scale of (A,B1-B3,D1-D3) is [0, 0.042] and the display grayscale 
of (C1-C3,E1-E3) is [0, 0.007]. RMSE, root-mean-square error; PSNR, peak signal-to-noise ratio; SSIM, structural similarity. 

three other methods in sparse-view CBCT reconstruction. 
As shown in Table 6, the SynCNN model achieved a lower 
RMSE and higher PSNR and SSIM values than the linear 
interpolation method. This suggested that the proposed 
model was not only more accurate in pixel-level projection 
reproduction, but also ensured better perceptual quality 
of the projections. Furthermore, as detailed in Table 7, the 
SynCNN model demonstrated the power and adaptability 
of DL-based projection-domain augmentation method 

specifically tailored for CBCT modality. It had the 
capability of capturing valuable information present in the 
cone-beam X-ray projections and this capability translates 
to an enhancement in the image quality of reconstructions.

The evaluation results in the projection domain 
demonstrated that the missing projections were accurately 
synthesized using the SynCNN model. As observed from 
Figures 4,6 and Table 2, the synthesized projections in 
different composite full-view projection datasets were all 
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Figure 11 Representative patient sagittal images: (A) reference image reconstructed from authentic full-view projection dataset S1; (B1-
B3) images reconstructed from sparse-view projection datasets S1/2, S1/4, and S1/8; (C1-C3) absolute difference maps between (B1-B3) and 
(A); (D1-D3) images reconstructed from composite full-view projection datasets Syn1/2, Syn1/4, and Syn1/8; (E1-E3) absolute difference maps 
between (D1-D3) and (A); (F1-F3) RMSE, PSNR and SSIM values of images in IMG(S1/2), IMG(S1/4), IMG(S1/8), IMG(Syn1/2), IMG(Syn1/4), 
and IMG(Syn1/8) with image in IMG(S1) as the reference. The display gray scale of (A,B1-B3,D1-D3) is [0, 0.042] and the display grayscale 
of (C1-C3,E1-E3) is [0, 0.006]. RMSE, root-mean-square error; PSNR, peak signal-to-noise ratio; SSIM, structural similarity. 

close to the reference projections, from both qualitative 
and quantitative standpoints. As the input projections 
became sparser, the accuracy of the synthesized projections 
deteriorated due to the cascaded synthesis process.

T h e  e v a l u a t i o n  r e s u l t s  i n  t h e  i m a g e  d o m a i n 
demonstrated that with the SynCNN model, the streak 
artifacts and noise in the reconstructed images could be 
mitigated substantially, leading to a significant improvement 
in overall image quality of sparse-view reconstructions. 

This finding was consistent with the literature (31-37). The 
quality of images reconstructed from Syn1/4 was found to be 
comparable with that of the reference images reconstructed 
from S1, indicating a well-balanced trade-off between dose 
reduction and image quality preservation. Some issues such 
as edge differences and blurring of fine structures existed in 
IMG(Syn1/2), IMG(Syn1/4) and IMG(Syn1/8), indicating that 
the interpolation of missing projections using the SynCNN 
model could not completely eliminate the aliasing effect 
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IMG(S1) IMG(S1/2) IMG(Syn1/2) IMG(S1/4) IMG(Syn1/4) IMG(S1/8) IMG(Syn1/8)

Score 3 71.5% 25.5% 79.5% 1.5% 62.5% 0.0% 19.5%
Score 2 24.0% 44.0% 19.5% 15.5% 33.0% 1.0% 42.0%
Score 1 4.0% 30.5% 1.0% 59.5% 4.0% 15.0% 38.5%
Score 0 0.5% 0.0% 0.0% 23.5% 0.5% 84.0% 0.0%
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Figure 12 Subjective evaluation of image quality for seven CBCT images that were reconstructed from the full-view projection dataset S1, 
sparse-view projection datasets S1/2, S1/4, and S1/8, and composite projection datasets Syn1/2, Syn1/4, and Syn1/8. In each bar plot, the score value 
corresponding to the area where the orange dash-dotted line is located represents the median score. The red dashed line in each bar plot 
represents the boundary of acceptable image quality. CBCT, cone-beam computed tomography. 

caused by under-sampling.
In IGRT, CBCT is a task-specific modality for online 

positioning verification, that requires clinicians to make 

critical decisions. Therefore, experts should participate in 
image quality evaluation. In this study, we conducted blind 
and randomized expert scoring, and the corresponding 

Table 5 Average running time of the SynCNN models for projection synthesis from sparse-view projection dataset to composite full-view 
projection dataset

Projection synthesis SynCNN1/8 SynCNN1/4 SynCNN1/2 Subtotal

S1/8 → Syn1/8 0.4 0.8 1.7 2.9

S1/4 → Syn1/4 – 0.9 1.7 2.6

S1/2 → Syn1/2 – – 1.8 1.8

Note that the running time is measured in seconds. SynCNN, synthesis convolutional neural network.

Table 6 Quantitative evaluation of synthesized projections in 
composite full-view projection datasets restored from 1/4 sparse-
view projection datasets using different methods for all patient 
studies in the test set

Methods RMSE (×10−2) PSNR (dB) SSIM (×10−2)

Linear interpolation 4.0±1.6 42.4±2.0 96.7±1.1

SynCNN (proposed)* 2.8±1.2 45.7±1.6 98.1±0.6

All values are reported as mean ± standard deviation. Best 
results are indicated with an asterisk (*). RMSE, root-mean-
square error; PSNR, peak signal-to-noise ratio; SSIM, structural 
similarity; SynCNN, synthesis convolutional neural network. 

Table 7 Quantitative evaluation of 1/4 spare-view reconstructions 
using different methods for all patient studies in the test set

Methods RMSE (×10−4) PSNR (dB) SSIM (×10−2)

Linear interpolation 13.1±3.5 34.1±2.4 84.4±4.2

FBPConvNet 10.0±2.8 36.4±2.5 88.9±3.4

IDU-Net 10.1±2.7 36.4±2.5 88.9±3.4

SynCNN (proposed)* 9.3±2.6 37.2±2.6 90.1±3.2

All values are reported as mean ± standard deviation. Best 
results are indicated with an asterisk (*). RMSE, root-mean-
square error; PSNR, peak signal-to-noise ratio; SSIM, structural 
similarity; SynCNN, synthesis convolutional neural network. 
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results demonstrated the task-specific merit of the SynCNN 
model. Images reconstructed from Syn1/2, Syn1/4 and Syn1/8 
were preferred over those reconstructed from S1/2, S1/4 and 
S1/8. Both IMG(Syn1/2) and IMG(Syn1/4) received median 
scores identical to IMG(S1), and their acceptance rates were 
also comparable to IMG(S1). These findings suggested that 
the image quality of 1/4 sparse-view reconstructions using 
the SynCNN model had the ability to perform positioning 
verification tasks on par with regular dose images. When 
the down-sampling rate went to as low as 1/8, the results 
between IMG(S1/8) and IMG(Syn1/8) indicated that the 
substantial potential of the proposed model for image 
quality enhancement in ultra-sparse down-sampling 
scenarios.

The SynCNN model restored full-view projections from 
sparse-view projections at a low time cost, which was crucial 
for enabling online imaging in IGRT. Results showed that 
the average running time required for restoring full-view 
projections from half, quarter, and one-eighth sparse-view 
projections was less than 3 s. With further optimization, the 
process of projection synthesis could be accelerated.

The SynCNN model operates solely in the projection 
domain, which facilitates integrating the model into the 
existent CBCT imaging chain without major workflow 
revision. When using the SynCNN model as a generator 
network coupled with a discriminator network, it can be 
transformed into a GAN. This GAN configuration, when 
subjected to a generative-adversarial training strategy, 
holds promise in enhancing the precision of projection 
synthesis (55). Additionally, the flexible nature of the 
SynCNN model means it can be coupled with other DL-
based image-domain refinement methods, offering another 
avenue to improve the image quality of sparse-view CBCT 
reconstructions.

There are three limitations of this work. First, the 
proposed SynCNN models synthesized the missing 
projections in a cascaded fashion, which worsens the 
blurring effect particularly in IMG(Syn1/8). Future efforts 
will be directed to modifying the model architecture 
to synthesize multi-frame projections in one-step and 
incorporating attention mechanism modules to improve 
model performance in edge-enhancement and deblurring. 
Second, limited by the scope of the IRB approval, the 
patient scans used for model training, validation, and 
test were all acquired in half-scan head protocols. A new 
clinical study should be launched to include a variety of 
scan protocols and sites to further test the generalization 
of the proposed model. Third, the projections synthesized 

using the SynCNN model did not derive from the 
Radon transform, and this DL-based projection synthesis 
method might introduce new artifacts. While a rigorous 
mathematical explanation we believe is very necessary, we 
left this end loose due to a lack of strong mathematical 
background.

Conclusions

The proposed SynCNN model for projection synthesis 
is capable of improving the quality of sparse-view CBCT 
images at a low time cost. With the SynCNN model, the 
CBCT imaging dose in IGRT could be reduced potentially.
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