
© Quantitative Imaging in Medicine and Surgery. All rights reserved.   Quant Imaging Med Surg 2024;14(1):1316-1322 | https://dx.doi.org/10.21037/qims-23-1437

Hepatocellular carcinomas (HCCs) mostly show higher 
perfusion compared with adjacent normal liver tissue, 
reflecting their hypervascular nature (1,2). With computed 
tomography (CT) perfusion, Sahani et al. (3) measured 
blood flow (mL/100 g/min), blood volume (mL/100 g), and 
mean transit time (second) to be 92.8±88.6, 4.9±3.5, and 
8.1±3.1 for HCC, whereas 14.9±2.8, 2.6±0.9, and 14.9±2.3 
for background liver (with or without liver cirrhosis). 
With perfusion magnetic resonance imaging (MRI), 
Abdullah et al. (4) reported normalized total perfusion  
(mL/100 g/min) of HCC to corresponding tumor free 
liver to be 4.0 (range, 0.5–16.5). With perfusion MRI, 
Pahwa et al. (5) reported contrast distribution value was 
49.0%±20.5% for HCC and 29.4%±8.3% for liver tissue. 
With perfusion CT, Ippolito et al. (6) reported median tissue 
blood volume (mL/100 g) was 20.4 for HCC and 10.9 for 
cirrhotic liver parenchyma. Using diffusion derived vessel 
density (DDVD) parameter (7,8) measuring the diffusion-
weighted imaging (DWI) signal difference between b=0 and 
b=2 s/mm2 data of 72 HCC patients, we found HCC had a 
higher DDVD measure than the background liver, with the 
median ratio of HCC DDVD to background liver DDVD 
being around 3.0 (authors’ unpublished results). 

Intravoxel incoherent motion (IVIM) theory in MRI 
was proposed by Le Bihan et al. to account for the effect 
of vessel/capillary perfusion on the aggregate magnetic 
resonance (MR) DWI signal. The fast component of 

diffusion is related to micro-perfusion, whereas the 
slow component is linked to molecular diffusion. Three 
parameters can be computed. Dslow (Ds, or D) is the 
diffusion coefficient representing the slow molecular 
diffusion (unaffected by perfusion). The perfusion fraction 
(PF, or f) represents the fraction of the compartment 
related to (micro)circulation, which can be understood as 
the proportional ‘incoherently flowing fluid’ (i.e., blood) 
volume. Dfast (Df, or D*) is the perfusion-related diffusion 
coefficient representing speed. IVIM has been applied 
to evaluate perfusion component of HCC. Paradoxically, 
most authors, such as Penner et al. (9), Zhu et al. (10), 
Woo et al. (11), Shan et al. (12), and Hectors et al. (13), 
reported a decreased PF of HCC relative to adjacent liver. 
In the meantime, with perfusion MRI, Hectors et al. (13) 
also reported a higher total blood flow of HCC than the 
adjacent liver. 

In this letter, we propose that PFm (measured PF with 
IVIM imaging) is underestimated in the cases of HCC and 
this underestimation phenomenon is at least partially caused 
by the HCC’s T2 relaxation time (T2) elongation relative to 
adjacent liver tissue. If the tissue diffusion component and 
the tissue perfusion component have separate T2 relaxation 
times of T2t (T2 of the tissue diffusion component) and T2p 
(T2 of the perfusion component, i.e., blood) respectively, to 
count for T2 dependency the standard IVIM model can be 
modified as [see Jerome et al. (14) and Lemke et al. (15)]:
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where S0 is a scaling term independent of both diffusion 
and ‘T2 effect’ (which is defined as MRI signal differences 
contributed by T2 difference), and it is implicitly assumed 
that repetition time is long enough to ensure no significant 
modulation of the signal from incomplete T1 relaxation. 
Considering T2 does not have a linear relationship with 
DWI signal intensity and T2 effect cannot be eliminated by 
normalizing with the signal intensity at b=0, we can divide 
Eq. [1] by ( ) ( ) 22 //1 pt TE TTE TPF e PF e−−− + , and Eq. [1] can also be 
written as [see Jerome et al. (14)]:
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Where PFm is the DWI measured PF which can be 
obtained by fitting the signal intensity of different b-values:
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Thus, PFm is PF taking into consideration its T2 
dependency as shown with Eq. [3], and which is a parameter 
we actually measure. Eq. [3] can be simplified as:

( ) 1
1TEPFm TE

e αη − ⋅=
⋅ +  [4]

Where  1 PF
PFη −= , 2 2

1 1
t pT Tα = − .

Parameters PFm, T2t and T2p can be obtained by DWI 
data points with various time of echo (TE) and b-values by 
Eq. [4].

When b-value is sufficiently large, the perfusion 
component will decay to be minimal, and the signal 
intensity will be:
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If we take logarithm, then: 
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For the data points with same b value and various TE, 
logarithm of signal intensity is linear to the TE and the 
slope will be 1/T2t. Using data with identical b-value and 
various TEs, the value of T2t can be directly fitted by the 
least square method. After obtaining the specific value of η 
and T2t, we then know the result of T2p. 

For the standard DWI sequence with given TE, PFm can 
be regarded as a function of T2t,T2p and actual PF as below: 
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With the methods discussed above and assuming TE 
could be very short (i.e., close to zero) so to eliminate 
the T2 effect, Jerome et al. (14) estimated liver PF (PFm 
when TE =0) to be 0.08 (Figure 1). This would suggest 
that PF in normal liver is routinely overestimated with the 
standard IVIM assessment when TE of around 60 ms is 
commonly applied. In experimental physiology studies, it 
was suggested that the hepatic blood volume including that 
of the large vessels is about 25 mL/100 g (16,17). That PF 
of 0.08 is notably lower than the results obtained by other 
methods also suggests that PF may not be straightforwardly 
interpreted as a physiological perfusion volume fraction. 
We commonly estimated healthy liver PFm to be 0.18 
(excluding large vessels) (18,19) when a TE of around 60 ms 
was applied. Note that PFm calculated with bi-exponential 
IVIM model is assumed to reflect fast diffusion contributed 
by both arteries and veins (13,20). In the study of Jerome 
et al. (14), the estimation of T2t and T2p of healthy liver 
at 1.5 Tesla (T) was around 38 ms (Figure 2) and around 
80 ms respectively. T2t is close to the T2a (T2a refers to 
the measured T2 contributed by both T2t and T2p) of liver 
reported by other authors (21-23) while T2p is notably 
different to the literature value (24-26). Two possibilities 
may explain why the measurement of T2p was less stable. 
In the study of Jerome et al., T2t and α were estimated 
initially with two separate least square fittings, and T2p 
was calculated later. The bias of each fitting would have 
accumulated for the calculation of T2p. Moreover, 1/T2p was 
obtained prior to its reciprocal. Given that T2p is around 100 
ms, slight disturbance at fitting would influence the value of 
1/T2p substantially. 

In this letter, the liver’s T2p as 80 ms from the model 
estimation of Jerome et al. (14) and 180 ms of measured 
results in literature (24-26) are tested for the analysis of 
HCC PFm dependency of its T2a value. We demonstrate the 
PFm dependence of T2p and T2t with actual PF =0.08 and TE 
=55 ms. A number of authors reported that the T2a of HCC 
is around 60 ms with adjacent liver tissue’s T2a being around 
40 ms (27-29). If HCC occurred at the background of liver 
fibrosis, the differences between liver fibrotic tissue and 
HCC are assumed already considered (27-29). Higher HCC 
T2a have also been reported (HCC and metastasis have 
approximately similar T2a) (30,31), which could be related 
to the differentiation of the HCC. Poorly differentiated 
HCCs may have deviated more from native liver tissue with 
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longer T2a. Note that T2 does not change much over the 
range of field strengths used for routine clinical MRI (0.2 
to 3.0 T) (32). Considering that blood flow contribution to 
each tissue voxel’s T2a is small, T2a of HCC can be assumed 
to be same as its T2t. T2p of HCC has not been measured 
with T2 extended IVIM model. However, T2p of HCC will 
be longer than liver tissue as HCC contains a larger portion 
of arterial blood. Figures 3,4 show the estimated result of 

PFm based on modeling results of the study of Jerome  
et al. (14) and measured T2p/T2t results in literature, 
respectively. In Figure 3, the PFm of liver tissue is 0.157. 
PFm of HCC varies from 0.099 to 0.118 when T2p changes 
from the value equals to liver venous blood 180 ms to the 
value of arterial blood 250 ms. Increase of HCC’s T2p will 
slightly mitigate the PFm underestimation relative to liver 
tissue but the underestimation caused by T2 effect is always 
observable. In Figure 4, the same phenomenon is observed. 
PFm of liver tissue is 0.202 while PFm of HCC may vary 
from 0.138 to 0.149 depending on the T2p values assumed. 

In conclusion, underestimation of HCC PFm caused 
by T2 effect due to the elongation of T2a time of HCC 
relative to the liver is present during the standard IVIM 
measurement. The analysis in this letter can help to explain 
the much lower PFm observed for the spleen than for 
the liver (0.09 vs. 0.18) as spleen has a longer T2a value 
than liver (18,33). The analysis in this letter may partially 
help to explain the recent observation that for tissue 
with T2a <60 ms, a negative correlation is noted with T2a 
time and apparent diffusion coefficient (ADC) (33). The 
analysis in this letter may also partially help to explain the 
paradoxical observation of Schmid-Tannwald et al. (34) that 
hypervascular liver metastases demonstrate significantly 
lower ADC values compared to hypovascular metastases, as 
hypervascular lesion will have a longer T2a than hypovascular 
lesion. Liver fibrosis has been consistently shown to 
have a reduced PFm by IVIM measure even at an early  
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Figure 2 A high repeatability of the T2t measurement is shown. 
Measured signal with various TE and a specific b-value were used 
to obtain T2t according to Eq. [6], with the slope indicating −1/T2t. 
The high level of similarity of the slopes of lines suggests a high 
repeatability of T2t regardless of the choice of b-values. Data from 
Jerome et al. (14). TE, time of echo; T2t, T2 of the tissue diffusion 
component.

Figure 1 Five volunteer liver results from Jerome et al. (14). (A) Measured signal with various TE and b-values acquired at 1.5 Tesla. b-values 
(s/mm2) included 0, 50, 100, 150, 200, 250; and TE (ms) included 62, 72, 82, 92, 102. Standard IVIM model was used to fit the results of 
each TE individually. It can be seen that the signal decay pattern following increasing b-values differs according to different TEs. (B) The 
curve is the fitting result of PFm with T2 extended IVIM model. Points with 95% standard error bar represent the PFm values for a given 
TE with the standard model (color labeling is the same as in A), with a shorter TE associated with a smaller PFm. Note if TE =0, the 
curve intersects Y-axis at the value of around 8% (arrow). The figures are reproduced with permission [Jerome et al. (14)]. PFm, measured 
perfusion fraction; TE, time of echo; IVIM, intravoxel incoherent motion. 



Quantitative Imaging in Medicine and Surgery, Vol 14, No 1 January 2024 1319

© Quantitative Imaging in Medicine and Surgery. All rights reserved.   Quant Imaging Med Surg 2024;14(1):1316-1322 | https://dx.doi.org/10.21037/qims-23-1437

0.3

0.25

0.2

0.15

0.1

0.05

P
Fm

140
120 100

80 80
60

40

70
50

30

60T2p, ms

T2t=60, T2p=112
PFm=0.118

Liver tissue 

HCC of T2p lowly estimated

HCC of T2p highly estimated

T2t=60, T2p=80
PFm=0.099

T2t=38, T2p=80
PFm=0.157

T2t, ms

0.35

0.3

0.25

0.2

0.15

0.1

P
Fm

300
250

200
80

60

40

70

50

30

150T2p, ms

T2t=60, T2p=250
PFm=0.149

Liver tissue 

HCC of T2p lowly estimated

HCC of T2p highly estimated

T2t=60, T2p=180
PFm=0.138

T2t=40, T2p=180
PFm=0.202

T2t, m
s

Figure 4 Change of PFm following the deviation of HCC T2t and 
T2p from native liver values (values based on literature), showing an 
elongation of T2t of HCC leading to an underestimation of PFm. 
The estimation of PFm is based on Eq. [7] with assumed PF =0.08 
and TE =55 ms. T2p of arterial blood is reported to be around  
250 ms, while that of venous blood is 180 ms (24-26). If liver T2p of  
180 ms is assumed to be close to that of venous blood, and liver T2t 
is 40 ms (19-21), then PFm is 0.202 (green ball). If an HCC has 
T2t of 60 ms (25-27) and its T2p remains the same as liver (180 ms), 
then PFm will decrease to 0.138 (red ball). HCC contains a greater 
proportion of arterial blood which will measure higher T2p. If HCC 
is mostly supplied with arterial blood, we assume an HCC has T2t 
of 60 ms and T2p of 250 ms, then PFm will be 0.149 (pink ball). 
Note that liver T2p is likely to be higher than 180 ms due to its 25% 
arterial blood supply and HCC T2p is likely to be lower than 250 ms 
with some extent of venous blood supply. Under these conditions, 
liver PFm will be higher and HCC PFm will be lower than the 
values indicated above, therefore the underestimation of HCC 
PFm relative to liver will be even greater. HCC, hepatocellular 
carcinoma; PFm, measured perfusion fraction; T2t, T2 of the tissue 
diffusion component; T2p, T2 of the perfusion component; TE, time 
of echo.  

Figure 3 Change of PFm following the deviation of HCC T2t and 
T2p from native liver values [values based on modeling results of 
Jerome et al. (14)], showing an elongation of T2t of HCC leading 
to an underestimation of PFm. The estimation of PFm is based on 
Eq. [7] with assumed PF =0.08 and TE =55 ms. Liver parenchyma 
(green ball) is assumed to have T2t of 38 ms and T2p of 80 ms (14), 
then PFm will be 0.157. If an HCC has T2t of 60 ms (27-29) and its 
T2p remains the same as liver, then PFm will decrease to 0.099 (red 
ball). T2p of arterial blood is reported to be around 250 ms, while 
that of venous blood is 180 ms (22). HCC contains a much greater 
proportion of arterial blood (than the liver) which means HCC 
would have a higher T2p. If HCC is mostly supplied with arterial 
blood, and assuming liver is mostly supplied with venous blood, 
thus we assume an HCC has T2t and T2p of 60 ms and 112 ms [i.e., 
considering (180/250) = (80/112)], then PFm will be 0.118 (pink 
ball). Therefore, underestimation of HCC PFm will always exist 
even if HCC T2p increases dramatically relative to liver T2p. More 
likely HCC PFm will be between the result of red ball and the 
result of pink ball. HCC, hepatocellular carcinoma; PFm, measured 
perfusion fraction; T2t, T2 of the tissue diffusion component; T2p, T2 
of the perfusion component; TE, time of echo.  

stage (35,36). Liver fibrosis is also noted to be associated 
with an increased T2a (37,38). Though pathophysiologically 
liver fibrosis is indeed associated with perfusion reduction  
(39-41), the PFm measured by standard IVIM could also 
have overestimated the extent of its reduction (or it could 
be a false positivity for the early-stage liver fibrosis cases). 
In the opposite direction, we noted that a higher liver iron 
content, and thus the associated shortening of T2a/T2*, may 
be associated with a higher liver PFm (42). In a healthy 
volunteer liver DWI study, it was noted that older subjects 
with higher liver iron content and thus shorter T2* and T2a 

demonstrated higher PFm relative to younger subjects (43). 
Based on empirical observations, it has been suggested that, 
for standard modeling, IVIM PFm and Ds are ‘mutually 
constrained’ (43-45). If one parameter changes toward one 
direction (e.g., decreasing), then the other changes toward 
to the opposite direction (e.g., increasing). A reduction of 
PFm of brain tissue has been noted to be associated with 
an increase of Ds (45). Considering T2 change is a major 
contributor to ADC change (33), and on the other hand for 
the standard IVIM modeling it does not appear that there is 
a mathematical reason that PFm and Ds have to be ‘mutually 
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constrained’, we may hypothesize that the ‘mutually 
constraining’ of PFm and Ds are moderated by T2. 
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