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Background: The mutational status of alpha-thalassemia X-linked intellectual disability (ATRX) is an 
important indicator for the treatment and prognosis of high-grade gliomas, but reliable ATRX testing 
currently requires invasive procedures. The objective of this study was to develop a clinical trait-imaging 
fusion model that combines preoperative magnetic resonance imaging (MRI) radiomics and deep learning 
(DL) features with clinical variables to predict ATRX status in isocitrate dehydrogenase (IDH)-mutant high-
grade astrocytoma.
Methods: A total of 234 patients with IDH-mutant high-grade astrocytoma (120 ATRX mutant type,  
114 ATRX wild type) from 3 centers were retrospectively analyzed. Radiomics and DL features from 
different regions (edema, tumor, and the overall lesion) were extracted to construct multiple imaging models 
by combining different features in different regions for predicting ATRX status. An optimal imaging model 
was then selected, and its features and linear coefficients were used to calculate an imaging score. Finally, 
a fusion model was developed by combining the imaging score and clinical variables. The performance 
and application value of the fusion model were evaluated through the comparison of receiver operating 
characteristic curves, the construction of a nomogram, calibration curves, decision curves, and clinical 
application curves.
Results: The overall hybrid model constructed with radiomics and DL features from the overall lesion was 
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Introduction

Gliomas are common primary malignant tumors in the 
brain and can be categorized into different subtypes 
based on their histopathological characteristics (1). The 
presence of the same genetic alterations in patients with 
different pathological histological classifications of glioma 
suggests that they may have similar biological behavior 
and prognosis (2). Therefore, isocitrate dehydrogenase 
(IDH)–mutant astrocytoma is classified as a distinct type 
in the 2021 World Health Organization (WHO) Central 
Nervous System (CNS) Tumor Classification Criteria. It 
is classified into 3 grades, WHO CNS grades 2 to 4, based 
on histological morphology and features (3,4). High-grade 
glioma (grades 3 and 4) involves a poor prognosis and a 
low cure rate due to the lack of effective treatments (1). 
However, patients with glioblastoma with alpha-thalassemia 
X-linked intellectual disability (ATRX) deletion experience 
a longer overall survival time and benefit more from 
temozolomide (TMZ) treatment (5). The combination 
therapy of TMZ and multitargeted receptor tyrosine kinase 
inhibitors (RTKis) may expand the therapeutic window 
for patients with high-grade gliomas carrying ATRX  
mutations (1). There are significant differences in the 
treatment approach and prognosis between high- and low-
grade IDH-mutant astrocytoma (6). Therefore, knowledge 
of the mutational status of ATRX is important for both the 
prognostic assessment and treatment options in high-grade 
IDH-mutant astrocytoma.

T h e  m o s t  c o m m o n  m e t h o d s  f o r  d e t e c t i n g 
ATRX  mutation status are based on sequencing or 
immunohistochemistry after biopsy or surgical excision 
(7,8). However, brain biopsy is often hampered by 
factors such as the patient’s poor health condition and 

tumor location or patient’s refusal to undergo invasive 
tests. Additionally, the accuracy of gene detection can be 
compromised by limited tissue samples, and biopsies involve 
certain risks, such as brain swelling, bleeding, and other 
neurological issues (9). Therefore, noninvasively predicting 
the ATRX mutation status of IDH-mutant high-grade 
astrocytoma could have considerable clinical value.

Imaging techniques have the advantage over standard 
pathological examination of being able to analyze the 
invasive, non-resected components of gliomas and thus 
capture and characterize the status of the tumor as a 
whole. To facilitate a consistent and standardized analysis 
of qualitative magnetic resonance imaging (MRI) features, 
the Visually Accessible Rembrandt Images (VASARI) 
terminology was developed (10). Previous studies have 
shown that VASARI features are biologically relevant to 
glioblastoma (11). Radiomics can extract high-throughput 
quantitative features that reveal tumor information from 
MRI images, and mathematical models based on these 
quantitative features can predict tumor phenotypes (12). 
As a common type of artificial neural network in deep 
learning (DL), convolutional neural networks (CNNs) 
have been proven capable of performing well in both 
image recognition and segmentation (13,14). DL and 
radiomics based on conventional and functional MRI have 
been widely used for preoperative differential diagnosis, 
grading, genotyping, and prognosis of gliomas (15-17). 
They have demonstrated good performance in predicting 
O6-methylguanine-DNA methyltransferase (MGMT) 
promoter methylation and IDH mutation in diffuse glioma 
(18,19). A radiomics approach based on multiparametric 
MRI can noninvasively determine the molecular status 
of IDH1 and ATRX in patients with low-grade glioma 
(LGG) (20). In a previous study (21), a clinical radiomics–

identified as the optimal imaging model. The fusion model showed the best prediction performance with an 
area under curve of 0.969 in the training set, 0.956 in the validation set, and 0.949 in the test set as compared 
to the optimal imaging model (0.966, 0.916, and 0.936, respectively) and clinical model (0.677, 0.641, 0.772, 
respectively).
Conclusions: The clinical trait-imaging fusion model based on preoperative MRI could effectively predict 
the ATRX mutation status of individuals with IDH-mutant high-grade astrocytoma and has the potential to 
help patients through the development of a more effective treatment strategy before treatment.
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integrated model based on 18F-fluorodeoxyglucose positron 
emission tomography (18F-FDG PET) and multimodal 
MRI successfully predicted the ATRX mutation status of 
patients with IDH-mutant LGG. Although the findings of 
these studies are promising, the primary focus has been on 
LGG, and the noninvasive prediction of ATRX mutational 
status in high-grade IDH-mutant astrocytoma has not yet 
been examined. Since functional MRI and PET imaging are 
not as widely available as is conventional MRI (cMRI), it is 
necessary to thoroughly investigate the potential of cMRI 
in predicting ATRX mutation status in patients with IDH-
mutant high-grade astrocytoma.

In this study, we aimed to combine the quantitative 
and qualitative features derived from cMRI and clinical 
variables to build a fusion model to predict ATRX mutation 
status in IDH-mutant high-grade astrocytoma. We present 

this article in accordance with the TRIPOD reporting 
checklist (available at https://qims.amegroups.com/article/
view/10.21037/qims-23-807/rc).

Methods

Patients

From January 2017 to June 2022, this study analyzed data 
from 3 different institutions: the First Affiliated Hospital of 
Chongqing Medical University, Sichuan Cancer Hospital, 
and Chongqing United Medical Imaging Center. The data 
and pathological information were obtained from a total 
of 234 patients with IDH-mutant astrocytoma classified as 
WHO CNS grades 3 or 4 according to the 2021 WHO 
criteria. Of these patients, 120 had ATRX mutations. 

This study was conducted in accordance with the 
Declaration of Helsinki (as revised in 2013) and was 
approved by the institutional review boards of Chongqing 
Medical University, Sichuan Cancer Hospital, and 
the United Medical Imaging Center. All participating 
institutions were formally informed and agreed to the 
protocol of the study. Given the retrospective nature of the 
design, the requirements for informed consent from patients 
was waived. The inclusion criteria were patients with 
pathologically confirmed astrocytoma, IDH-mutant status, 
WHO CNS grades 3 or 4, available MRI with conventional 
sequences including T2 fluid-attenuated inversion recovery 
(T2f) and contrast-enhanced T1-weighted (T1c) images, 
available information regarding ATRX mutation status, 
and available clinical features including gender and 
age. The exclusion criteria included images with severe 
artifacts; previous treatment with radiotherapy, stereotactic 
radiosurgery, anti-vascular therapy, or surgery; and 
unknown ATRX mutation status. The patient screening 
process is shown in Figure 1.

Detection of ATRX

The tumor samples were preserved in a 10% formaldehyde 
solution at room temperature for a full day, encased in 
paraffin, and then sliced into sections 3.5-μm thick. The 
primary antibodies were applied for immunohistochemistry 
following the guidelines provided by the manufacturer (Cell 
Signaling Technology, Boston, USA). Each tissue section 
was treated with a 3% hydrogen peroxide solution at 37 ℃ 
for 10 min, which was followed by an overnight incubation 
with the primary antibody at 4 ℃. Finally, sections were 
exposed to goat anti-mouse/rabbit immunoglobin G (IgG) 

Protocol: T2f+T1c

IDH-mutant high-grade 
astrocytoma (n=263)

Exclusion (n=29):
(I)	 Previously received radiotherapy, 

stereotactic radiosurgery, anti-
vascular therapy or surgery (n=3);

(II)	 Severe motion artifacts on images 
and significant head movement 
during the scan (n=13);

(III)	Unknown information regarding 
ATRX mutation status (n=11);

(IV)	The interval between MRI and 
histopathology was more than 
2 weeks, and patient received 
preoperative radiotherapy or 
other medical treatments before 
surgery during the interval (n=2)

Enrolled
ATRX (n=234)

Training and 
Validation Set 
(n=155+39)

Validation Set 
(n=40)

Figure 1 The patient screening process. ATRX, alpha-thalassemia 
X-linked intellectual disability; T2f, T2 fluid-attenuated inversion 
recovery; T1c, contrast-enhanced T1-weighted; IDH, isocitrate 
dehydrogenase; MRI, magnetic resonance imaging.
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antibodies for half an hour at room temperature using 
a 1:100 dilution. The staining with the DAB Detection 
Kit (ZSGB-BIO, Beijing, China) was observed using a 
Nikon microscope (Nikon Corporation, Tokyo, Japan; 
magnification 40×).

Assessment of qualitative clinical variables 

The VASARI feature set consists of 30 categorical variables, 
such as tumor location, proportion enhancing, and 
proportion of edema (additional details about the VASARI 
scoring standard can be found in Table S1). The VASARI 
features were assessed by 2 radiologists with 5- and 10-year 
experience, respectively, under a double-blind method, and 
any disagreements were resolved by a neuroradiologist with 
15-year experience. For each case, a VASARI score was 
constructed from the VASARI feature set and considered as a 
clinical variable along with age, gender, and WHO grading, 
to differentiate it from the imaging score calculated based on 
radiomics features, which is described in a later section.

Image preprocessing and region of interest (ROI) 
segmentation

MR images, including T1c and T2f, were acquired from 
various 3.0T MRI scanners using different acquisition 
parameters. The specific acquisition protocols can be 
found in Table S2. To minimize differences in imaging 
parameters  across  devices ,  a l l  images underwent 
preprocessing steps such as registration, bias correction, 
intensity normalization, and resampling. Additional 
information regarding the image preprocessing can be 
found in Appendix 1 (22,23).

The segmentation of the 3-dimensional ROI was 
performed by 2 radiologists with 5 and 10 years of 
experience, respectively, using 3D-slicer software (version 
4.3; https://www.slicer.org) (24). They manually segmented 
the ROIs of the overall lesion (enhancing tumor + edema) 
and enhancing tumor area from T2f and T1C, respectively, 
to obtain the ROI of edema habitat determination (25). 
If the difference between the ROIs obtained by the  
2 radiologists was less than 5%, the final ROI was 
determined as the overlapping region of the 2 ROIs. 
Otherwise, it was determined by the neuroradiologist with 
15 years of experience. None of these 3 experts knew of 
the final diagnosis or ATRX mutation status. The overall 
process of the experiment after image preprocessing is 
shown in Figure 2.

Feature extraction

The extraction of radiomics features was performed using 
the open-source software Pyradiomics (version 3.0.1; https://
www.radiomics.io/index.html). The radiomics features 
derived from the ROI of edema habitat (edema), enhancing 
tumor (tumor), and overall lesion (overall) were extracted 
in both T1c and T2f images. A total of 1111 radiomics 
features were extracted for each ROI. For more information 
regarding these features, please refer to Appendix 1.

Deep features were extracted from pretrained residual 
network 34 (ResNet34) using transfer learning. The 
Pytorch (version 1.9.0; https://pytorch.org) framework was 
used for CNN network construction and feature extraction. 
The CNN network uses the well-known ResNet34, which 
inputs a 224×224×3 pixels natural image, and after multiple 
consecutive convolutional layers and pooling layers, it can 
output a 1,000-dimensional vector, which we regarded 
as the depth feature extracted from the image. Weights 
were pretrained using the open-source dataset ImageNet-
1k (https://www.image-net.org/download.php). The slices 
with the largest edema area and tumor area were selected 
from T1c and T2f sequences, and then the ROI region 
was cut out. Following this, the image was enlarged to 
224×224 using the bilinear interpolation algorithm, which 
was copied into 3 channels for input into the ResNet34. 
After inputting the ROI image were input into the model, 
a 1,000-dimensional depth feature was extracted from each 
ROI region of each sequence. Deep features and radiomics 
features were combined for subsequent filtering.

Feature selection

The feature data extracted from different ROIs were 
standardized with z scores. To improve the generalization 
performance of the model, the independent samples t-test 
was first used for the preliminary filtering of features, 
significant features were selected (P<0.05), the least 
absolute shrinkage and selection operator (LASSO) was 
applied for further dimension reduction, and the area 
under curve (AUC) was used as the evaluation index. The 
optimal parameter λ was determined through 10-fold cross-
validation, and features with a nonzero coefficient were 
selected. If there were still many features after LASSO 
filtering (according to rule of thumb, the sample size needs 
to cover 10–15 observations per predictor variable to yield a 
stable estimate; in our study, the sample size was 194, so we 
aimed to keep the number of features below 20), the Akaike 

https://cdn.amegroups.cn/static/public/QIMS-23-807-Supplementary.pdf
https://cdn.amegroups.cn/static/public/QIMS-23-807-Supplementary.pdf
https://cdn.amegroups.cn/static/public/QIMS-23-807-Supplementary.pdf
https://www.slicer.org
https://www.radiomics.io/index.html
https://www.radiomics.io/index.html
https://cdn.amegroups.cn/static/public/QIMS-23-807-Supplementary.pdf
https://pytorch.org
https://www.image-net.org/download.php
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Original image Shape features

Segmentation 
masks

ROI segmentation Feature extraction Model construction Performance evaluation

First order statistics

Wavelet filter

Deep features

Logistic regression

LASSO

Student’s t test ROC curves

Performance analyse

Confusion matrix

Figure 2 The workflow of the experiment divided into 4 steps: ROI segmentation, feature extraction, model construction, and performance 
evaluation. LASSO, least absolute shrinkage and selection operator; ROC, receiver operating characteristic; LD, low-pass digital filter; HD, 
high-pass digital filter; ATRX, alpha-thalassemia X-linked intellectual disability; ROI, region of interest.

information criterion (AIC) was used as the evaluation 
index, and the optimal feature subset was obtained using the 
backward step search algorithm.

Imaging model building and signature building

We utilized fi ltered features to construct logistic 
regression (LR), random forest (RF), and support vector 
machine (SVM) models. LR was chosen as the classifier 
for subsequent model building due to its superior 
generalization performance. Based on the combination of 
3 types of features (radiomics, DL, and radiomics + DL as 
the hybrid feature) in different regions, 9 imaging models 
were constructed to verify the prediction effect of different 
types of features and ROI regions on ATRX mutation 
status, and the image models were named according to the 
combination of feature types (i.e., radiomics, DL, hybrid) 
and feature source (i.e., edema, tumor, overall). The optimal 
imaging model was selected according to the average AUC 
of the models with 5-fold cross-validation.

Based on the optimal imaging model, an imaging 
signature was constructed using a linear combination of 

coefficients weighted features (i.e., first feature coefficient 
× first feature value + … + nth feature coefficient × nth 
feature value). The imaging score for each patient was then 
calculated. The formula for calculating the imaging score of 
imaging features can be found in Appendix 2, and patients 
were divided into high-risk group and low-risk group 
according to a cutoff value of 0.48.

Clinical model building

Clinical variables included age, sex, WHO grade, and 
VASARI score. More detailed information on the clinical 
variables can be found in Table S3. A multivariate logical 
regression model was constructed using clinical variables.

Fusion model building and performance evaluation

A fusion predictive model was constructed by combining 
clinical variables and image scores obtained from the 
optimal imaging model. To assess the performance and 
utility of the fusion model, several methods were employed, 
including receiver operating characteristic (ROC) analysis, 

https://cdn.amegroups.cn/static/public/QIMS-23-807-Supplementary.pdf
https://cdn.amegroups.cn/static/public/QIMS-23-807-Supplementary.pdf
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Table 1 The clinical characteristics of patients in 3 centers

Clinical characteristics
Cohort A (N=82) Cohort B (N=112) Cohort C (N=40)

ATRX (+) ATRX (−) P (intra) ATRX (+) ATRX (−) P (intra)  ATRX (+)  ATRX (–) P (intra)

Gender 0.142 0.504 0.859

Male 29 18 32 33 9 14

Female 15 20 27 20 8 9

WHO 0.001 0.107 0.712

III 2 17 29 35 7 7

IV 42 21 30 18 10 16

Age (years), mean ±SD 52.7±12.3 53.6±11.4 0.740 53.6±14.3 54.4±10.9 0.743 45.4±12.4 58.3±15.2 0.001

VASARI, mean ±SD 71.7±5.5 73.5±7.2 0.221 70.7±5.9 72.8±6.2 0.073 71.5±9.3 71.5±6.2 0.984

ATRX, alpha-thalassemia X-linked intellectual disability; WHO, World Health Organization; VASARI, Visually Accessible Rembrandt Images.

nomogram construction, calibration curve analysis, decision 
curve analysis, and clinical application curve analysis. 
These evaluations helped to determine the accuracy and 
applicability of the model in clinical settings.

Statistical analysis

All statistical analyses were performed using R software 
(version 4.2.0; https://www.r-project.org). The t test or 
Mann-Whitney test was used for continuous variables, the 
chi-squared test was used for classifying variables, and the 
Delong test was used to evaluate the differences between 
ROC curves. All statistical tests were 2-sided with a 
statistical significance threshold of P<0.05.

Results

Construction of image models

A total of 234 patients (120 ATRX mutant type, 114 
ATRX wild type) were included in this study. The clinical 
characteristics of these patients are shown in Table 1. There 
were no significant differences in clinical characteristics 
except for WHO grade in cohort A and age in cohort C. 
Cohort A and cohort B data were randomly sampled based 
on gender and WHO grade and were split into a training set 
(N=155) and validation set (N=39) at a ratio of 4:1 for model 
development according to the practice of previous machine 
learning research (the ratio of training set to verification 
set is generally maintained between 4:1 and 3:1) (26).  
Cohort C data (N=40) was used as an independent test set 
for external validation of the model. Through multivariate 

LR, 9 imaging models were constructed and 5-fold cross-
validation was performed.

Selection of the optimal imaging model

Table 2 summarizes the results of 5-fold cross-validation on 
the training and validation sets for 9 imaging models, and 
Table 3 shows the results of the models on the external test 
set; all the models shown good predictive performance (AUC 
>0.75). Figure 3A,3B depict the performance of the 6 models 
constructed from single-type features (radiomics or DL) of 3 
ROI regions (edema, tumor, overall), and the models based 
on overall had a higher AUC relative to the models based on 
edema and tumor area (overall DL model on the validation 
set: AUC =0.910, 95% CI: 0.833–0.999; overall radiomics 
model on the test set: AUC =0.916, 95% CI: 0.819–1.000). 
In the 3 models based on hybrid features (Figure 3C,3D), 
the model derived from the overall had the best predictive 
performance (validation set: AUC =0.916, 95% CI: 0.822–
0.999; test set: AUC =0.936, 95% CI: 0.859–1.000). After 
the Delong test, there was no statistical difference between 
the ROC curves of the 6 models constructed from single-
type features (P>0.05; Figure 4A,4B). Finally, the overall 
hybrid model was identified as the optimal imaging model 
due to it having the highest AUC among all the imaging 
models. The Delong test of the ROC comparison between 
the 9 image models can be found in Table S4.

Predictive performance of the overall hybrid model

The overall hybrid model was constructed using 16 imaging 
features, 10 of which were deep features and 6 radiomics 

https://www.r-project.org/
https://cdn.amegroups.cn/static/public/QIMS-23-807-Supplementary.pdf
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Table 2 The performance of the models in the training and validation set

Model
Training cohort (N=155) Validation cohort (N=39)

Sensitivity Specificity Accuracy AUC (95% CI) Sensitivity Specificity Accuracy AUC (95% CI)

Edema DL 0.869 0.819 0.845 0.903 (0.869−0.958) 0.798 0.770 0.789 0.834 (0.645−0.989)

Edema radiomics 0.852 0.802 0.829 0.910 (0.870−0.958) 0.847 0.755 0.804 0.896 (0.774−0.990)

Edema hybrid 0.833 0.804 0.820 0.915 (0.869−0.960) 0.837 0.792 0.814 0.914 (0.842−1.000)

Tumor DL 0.832 0.777 0.807 0.900 (0.849−0.945) 0.814 0.749 0.783 0.880 (0.804−0.996)

Tumor radiomics 0.828 0.779 0.805 0.882 (0.829−0.932) 0.798 0.747 0.773 0.834 (0.672−0.963)

Tumor hybrid 0.872 0.819 0.847 0.929 (0.886−0.965) 0.844 0.798 0.824 0.903 (0.796−0.998)

Overall DL 0.874 0,857 0.866 0.945 (0.904−0.979) 0.859 0.762 0.819 0.910 (0.833−0.999)

Overall radiomics 0.861 0.827 0.845 0.917 (0.879−0.962) 0.829 0.804 0.815 0.898 (0.751−1.000)

Overall hybrid 0.915 0.876 0.897 0.966 (0.948−0.991) 0.852 0.862 0.861 0.916 (0.822−0.999)

Clinical 0.705 0.571 0.643 0.677 (0.586−0.766) 0.658 0.546 0.604 0.641 (0.489−0.796)

Fusion 0.920 0.881 0.902 0.969 (0.964−0.997) 0.925 0.860 0.900 0.956 (0.878−1.000)

AUC, area under curve; CI, confidence interval; edema DL, edema deep learning feature model; edema radiomics, edema radiomics 
model; edema hybrid, edema radiomics and deep learning feature model; tumor DL, tumor deep learning feature model; tumor radiomics, 
tumor radiomic model; tumor hybrid, tumor deep learning feature model; overall DL, overall lesion region deep learning feature model; 
overall radiomics, overall lesion region radiomic model; overall hybrid, overall lesion region radiomics and deep learning feature model; 
clinical, clinical model; fusion, fusion model. 

Table 3 The performance of the models in the test set (N=40)

Models Sensitivity Specificity Accuracy AUC (95% CI)

Edema DL 0.647 0.783 0.725 0.775 (0.629−0.921)

Edema radiomics 0.765 0.870 0.825 0.875 (0.757−0.992)

Edema hybrid 0.765 0.957 0.875 0.893 (0.789−0.996)

Tumor DL 0.706 0.826 0.775 0.887 (0.788−0.987)

Tumor radiomics 0.647 0.696 0.675 0.818 (0.687−0.950)

Tumor hybrid 0.774 0.869 0.835 0.923 (0.845−1.000)

Overall DL 0.705 0.783 0.750 0.903 (0.814−0.992)

Overall radiomics 0.760 0.827 0.800 0.916 (0.819−1.000)

Overall hybrid 0.824 0.870 0.850 0.936 (0.859−1.000)

Clinical 0.471 0.783 0.650 0.772 (0.624−0.920)

Fusion 0.824 0.913 0.875 0.949 (0.890−1.000)

AUC, area under curve; CI, confidence interval; edema DL, edema deep learning feature model; edema radiomics, edema radiomics 
model; edema hybrid, edema radiomics and deep learning feature model; tumor DL, tumor deep learning feature model; tumor radiomics, 
tumor radiomic model; tumor hybrid, tumor deep learning feature model; overall DL, overall lesion region deep learning feature model; 
overall radiomics, overall lesion region radiomic model; overall hybrid, overall lesion region radiomics and deep learning feature model; 
clinical, clinical model; fusion, fusion model.
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Figure 3 The comparison of prediction performance of the different models. (A) The ROC curve of the 6 models for the validation set; (B) 
the ROC curve of the 6 models for the test set; (C) the ROC curve of the 3 models constructed with hybrid features for the validation set; (D) 
the ROC curve of the 3 models for the test set. ROC, receiver operating characteristic; AUC, area under curve; DL, deep learning.

features. These features were selected from a total of 8,444 
features in the overall lesion region. The selection process 
involved filtering via t test, LASSO, and the backward 
step search algorithm to prevent overfitting. The resulting 
features were found to have low correlation with each other 
(Figure S1), which could indicate that they complemented 
each other in the model. The classification performance 
of the model was evaluated in the validation and test sets, 
as shown in Figure S2. The model demonstrated good 
performance in accurately classifying lesions, indicating its 
potential as a diagnostic tool.

Construction and evaluation of the fusion model

The imaging signature was constructed with the overall 

hybrid model to calculate the imaging score of each patient 
(see Appendix 2 for details). The imaging score was then 
combined with WHO grade, age, sex, and VASARI score 
to develop a fusion model. The AUC of the fusion model 
on the training, validation, and test sets were 0.969, 0.956, 
and 0.949, respectively; the sensitivity was 0.920, 0.925, 
and 0.824, respectively; the specificity was 0.881, 0.860, and 
0.913, respectively; and the accuracy was 0.902, 0.900, and 
0.875, respectively. In the training, validation, and test set, 
the fusion model had the highest AUC value compared to 
the overall hybrid model and the clinical model, and the 
overall hybrid model had a higher AUC than did the clinical 
model (Tables 2,3). With the Delong test (Figure 4C,4D), 
there was no significant difference between the fusion 
model and the overall hybrid model, and both the fusion 

https://cdn.amegroups.cn/static/public/QIMS-23-807-Supplementary.pdf
https://cdn.amegroups.cn/static/public/QIMS-23-807-Supplementary.pdf
https://cdn.amegroups.cn/static/public/QIMS-23-807-Supplementary.pdf
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Delong test results of the 6 models for the test set; (C) Delong test for the fusion, overall hybrid, and clinical model for the validation set; (D) 
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model and the overall model had significant differences 
compared to the clinical model, regardless of whether the 
validation set or a test set was considered.

A clinical nomogram was established using the fusion 
model to show the value of combining imaging scores 
and clinical variables to predict the ATRX mutation status 
(Figure 5A). The linear predictive value and risk probability 
of the patient can be obtained from the clinical nomogram. 
For example, for a 34-year-old female patient, with WHO 
CNS grade 4, VASARI 77, and imaging score −4, the 
score of each item is first determined on the Points line 
according to the patient’s information, which is added up 
to a total score and is further transformed into the linear 
predictive value and risk probability according to the total 
score in the Total Points line. In this example, the linear 
predictive value of the patient is −1, indicating that her risk 
is relatively low, with a risk probability of 0.25 below the 
risk threshold and an expected ATRX mutation–negative 
status. The calibration curves showed good agreement 
between predictions and observations on the test sets  
(Figure 5B). It was found that the fusion model and 
the overall hybrid model both had a higher net benefit 
compared to the clinical model (Figure 5C). After the fusion 
model was simulated in a sample that scaled up to 1,000 
for risk stratification, it could be surmised from the clinical 
impact curve that the fusion model predictions were 
in good agreement with the actual true-positive results  
(Figure 5D).

Discussion

In this study, we developed a fusion model that integrated 
the radiomics and DL features derived from cMRI and 
clinical variables for the noninvasive prediction of ATRX 
mutation status in patients with IDH-mutant high-grade 
astrocytoma. Compared with the imaging models and the 
clinical model, the fusion model had the best performance. 
In addition, all imaging models performed better than did 
the clinic model.

ATRX loss drives glioma-related biological behaviors by 
directly regulating chromatin structure and composition (27) 
and favors the malignant progression of gliomas (28). ATRX 
mutations can be used to determine prognosis and even 
indicate clinicopathological grading (29). The heterogeneity 
of tumor biological behavior can be captured by MRI 
image features. Preoperative MRI features have been used 
to predict ATRX mutations in previous studies, but mainly 
in LGG. Li et al. (30) built a T2-weighted imaging-based 
radiomics model to determine ATRX mutations in LGGs 
and achieved the highest AUC of 0.94. Wu et al. (31) 
predicted ATRX mutations in LGGs by combining age, 
gender, and radiomic features, with a concordance index of 
0.863 and 0.840 for the training and test sets, respectively. 
Calabrese et al. (32) assessed 9 genetic biomarkers including 
ATRX in 400 adults with WHO grade 4 gliomas using a 
radiomic signature, CNN, and a combination of the 2, and 
the AUC value of ATRX reached as high as 0.97. Compared 
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with previous studies, our study focused more on the ATRX 
mutation of high-grade IDH-mutant astrocytoma, which is 
more meaningful for clinical treatment. Unlike Calabrese  
et al. (32), who averaged the 2 output probabilities  
(1 from the CNN limb and 1 from the radiomics limb) to 
create a final combined model probability, we used CNN 
to extract deep features of each patient and built an LR 
model together with traditional radiomics features. Before 
constructing the model, we fused the features, which 
allowed us to screen a larger number and variety of features, 
enhancing the model’s flexibility. Additionally, we explored 
the possibility of using the fused features to predict the status 
of ATRX mutations, which enriches the existing prediction 
models. In addition, we added qualitative features such as 

VASARI, which improved the predictive performance.
Advancements in DL methods have shown superior 

performance over traditional machine learning methods 
in predicting tumor genetics and molecular biology based 
on MRI data (33). The combination of DL and radiomics 
features has stronger differential ability and is more  
robust (34). In this study, rather than constructing a direct 
end-to-end DL model, we extracted highly abstracted 
semantic features as DL features for the model, and 
their prediction performance was comparable to, or 
even surpassed, that of the radiomics features. Out of 
the 16 image features screened for the optimal image 
model construction, 10 were derived from DL features. 
Additionally, the correlation coefficient plots indicated that 
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the final 16 selected features exhibited a low interfeature 
correlation but had a high correlation with the outcome 
variables. This suggests that DL features, unlike radiomics 
features, can effectively capture the information related 
to tumor genetics and molecular biology. Hybrid models 
combining radiomics and DL features outperformed those 
relying solely on either DL or radiomics features across the 
training, validation, and test sets. This indicates that DL 
features play a crucial role in the predictive performance 
of image models and that radiomics and DL features have 
complementary roles in the model. While the clinical model 
incorporating the VASARI score showed limited predictive 
performance, the fusion model that integrated clinical 
features with radiomics and DL features demonstrated the 
best predictive performance. This implies the VASARI 
score can contributed to predicting ATRX mutation status 
in high-grade IDH-mutant astrocytoma.

MRI is the preferred method for the in vivo investigation 
of most brain diseases (35). MRI data analysis techniques 
enable the exploration of associations between image features 
and diverse molecular phenotypes. This facilitates a more 
profound investigation of specific molecular variations and 
the biological behaviors of gliomas. In this study, using cMRI 
sequences (T2f and T1c) alone was sufficient to achieve 
good predictive performance. This can be explained by the 
ability of T2f to effectively distinguish between different 
components of tumors and the ability of T1c to reveal 
important information regarding tumor blood supply and 
internal features. Furthermore, we found that models based 
on the overall lesion features outperformed those based solely 
on edema and enhancing tumor area. This suggests that the 
combination of T1c and T2f can characterize the glioma-
specific changes caused by ATRX mutations.

In this study, we fully leveraged the information garnered 
from cMRI and innovatively used it to predict the ATRX 
mutation status of patients with high-grade IDH-mutant 
astrocytoma, achieving promising results. Nevertheless, this 
study had several limitations that should be addressed and 
improved upon. First, although the model we developed 
was based on a multicenter study and showed good 
performance in the external validation, the sample size was 
not sufficiently large. Larger sample sizes and prospective 
studies are still required to validate this model. Second, 
although our model based on cMRI showed promising 
potential, further research should explore whether more 
interpretable qualitative or semiquantitative features from 
functional MRI sequences could enhance the prediction of 
ATRX status in IDH-mutant high-grade gliomas. Finally, 

the manual segmentation methods used to obtain the ROIs 
were highly time-consuming. Therefore, future research 
should focus on developing semiautomatic or automatic 
segmentation methods to obtain ROIs, which could also 
potentially improve the prediction accuracy.

Conclusions

We developed a multicenter clinical trait-imaging fusion 
model that combines MRI radiomics and DL features with 
clinical variables, including VASARI features. The model 
could effectively predict the ATRX mutation status of 
patients with IDH-mutant high-grade astrocytoma based 
on cMRI and may thus aid in the development of more 
targeted and effective treatment strategies.
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Table S1 VASARI scoring standard (according to the National Cancer Institute version; https://wiki.nci.nih.gov/display/cip/vasari)

Feature number Name Description Options

F1 Tumor location Location of lesion geographic epicenter (not all areas of involvement). 0 = –
1= Frontal
2 =Temporal
3=Insular
4=Parietal
5=Occipital
6=Brainstem
7=Cerebellum

F2 Side of tumor 
epicenter

Side of lesion epicenter. 0= –
1=Right
2=Center/Bilateral
3=Left

F3 Eloquent brain Does the geographic center or the
enhancing component involve
eloquent cortex (motor, language,
vision) or key underlying white
matter?

0= –
1=None
2=Speech motor
3=Speech receptive
4=Motor
5=Vision

F4 Enhancement 
quality

[None, mild, moderate, marked]
Qualitative degree of contrast enhancement is defined as having all or 
portions of the tumor demonstrating significantly higher signal on the 
postcontrast T1-weigthed images compared to precontrast.

0= –
1=None
2=Mild/Minimal
3=Marked/Avid

F5 Proportion 
enhancing

[Indeterminate, none (0%), <5%, 6–33%, 34–67%, 68–95%, >95%, all 
(100%)]
What proportion of the entire tumor is enhancing? (assuming that the 
entire abnormality may be composed of (1) an enhancing component, (2) 
a nonenhancing component, (3) a necrotic component, or (4) an edema 
component).

0= –
1= N/A
2=None (0%)
3= <5%
4= 6–33%
5= 34–67%
6= 68–95%
7= >95%
8=All (100%)
9= Indeterminate

F6 Proportion 
nCET

[Indeterminate, none (0%), <5%, 6–33%, 34–67%, 68–95%, >95%, all 
(100%)]
What proportion of the entire tumor is nonenhancing? Nonenhancing tumor 
is defined as regions of T2-weighted hyperintensity (less than the intensity of 
cerebrospinal fluid, with corresponding T1-weighted hypointensity) that are 
associated with mass effect and architectural distortion, including blurring 
of the gray–white interface (assuming that the entire abnormality may be 
composed of (1) an enhancing component, (2) a nonenhancing component, 
(3) a necrotic component, or (4) an edema component).

0= –
1= N/A
2=None (0%)
3= <5%
4= 6–33%
5= 34–67%
6= 68–95%
7= >95%
8=All (100%)
9= Indeterminate

F7 Proportion 
necrosis

[Indeterminate, none (0%), <5%, 6–33%, 34–67%, 68–95%, >95%, (100%)]
All necrosis is defined as a region within the tumor that does not enhance 
or shows markedly diminished enhancement, is high on T2-weighted and 
proton-density images, is low on T1-weighted images, and has an irregular 
border (assuming that the entire abnormality may be composed of (1) 
an enhancing component, (2) a nonenhancing component, (3) a necrotic 
component, or (4) an edema component).

0= –
1= N/A
2=None (0%)
3= <5%
4= 6–33%
5= 34–67%
6= 68–95%
7= >95%
8=All (100%)
9= Indeterminate

F8 Cyst(s) Cysts are well defined, rounded, and often eccentric regions of very high 
T2-weighted signal and low T1-weighted signal essentially matching CSF 
signal intensity, with very thin, regular, smooth, and nonenhancing or 
regularly enhancing walls, possibly with thin, regular, internal septations.

0= –
1= No
2= Yes

F9 Multifocal or 
multicentric

Multifocal is defined as having at least 1 region of tumor, either enhancing 
or nonenhancing, that is not contiguous with the dominant lesion and is 
outside the region of signal abnormality (edema) surrounding the dominant 
mass. This can be defined as those resulting from dissemination or growth 
by an established route, spread via commissural or other pathways, or via 
CSF channels or local metastases. Meanwhile, multicentric is defined as 
widely separated lesions in different lobes or different hemispheres that 
cannot be attributed to one of the previously mentioned pathways.
Gliomatosis refers to generalized neoplastic transformation of the white 
matter of most of a hemisphere.

0 = –
1= N/A
2= Multifocal
3=Multicentric
4= Gliomatosis

F10 T1/FLAIR ratio Tumor feature summary [mixed, expansive, or infiltrative]. Expansive = size 
of precontrast T1 abnormality (exclusive of signal intensity) approximates 
size of FLAIR abnormality; mixed = size of T1 abnormality moderately less 
than the FLAIR envelope; infiltrative = size of precontrast T1 abnormality 
much smaller than the size of the FLAIR abnormality (use T2 if FLAIR is not 
provided).

0= –
1= Expansive
(T1≈FLAIR)
2= Mixed
(T1<FLAIR)
3= Infiltrative
(T1<<FLAIR)

F11 Thickness of 
enhancing 
margin

The scoring is not applicable if there is no contrast enhancement. If most of 
the enhancing rim is thin and regular and has homogenous enhancement, 
the grade is thin. If most of the rim demonstrates nodular and/or thick 
enhancement, the grade is thick. If there is only solid enhancement and no 
rim, the grade is none.

0= –
1= N/A
2= None
3= Thin
4= Thick/solid

F12 Definition of 
the enhancing 
margin

The scoring is not applicable (N/A) if there is no contrast enhancement. 
Assess if most of the outside margin of the enhancement is well defined or 
poorly defined.

0= –
1= N/A
2= Well–defined
3= Poorly–defined

F13 Definition of the 
nonenhancing 
margin (e.g., 
grade III)

If most of the outside nonenhancing margin of the tumor is well defined and 
smooth (geographic), versus if the margin is ill-defined and irregular.

0= –
1= N/A
2= Smooth
3= Irregular

F14 Proportion of 
edema

[Indeterminate, none (0%), <5%, 6–33%, 34–67%, 68–95%, >95%, all 
(100%)].
What proportion of the entire abnormality is vasogenic edema? Edema 
should be greater in signal than in nCET and somewhat lower in signal 
than in CSF. Pseudopods are characteristic of edema (assuming that the 
entire abnormality may be composed of (1) an enhancing component, (2) 
a nonenhancing component, (3) a necrotic component, or (4) an edema 
component).

0= –
1= N/A
2=None (0%)
3= <5%
4= 6–33%
5= 34–67%
6= 68–95%
7= >95%
8=All (100%)
9=Indeterminate

F15 Crosses edema Edema spans white matter commissures extending into the contralateral 
hemisphere. (exclusive of herniated ipsilateral tissue).

0= –
1= N/A
2= No
3= Yes

F16 Hemorrhage Intrinsic hemorrhage in the tumor matrix. Any intrinsic foci of low signal on 
T2-weighted imaging or high signal on T1-weighted imaging. (Use Bo image 
if necessary for confirmation.)

0= –
1= N/A
2= No
3= Yes

F17 Diffusion Predominantly facilitated or restricted diffusion in the enhancing or nCET 
portion of the tumor (based on ADC map).
Equivocal is neither.
If there is no ADC, use no images.
The proportion of tissue is not relevant.

0= –
1= No image
2= Facilitated
3= Restricted
4=Neither/equivocal

F18 Pial invasion Enhancement of the overlying pia in continuity with enhancing or 
nonenhancing tumor.

0= –
1= No
2= Yes

F19 Ependymal 
invasion

Invasion of any adjacent ependymal surface in continuity with enhancing or 
nonenhancing tumor matrix.

0= –
1= No
2= Yes

F20 Cortical 
involvement

Nonenhancing or enhancing tumor extending into the cortical mantle or the 
cortex no longer distinguishable relative to subjacent tumor.

0= –
1= No
2= Yes

F21 Deep WM 
invasion

Enhancing or nCET tumor extending into the internal capsule or brainstem. 0= –
1= No
2= Yes

F22 nCET tumor 
crosses midline

nCET crossing into the contralateral hemisphere through white matter 
commissures (exclusive of herniated ipsilateral tissue).

0= –
1= N/A
2= No
3= Yes

F23 Enhancing 
tumor crosses 
midline

Enhancing tissue crossing into the contralateral hemisphere through white 
matter commisures (exclusive of herniated ipsilateral tissue).

0= –
1= N/A
2= No
3= Yes

F24 Satellites An area of enhancement within the region of signal abnormality surrounding 
the dominant lesion but not contiguous with any part with the major tumor 
mass.

0= –
1= No
2= Yes

F25 Calvarial 
remodeling

Erosion of the inner table of the skull (possibly a secondary sign of slow 
growth).

0= –
1= No
2= Yes

F26 Extent of 
resection of 
enhancing 
tumor

[Indeterminate, none (0%), <5%, 6–33%, 34–67%, 68–33%, 34–67%, 
68–95%, >95%, all (100%)].
Use the first postoperative scan (contrast- enhanced MR imaging) assessed 
for residual tumor. Estimate the proportion of enhancing tumor removed. 
A total resection of the component should be scored 100%. A subtotal 
resection of enhancing tissue should be scored accordingly.

0= –
1= N/A
2=None (0%)
3= <5%
4= 6–33%
5= 34–67%
6= 68–95%
7= >95%
8=All (100%)
9=Indeterminate

F27 Extent 
resection of 
nCET

[Indeterminate, none (0%), <5%, 6–33%, 34–67%, 68–95%, >95%, all 
(100%)].
Use the first postoperative scan (contrast-enhanced MR imaging) assessed 
for tumor residual. Estimate the proportion of non-enhancing tumor 
removed. A total resection of component should be scored 100%. A 
subtotal resection of enhancing tissue should be scored accordingly.

0= –
1= N/A
2=None (0%)
3= <5%
4= 6–33%
5= 34–67%
6= 68–95%
7= >95%
8=All (100%)
9=Indeterminate

F28 Extent 
resection of 
vasogenic 
edema

[Indeterminate, none (0%), <5%, 6–33%, 34–67%, 68–95%, >95%, all 
(100%)]Use the first postoperative scan (contrast-enhanced MR imaging) 
assessed for residual tumor. Estimate the proportion of edema removed. 
A total resection of enhancing nidus should be scored 100%. A subtotal 
resection of enhancing tissue should be scored accordingly.

0= –
1= N/A
2=None (0%)
3= <5%
4= 6–33%
5= 34–67%
6= 68–95%
7= >95%
8=All (100%)
9= Indeterminate

F29, F30 Lesion size Largest perpendicular (x–y) cross-sectional diameter of T2 signal 
abnormality (longest dimension × perpendicular dimension) measured on a 
single axial image only.

0= –
1= <0.5cm
2= 0.5 cm
3= 1.0 cm
4= 1.5 cm
5= 2.0 cm
6= 2.5 cm
7= 3.0 cm
8= 3.5 cm
9= 4.0 cm
10= 4.5 cm
11= 5.0 cm
12 = 5.5 cm
13= 6.0 cm
14= 6.5 cm
15= 7.0 cm
16= 7.5 cm
17= 8.0 cm
18= >8.0 cm

VASARI, visually accessible Rembrandt images; CSF, cerebrospinal fluid; FLAIR, fluid attenuated inversion recovery; ADC, apparent 
diffusion coefficient.
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Table S2 MRI image acquisition protocol parameters from 3 centers

Parameters A B C

Scanner type GE Signa HDxt 3.0T (GE Medical 
Systems, Chicago, IL, USA)

Siemens Skyra 3.0T (Siemens 
Healthineers, Erlangen, Germany)

GE Discovery MR750 3.0T (GE 
Medical Systems, Chicago, IL, USA)

Magnetic field strength 3.0T 3.0T 3.0T

T1C (T1 contrast 
enhanced)

Repetition time (ms) 225 459 549

Echo time (ms) 4.8 3 5.72

Flip angle (º) 90 90 90

Image slice thickness 
(mm)

2 2 2

Image slice spacing (mm) 1 0.5 1

T2f (T2-FLAIR)

Repetition time (ms) 8,000 7,000 8,000

Echo time (ms) 101 79 100

Flip angle (º) 150 180 110

Image slice thickness 
(mm)

5 5 5

Image slice spacing (mm) 5 2 2

MRI, magnetic resonance imaging; GE, General Electric Company; T1C, T1-contrast enhanced; T2f, T2 fluid attenuated inversion recovery.



Table S3 Clinical variables

Index Label (ATRX mutant =1, ATRX wild type =0) Age (years) Gender WHO grade VASARI score

000-1 0 34 F 4 77

000-2 0 34 M 4 78

000-3 0 64 M 4 77

000-4 0 50 F 3 75

000-5 0 53 M 4 80

000-6 0 57 M 3 66

000-7 0 65 M 4 84

000-8 0 65 F 3 67

000-9 0 69 F 3 68

000-10 0 50 F 3 62

000-11 0 67 F 3 84

000-12 0 56 M 3 76

000-13 0 64 M 3 78

000-14 0 70 F 4 66

000-15 0 55 M 3 74

000-16 0 55 F 4 78

000-17 0 57 M 4 81

000-18 0 45 M 4 71

000-19 0 51 M 4 66

000-20 0 53 F 3 78

000-21 0 65 F 3 80

000-22 0 46 F 3 80

000-23 0 60 F 4 72

000-24 0 34 M 4 69

000-25 0 36 M 4 58

000-26 0 33 F 4 78

000-27 0 79 M 3 84

000-28 0 43 F 4 76

000-29 0 56 F 4 64

000-30 0 45 F 3 79

000-31 0 39 M 4 72

000-32 0 46 M 4 75

000-33 0 49 M 4 84

000-34 0 67 F 3 58

000-35 0 58 F 4 65

000-36 0 59 M 4 70

000-37 0 58 F 3 66

000-38 0 49 F 3 76

000-39 0 40 M 3 65

000-40 0 27 F 3 66

000-41 0 40 M 3 67

000-42 0 41 M 3 69

000-43 0 66 F 3 72

000-44 0 65 M 3 67

000-45 0 48 F 3 83

000-46 0 42 F 3 77

000-47 0 57 M 3 75

000-48 0 34 F 4 67

000-49 0 65 F 3 78

000-50 0 64 M 3 65

000-51 0 54 F 4 66

000-52 0 66 M 4 67

000-53 0 43 M 3 78

000-54 0 44 M 4 80

000-55 0 54 F 4 81

000-56 0 55 M 3 67

000-57 0 43 M 4 77

000-58 0 45 F 3 78

000-59 0 60 M 3 67

000-60 0 55 M 4 69

000-61 0 65 F 3 77

000-62 0 44 M 4 68

000-63 0 56 M 3 64

000-64 0 67 M 4 71

000-65 0 65 F 3 62

000-66 0 66 M 4 72

000-67 0 67 M 3 74

000-68 0 70 M 3 83

000-69 0 50 F 3 88

000-70 0 51 M 3 85

000-71 0 61 F 4 66

000-72 0 67 M 3 69

000-73 0 56 M 3 81

000-74 0 60 M 4 69

000-75 0 64 M 3 74

000-76 0 70 F 4 69

000-77 0 76 M 4 69

000-78 0 51 M 3 77

000-79 0 41 M 3 72

000-80 0 57 F 4 69

Table S3 (continued)
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Table S3 (continued)

Index Label (ATRX mutant =1, ATRX wild type =0) Age (years) Gender WHO grade VASARI score

000-81 0 41 F 3 71

000-82 0 54 F 3 79

000-83 0 61 M 3 76

000-84 0 43 F 3 65

000-85 0 44 M 3 78

000-86 0 69 F 3 69

000-87 0 54 M 4 71

000-88 0 56 M 4 75

000-89 0 54 F 3 83

000-90 0 50 M 4 78

000-91 0 43 M 3 72

000-92 0 21 F 3 62

000-93 0 67 M 4 73

000-94 0 36 F 3 69

000-95 0 61 M 4 78

000-96 0 52 M 3 70

000-97 0 23 M 4 69

000-98 0 58 F 4 72

000-99 0 70 M 4 75

000-100 0 57 M 4 69

000-101 0 51 M 4 71

000-102 0 74 F 4 80

000-103 0 52 F 3 70

000-104 0 76 F 4 83

000-105 0 72 F 4 79

000-106 0 56 M 3 58

000-107 0 56 M 3 62

000-108 0 68 M 4 71

000-109 0 66 F 4 75

000-110 0 52 F 4 80

000-111 0 57 M 3 66

000-112 0 74 M 4 70

000-113 0 78 M 4 69

000-114 0 63 M 4 74

100-1 1 64 M 4 69

100-2 1 53 M 4 69

100-3 1 61 F 4 69

100-4 1 41 M 4 66

100-5 1 53 M 4 76

100-6 1 45 M 4 78

100-7 1 34 F 4 78

100-8 1 66 M 4 65

100-9 1 71 M 4 75

100-10 1 52 M 4 73

100-11 1 66 M 4 64

100-12 1 36 M 4 75

100-13 1 50 M 4 66

100-14 1 54 M 4 77

100-15 1 49 M 4 76

100-16 1 30 F 4 69

100-17 1 67 M 4 65

100-18 1 55 M 4 78

100-19 1 49 M 4 66

100-20 1 50 M 4 68

100-21 1 72 M 4 70

100-22 1 57 M 4 77

100-23 1 46 F 4 69

100-24 1 57 M 4 71

100-25 1 30 M 4 80

100-26 1 45 F 4 68

100-27 1 47 M 4 77

100-28 1 55 M 4 78

100-29 1 51 F 4 63

100-30 1 48 F 4 76

100-31 1 58 M 4 75

100-32 1 52 F 4 66

100-33 1 70 F 4 66

100-34 1 66 M 4 67

100-35 1 52 M 3 79

100-36 1 18 F 4 78

100-37 1 49 M 4 64

100-38 1 73 F 4 72

100-39 1 73 F 4 77

100-40 1 51 M 3 65

100-41 1 46 F 4 74

100-42 1 37 F 4 71

100-43 1 56 M 4 66

100-44 1 64 F 4 84

Table S3 (continued)
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Table S3 (continued)

Index Label (ATRX mutant =1, ATRX wild type =0) Age (years) Gender WHO grade VASARI score

100-45 1 76 F 4 70

100-46 1 63 F 4 78

100-47 1 54 F 3 73

100-48 1 50 F 4 67

100-49 1 50 M 3 73

100-50 1 85 M 4 74

100-51 1 51 M 4 70

100-52 1 49 M 3 78

100-53 1 74 M 4 65

100-54 1 33 F 4 65

100-55 1 51 M 4 55

100-56 1 54 M 3 74

100-57 1 55 M 3 65

100-58 1 68 F 3 59

100-59 1 55 F 4 69

100-60 1 59 M 3 71

100-61 1 53 F 3 69

100-62 1 54 M 3 71

100-63 1 40 F 3 68

100-64 1 48 M 3 68

100-65 1 51 M 3 71

100-66 1 25 F 3 73

100-67 1 48 F 3 68

100-68 1 63 F 3 54

100-69 1 53 F 4 73

100-70 1 56 M 4 69

100-71 1 64 F 4 70

100-72 1 39 F 3 67

100-73 1 61 M 4 71

100-74 1 58 M 3 72

100-75 1 52 M 3 67

100-76 1 44 M 3 65

100-77 1 58 M 3 65

100-78 1 53 F 3 68

100-79 1 58 M 4 69

100-80 1 46 F 4 81

100-81 1 63 F 4 77

100-82 1 56 M 3 73

100-83 1 54 F 3 69

100-84 1 77 M 3 74

100-85 1 25 F 3 76

100-86 1 66 M 4 76

100-87 1 67 F 4 65

100-88 1 73 M 4 84

100-89 1 71 M 4 67

100-90 1 50 M 3 69

100-91 1 55 M 4 77

100-92 1 71 F 4 71

100-93 1 53 M 4 71

100-94 1 52 M 4 69

100-95 1 26 F 3 74

100-96 1 75 M 4 68

100-97 1 53 F 4 65

100-98 1 60 F 4 72

100-99 1 50 M 4 84

100-100 1 16 F 4 77

100-101 1 16 M 3 67

100-102 1 40 M 3 80

100-103 1 41 F 4 81

100-104 1 48 F 3 63

100-105 1 46 M 3 70

100-106 1 38 M 4 82

100-107 1 50 M 3 68

100-108 1 53 F 4 69

100-109 1 26 F 4 76

100-110 1 33 F 3 65

100-111 1 44 M 4 77

100-112 1 46 M 3 52

100-113 1 17 F 4 75

100-114 1 53 M 4 77

100-115 1 54 F 4 80

100-116 1 40 M, 4 84

100-117 1 64 F 4 75

100-118 1 40 M 3 60

100-119 1 63 M 4 83

100-120 1 57 F 3 59

ATRX, alpha-thalassemia X-linked intellectual disability; WHO, World Health Organization; VASARI, visually accessible Rembrandt images; F, 
female; M, male.
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Table S4 The result of Delong test

Corresponding to different models Training set Validation set

Edema DL——edema radio 0.51 0.284

Edema DL——edema hybrid 0.266 0.153

Edema DL——tumor DL 0.401 0.206

Edema DL——tumor radio 0.998 0.67

Edema DL——tumor hybrid 0.427 0.074

Edema DL——overall DL z 0.081

Edema DL——overall radio 0.137 0.142

Edema DL——overall hybrid 0.338 0.072

Edema radio——edema hybrid 0.569 0.469

Edema radio——tumor DL 0.823 0.863

Edema radio——tumor radio 0.467 0.566

Edema radio——tumor hybrid 0.854 0.52

Edema radio——overall DL 0.649 0.689

Edema radio——overall radio 0.993 0.337

Edema radio——overall hybrid 0.709 0.127

Edema hybrid——tumor DL 0.733 0.941

Edema hybrid——tumor radio 0.099 0.443

Edema hybrid——tumor hybrid 0.708 0.665

Edema hybrid——overall DL 0.912 0.877

Edema hybrid——overall radio 0.843 0.336

Edema hybrid——overall hybrid 0.846 0.338

Tumor DL——tumor radio 0.345 0.442

Tumor DL——tumor hybrid 0.964 0.353

Tumor DL——overall DL 0.706 0.611

Tumor DL——overall radio 0.835 0.706

Tumor DL——overall hybrid 0.873 0.48

Tumor radio——tumor hybrid 0.365 0.157

Tumor radio——overall DL 0.241 0.32

Tumor radio——overall radio 0.506 0.177

Tumor radio——overall hybrid 0.288 0.081

Tumor hybrid——overall DL 0.725 0.632

Tumor hybrid ——overall radio 0.863 0.911

Tumor hybrid ——overall hybrid 0.848 0.91

Overall DL——overall radio 0.676 0.857

Overall DL——overall hybrid 0.931 0.6

Overall radio——overall hybrid 0.726 0.333

DL, deep learning.
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Figure S1 The feature correlation coefficient analysis.

 

Figure S2 The feature correlation coefficient analysis. (A) Overall hybrid model classification performance on the validation set; (B) overall 
hybrid model classification performance on the test set.
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Appendix 1 Image preprocessing 

First, we rigidly aligned each T1c volume to T2f using 
advanced normalization tools (ANTs). In order to eliminate 
the difference in brightness on MR images caused by factors 
such as the scanner itself and many unknown problems, N4 
bias field correction was performed using SimpleITK. This 
employs a hybrid white stripe [22] approach for intensity 
normalization and uses the ANTs and White Stripe 
packages in R to complete a statistically principled process 
of image normalization that preserves intertissue grade and 
matches the intensity of the tissue without disrupting the 
natural balance of tissue intensities [23]. At last, isotropic 
resolution is resampled by using a linear interpolator to 
reinterpolate all images to 1 mm ×1 mm ×1 mm pixel in the 
normalized axes. 

For the specific formula of radiomics characteristics, 
see the official Pyradiomics website (https://pyradiomics.
readthedocs.io/en/latest). The feature calculation method 
was used to extract first-order statistics, shape and size, 
texture, and other features. The specific calculation 
formulae are listed below follows:

First-order statistics features

First-order statistics features describe the gray-level 
distribution of all voxels within the ROI.

Let X be a set of all voxels included in the ROI, Np the 
number of voxels in X, P(i) the first-order histogram with 
Ng discrete intensity levels, p(i) the normalized first-order 
histogram equal to P(i)/Np, and c the optional value, which 
shifts the intensities to prevent negative values in X.
1.	 Energy 

2

1
( ( ) )

pN

i
energy i c

=

= +∑ X  

2.	 Total energy

2

1
( ( ) )

pN

voxel
i

totalenergy V i c
=

= +∑ X  

3.	 Entropy

2
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( ) log ( )( )
gN

i
entropy p i p i

=

= − +∑   

  is an arbitrarily small positive number ( 162.2 10−≈ × )
4.	 Minimum

min( )minimum = X  

5.	 10th percentile
The 10th percentile of X

6.	 90th percentile
The 90th percentile of X

7.	 Maximum

max( )maximum = X  

8.	 Mean

1

1 ( )
pN

ip

mean i
N =

= ∑X  

9.	 Median
The median gray-level intensity within the ROI.

10.	 Interquartile range

75 25interquartilerange = −P P  

11.	 Range

max( ) min( )range = −X X  

12.	 Mean absolute deviation

1

1 | ( ) |
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ip

MAD i X
N =

= −∑ X  

13.	 Robust mean absolute deviation (rMAD)

10 90

10 90 10 90
110 90

1 | ( ) |
N

i
rMAD i X

N

−

− −
=−

= −∑ X  

14.	 Root mean squared (RMS)
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15.	 Skewness
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16.	 Kurtosis
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17.	 Variance

2
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1 ( ( ) )
pN

ip

variance i X
N =

= −∑ X  

18.	 Uniformity

2

1
( )

gN

i
uniformity p i

=

=∑  

Shape and size features:

This group of features describe the 3-dimensional size and 
shape of the ROI. Features were derived from a triangle 
mesh generated using a marching cubes algorithm based on 
the ROI.
Let Nv be the number of voxels included in the ROI, Nf 
the number of faces defining the Mesh, V the volume of the 
mesh in millimeters cubed, and A the surface area of the 
mesh in millimeters squared. 
1.	 Mesh volume

1

( )  
6

 
f

i i i
i

N

i
i

Oa Ob OcV

V V
=

⋅ ×
=
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2.	 Voxel volume

1

vN

voxel k
k

V V
=

=∑  

3.	 Surface area
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1 | a b a c |  
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f

i i i i i

N

i
i

A

A A
=

= ×
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4.	 Surface area to volume ratio

Asurfacetovolumeratio
V

=  

5.	 Sphericity

3 236 Vsphericity
A
π

=  

6.	 Maximum 3D diameter
Maximum 3D diameter is defined as the largest 

pairwise Euclidean distance between the tumor surface 
mesh vertices.

7.	 Maximum 2D diameter (slice)
Maximum 2D diameter (slice) is defined as the largest 

pairwise Euclidean distance between tumor surface mesh 
vertices in the row–column (generally the axial) plane.
8.	 Maximum 2D diameter (column)

Maximum 2D diameter (column) is defined as the 
largest pairwise Euclidean distance between tumor surface 
mesh vertices in the row–slice (usually the coronal) plane.
9.	 Maximum 2D diameter (row)

Maximum 2D diameter (row) is defined as the largest 
pairwise Euclidean distance between tumor surface mesh 
vertices in the column–slice (usually the sagittal) plane.
10.	 Major axis length

4 majormajoraxis λ=  

11.	 Minor axis length

4 minorminoraxis λ=  

12.	 Least axis length

4 leastleastaxis λ=  

13.	 Elongation

minor

major

elongation λ
λ

=  

14.	 Flatness

least

major

flatness λ
λ

=  

Textural features

Textural features reflect information about the spatial 
arrangement of voxel intensities and therefore could 
describe the homogeneity of the ROI. In our study, textural 
features were derived from 4 statistical feature matrices: 22 
from the gray-level co-occurrence matrix (GLCM), 16 from 
the gray-level run-length texture matrix (GLRLM), 16 from 
the gray-level size zone matrix (GLSZM), 14 from the gray-
level dependence matrix (GLDM), and 5 from neighboring 
gray-scale difference matrix (NGTDM).

Gray-level co-occurrence matrix (GLCM)
1. Autocorrelation

1 1
( , )

g gN N

i j
autocorrelation p i j ij

= =

=∑ ∑  
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2. Joint average
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x
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jointaverage p i j iµ
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3. Cluster prominence
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4. Cluster shade
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5. Cluster tendency
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6. Contrast
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7. Correlation
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8. Difference average
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differenceaverage kp k
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9. Difference entropy
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10. Difference variance
1

2

0
( ) ( )

gN

x y
k

differencevariance k DA p k
−

−
=

= −∑  

11. Joint energy
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12. Joint entropy
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13. Informational measure of correlation (IMC) 1

11
max{ , }
HXY HXYIMC

HX HY
−
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14. Informational measure of correlation (IMC) 2

2( 2 )2 1 HXY HXYIMC e− −= −  

15. Inverse difference moment (IDM)
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16. Inverse difference moment normalized (IDMN)
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17. Inverse difference (ID)
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18. Inverse difference normalized (IDN)
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19. Inverse variance
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20. Maximum probability
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21. Sum entropy
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22. Sum of squares
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Gray-level run-length texture matrix (GLRLM)
1. Short run emphasis (SRE)
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2. Long run emphasis (LRE)
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3. Gray-level nonuniformity (GLN)
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4. Gray-level nonuniformity normalized (GLNN)
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5. Run length nonuniformity (RLN)
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6. Run length nonuniformity normalized (RLNN)
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7. Run percentage (RP)
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8. Gray-level variance (GLV)
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9. Run variance (RV)
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10. Run entropy (RE)
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11. Low gray-level run emphasis (LGLRE)
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12. High gray-level run emphasis (HGLRE)
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13. Short run low gray-level emphasis (SRLGLE)
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14. Short run high gray-level emphasis (SRHGLE)

2

2
1 1

( , | )

( )

g rN N

i j

r

i j i
j

SRHGLE
N

θ

θ
= ==
∑∑ P

 

15. Long run low gray-level emphasis (LRLGLE)
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16. Long run high gray-level emphasis (LRHGLE)
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Gray-level size zone matrix (GLSZM)
1. Small area emphasis (SAE)
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2. Large area emphasis (LAE)
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3. Gray-level nonuniformity (GLN)
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4. Gray-level nonuniformity normalized (GLNN)
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5. Size–zone nonuniformity (SZN)
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6. Size–zone nonuniformity normalized (SZNN)
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7. Zone percentage (ZP)
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8. Gray-level variance (GLV)
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9. Zone variance (ZV)
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10. Zone entropy (ZE)
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11. Low gray-level zone emphasis (LGLZE)
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12. High gray-level zone emphasis (HGLZE)
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13. Small area low gray-level emphasis (SALGLE)
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14. Small area high gray-level emphasis (SAHGLE)
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15. Large area low gray-level emphasis (LALGLE)
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16. Large area high gray-level emphasis (LAHGLE)
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Gray-level dependence matrix (GLDM)
1. Small dependence emphasis (SDE)
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2. Large dependence emphasis (LDE)
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3. Gray-level nonuniformity (GLN)
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4. Dependence nonuniformity (DN)
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5. Dependence nonuniformity normalized (DNN)
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6. Gray-level variance (GLV)
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7. Dependence variance (DV)
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8. Dependence entropy (DE)
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9. Low gray-level emphasis (LGLE)
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10. High gray-level emphasis (HGLE)
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11. Small dependence low gray-level emphasis (SDLGLE)
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12. Small dependence high gray-level emphasis (SDHGLE)
Measures the joint distribution of small dependence with higher gray-level values.
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13. Large dependence low gray-level emphasis (LDLGLE)
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14. Large dependence high gray-level emphasis (LDHGLE)
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Neighboring gray-scale difference matrix (NGTDM)
1. Coarseness

2. Contrast

3. Busyness

4. Complexity

5. Strength

Features extracted from wavelet-filtered images

After wavelet decomposition, low-level information hidden from the human eye can be exposed. In our study, Coiflet 
1 wavelet was used to decompose the original image. High- and low-pass filters were applied stepwise on the x, y, and z 
coordinates, which generated 8 decompositions from 1 patient’s image. The 14 first-order statistics and 68 textural features 
described above were extracted from all of 8 decompositions. Thus, a total of 728 wavelet features were extracted from each 
sequence.

Features extracted from Laplacian of Gaussian–filtered images

Application of a Laplacian of Gaussian filter to the input image yields a derived image for each Σ value specified. A Laplacian 
of Gaussian image is obtained by convolving the image with the second derivative (Laplacian) of a Gaussian kernel. The 
Gaussian kernel is used to smooth the image and is defined as follows:



© Quantitative Imaging in Medicine and Surgery. All rights reserved.  https://dx.doi.org/10.21037/qims-23-807

The Gaussian kernel is convolved with the Laplacian kernel 
∇2G(x,y,z), which is sensitive to areas with rapidly changing 
intensities, enhancing edges. The width of the filter in the 
Gaussian kernel is determined by σ and can be used to 
emphasize more fine (low σ values) or coarse (high σ values) 
textures.

Appendix 2 The formula for imaging score of 
imaging signature

Imaging Score =DL_t1c_197 × (0.874) + DL_t2f_603 × 

0.776 + DL_t2f_732 × 0.248 + 
DL_t2f_899 × 1.089+DL_t2f_961 × 0.791+DL_t1c_151 × 
(–0.633) + 
DL_t1c_446 × 0.1 + Radio_t1c_GLCM_Contrast × (–0.847) 
+ Radio_t2f_GLSZM_Emphasis × (–0.8108) + DL_t2f_839 
× 0.476 + DL_t2f_244 × (–0.256) + DL_t2f_983 × 0.746 + 
DL_t2f_Firstorder_Median × 0.440+Radio_t2f_GLCM_
Imc2 × 0.976 + 
Radio_t2f_Firstorder_10Percentile × 1.17 + Radio_t2f_ 
GLCM Average × 0.5937
(DL, deep learning; t2f, T2 fluid-attenuated inversion 
recovery; T1c, contrast-enhanced T1-weighted; GLCM, 
gray-level co-occurrence matrix; GLSZM, gray-level size 
zone matrix)


