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Background: As the retinal microvasculature shares similarities with the cerebral microvasculature, 
numerous studies have shown that retinal vascular is associated with cognitive decline. In addition, several 
population-based studies have confirmed the association between retinal vascular and cerebral small vessel 
disease (CSVD) burden. However, the association of retinal vascular with CSVD burden as well as cognitive 
function has not been explored simultaneously. This study investigated the relations of retinal microvascular 
parameters (RMPs) with CSVD burden and cognitive function. 
Methods: We conducted a cross-sectional study of participants in the KaiLuan study. Data were collected 
from subjects aged ≥18 years old who could complete retinal photography and brain magnetic resonance 
imaging (MRI) between December 2020 to October 2021 in the Kailuan community of Tangshan. RMPs 
were evaluated using a deep learning system. The cognitive function was measured using the Montreal 
Cognitive Assessment (MoCA). We conducted logistic regression models, and mediation analysis to evaluate 
the associations of RMPs with CSVD burden and cognitive decline.
Results: Of the 905 subjects (mean age: 55.42±12.02 years, 54.5% female), 488 (53.9%) were classified with 
cognitive decline. The fractal dimension (FD) [odds ratio (OR), 0.098, 95% confidence interval (CI): 0.015–
0.639, P=0.015] and global vein width (OR: 1.010, 95% CI: 1.005–1.015, P<0.001) were independent risk 
factors for cognitive decline after adjustment for potential confounding factors. The global artery width was 
significantly associated with severe CSVD burden (OR: 0.985, 95% CI: 0.974–0.997, P=0.013). The global 
vein width was sightly associated with severe CSVD burden (OR: 1.005, 95% CI: 1.000–1.010, P=0.050) 
after adjusting for potential confounders. The multivariable-adjusted odds ratios (95% CI) in highest tertile 
versus lowest tertile of global vein width were 1.290 (0.901–1.847) for cognitive decline and 1.546 (1.004–
2.290) for severe CSVD burden, respectively. Moreover, CSVD burden played a partial mediating role in the 
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Introduction

Cognitive decline is becoming more prevalent as the 
world’s population ages, with serious health and societal 
consequences. Some people may reach the threshold for mild 
cognitive impairment (MCI), which can lead to dementia in 
up to 50% of cases over the course of five years (1).

Cerebral small vessel disease (CSVD) is a major cause 
of cognitive impairment in the elderly, accounting for 
around 50% of dementia (2). White matter hyperintensities 
(WMHs), lacunes, enlarged perivascular spaces (EPVS), 
and cerebral microbleeds (CMBs) are typical magnetic 
resonance imaging (MRI) features of the disease (3). The 
severity of CSVD may be more accurately reflected by 
the CSVD burden score, which incorporates the imaging 
indicators into a single value (4). Among the various 
mechanisms involved in vascular cognitive impairment 
(VCI), CSVD is perhaps the most common, contributing to 
cognitive impairment regardless of stroke (5). 

Similar embryologic, anatomical, and physiological 
traits exist in retinal vessels and the cerebral circulation. 
Numerous studies on retinal imaging have shown that 
the retina can be used to diagnose, predict, and assess the 
risk of cognitive decline (6,7). Additionally, a number of 
population-based investigations have verified the association 
between retinal biomarkers and CSVD (8,9). As a result, we 
assume that there might be an association between them. 
However, the relationship between retinal biomarkers 
and both CSVD burden and cognitive performance has 
not been investigated simultaneously. All these findings 
make it questionable if CSVD burden can be considered 
as a mediating element in the association between retinal 
microvascular parameters (RMPs) and cognitive function. 
In addition, a number of investigations have used semi-
automated retinal vascular measurement software, which 
is time-consuming and vulnerable to error (10,11). Deep-

learning algorithms have been effectively used on retinal 
images to assess diabetic retinopathy and other aspects over 
the past few years (12,13). In our study, retinal vascular 
characteristics were automatically measured using a deep-
learning system—NFN+. 

In this research, we aimed to examine the relationship 
between RMPs and cognitive function as well as the effect 
of CSVD burden. We present this article in accordance with 
the STROBE reporting checklist (available at https://qims.
amegroups.com/article/view/10.21037/qims-23-927/rc).

Methods

Participants

The KaiLuan study is an ongoing population-based study 
executing in the Kailuan community of Tangshan in 
Northern China (14). From December 2020 to October 
2021, a total of 910 patients were included. Inclusion 
criteria were as follows: (I) aged ≥18 years old; (II) without 
contra-indications of retinal fundus photograph; (III) 
with completed brain MRI to evaluate CSVD markers; 
(IV) completed cognitive function assessment. The study 
excluded those with: (I) acute stroke, hematologic disorders, 
myocardial infarction, malignant tumors, autoimmune 
diseases; (II) tumors of the brain or other systems, surgery, 
or severe trauma; (III) pregnant and lactating women; 
(IV) cognitive decline caused by other conditions, such 
as hyperthyroidism, severe anxiety, depression, carbon 
monoxide poisoning or schizophrenia; (V) MRI artifacts; 
(VI) incomplete fundus photography.

Ultimately, a total of 905 eligible subjects enrolled in the 
research (Figure 1). This study was conducted according to 
the Declaration of Helsinki (as revised in 2013). This study 
was approved by the Medical Ethics Committee of Kailuan 
General Hospital (IRB number: 2021002). The informed 
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consent was taken from all the patients.

Clinical assessment

The following clinical variables were obtained: age, sex, 
education level, height, weight, systolic and diastolic 
blood pressure, current smoking or drinking, history 
of hypertension, diabetes, coronary heart disease, and 
medication use. Body mass index (BMI) was calculated as 
weight (kg) divided by square of height (m2). Laboratory 
biomarkers included fasting blood glucose (FBG), total 
cholesterol (TC).

Montreal Cognitive Assessment (MoCA)

The MoCA was utilized to measure cognitive function (15). 
The test was administered by an experienced examiner  
(10 years of experience). The MoCA total score range is 
0–30, with lower scores (<26 points) suggesting poorer 
cognitive functioning.

Brain MRI acquisition

The brain MRI was obtained using a 3.0 T scanner (GE 
750W; General Electric Medical Systems, Milwaukee, 
Wisconsin, USA)and an eight-channel phased-array 
coil. The MRI consisted of at least five sequences that 
followed predetermined standardized protocols: T1-
weighted imaging (T1WI), T2-weighted imaging (T2WI), 
fluid-attenuated inversion recovery (FLAIR), diffusion-

weighted imaging (DWI), and susceptibility weighted 
imaging (SWI). In our previous study, we recorded the 
exact parameter settings for the five sequences (14). Based 
on the Neuroimaging Standards for Research into Small 
Vessel Disease (STRIVE) recommendation there are four 
main kinds of imaging markers: WMHs, lacunar, CMBs, 
and EPVS (16). Two experienced neuroradiologists (reader 
1: 8 years of experience; reader 2: 4 years of experience) 
independently reviewed the brain imaging, and a third 
neuroradiologist with more than ten years of expertise who 
was blind to the individuals’ clinical information resolved 
with any discrepancies. 

The Fazekas rating scale was used to assess the severity 
of periventricular WMH (pWMH) (range, 0–3) and deep 
WMH (dWMH) (range, 0–3) (17). On SWI sequences, 
CMBs were identified as rounded hypointense lesions with 
a diameter of 2 to 10 mm (18). Lacune was defined as a 
3–15 mm subcortical lesion with cerebrospinal fluid (CSF) 
intensity on T1WI and FLAIR (16). EPVS is the basal 
ganglia or centrum semiovale’s circular, ovoid, or linear 
space with a CSF signal on all sequences that is less than  
3 mm in diameter. The severity of EPVS was assessed using 
a semi-quantitative scale (grade 0–4). An ordinal scale from 
0 to 4 was used to rate the total CSVD burden score. Each 
of the following gained a point: (I) severe pWMH (score =3) 
or moderate to severe dWMH (score ≥2); (II) at least one 
lacunes; (III) any deep CMB; (IV) moderate to extensive 
EPVS. The total MRI burden of CSVD scores was then 
categorized into three groups based on the CSVD score: 
mild burden (0–1 point), moderate burden (2 points), severe 

Number of participants recruited between December 
2020 to October 2021 that meet inclusion criteria (n=910)

Participants with complete MRI assessment (n=908)

Participants with complete fundus photography (n=905)

Participants for final analysis (n=905)

MRI artifacts (n=2)

Incomplete fundus photography (n=3)

Figure 1 Flow chart of patient inclusion. MRI, magnetic resonance imaging.
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burden (3–4 points) (19,20).

RMPs

A fundus camera (Topcon CX-1, Topcon Corporation, 
Tokyo, Japan) was used to record the bilateral fundus 
photography images. The following were the quality 
assurance standards: (I) no significant artifacts or blurring; (II) 
brightness that was not either too dark or too light; and (III) 
the image field had to include the full optic disc and macula. 
Images of poor quality were discarded. If an image could 
not be correctly measured, the images of the other eye were 
employed. If images of both eyes were of poor image quality, 
the patient was finally excluded from this investigation.

The study achieved autonomous extraction of retinal 
vessels using NFN+, a recently published deep learning-
based technique (12). In terms of cascaded design and inter-
network skip connections, the proposed NFN+ model is 
innovative. A front network and a following network, two 
cascaded identical backbones, are connected via inter-
network skip connections. The front network outputs prime 
vessel probability maps using picture patches as input. 
The subsequent network produces vessel segmentation 
results using the prime vessel probability maps created 
by the front network as its input (21). Following the deep 
learning model’s vascular segmentation mask, two skilled 
retinal specialists classified the arteries and veins manually. 
Subsequently we took measurements for a vessel geometric 
class known as retinal vascular fractal dimension (FD). Each 
segmented mask was divided into a series of squares with 
varying side lengths along the centerline tracings of retinal 
vessels using the box-counting approach. Retinal vascular 
FD was consequently defined as the gradient of logarithms 
of the number of boxes and their sizes. In addition to the 
vascular geometric class, we examined the diameters of all 
arterioles and venules passing through a 0.50 to 0.75 disc 
diameter area surrounding the optic disc. The average 
retinal arteriolar and venular caliber, identified as central 
retinal arterial equivalent (CRAE) and central retinal venular 
equivalent (CRVE), were calculated using the Knudtson- 
Hubbard formula. The arteriole-venular ratio (AVR) is 
the CRAE/CRVE ratio. The global vessel width (global 
arteriolar and venular width) is the average width of all the 
artery or vein branches from the specific subjects’ eye.

Statistical analysis

The data were analyzed using SPSS version 20.0 software 

(SPSS Inc., Chicago, IL, USA). The demographic 
characteristics of the subjects were presented as means 
(standard deviation) or frequencies (percentage), when 
appropriate. The differences between the cognitive 
decline group and the non- cognitive decline group were 
compared using Student’s t-test or Mann-Whitney’s 
U-test for continuous variables and χ2-test for categorical 
variables. One-way analysis of variance (ANOVA), Chi-
squared test or rank-sum test was used to compare the 
differences between the CSVD groups (CSVD 0, 1, 2). 
We applied ordinal logistic regression models to evaluate 
the associations of RMPs with cognitive function and the 
severity of CSVD burden. Trend tests in ORs across RMPs 
tertiles were performed with the median within each tertile 
as the variable. Three logistic regression models were 
conducted in this study. Model 1: age, sex, and education; 
Model 2: additionally adjusted for FBG, BMI, smoking, 
alcohol use, TC; Model 3: additionally adjusted for systolic 
blood pressure, heart rate, and use of antihypertensive and/
or lipid-modifying medication. A P<0.05 was considered 
statistically significant (two-sided). The PROCESS macro 
for SPSS was used to investigate the mediation effect 
of CSVD burden in the relationship between RMPs 
and MoCA. The bootstrap method was used to test the 
mediation effect.

Results

Participants’ baseline characteristics

This study included 905 participants. Mean age of the 
subjects was 55.42±12.02 years, and 54.5% (n=493) were 
female. Based on MoCA, subjects were divided into 
cognitive decline group (n=488) and no cognitive decline 
group (n=417). According to CSVD burden, participants 
were divided into mild group (n=567), moderate group 
(n=189) and severe group (n=149). Features of the subjects 
in different groups are shown in Tables 1,2.

Between no cognitive decline and cognitive decline 
groups, statistically significant differences were found 
in age, sex, education level, hypertension, FBG, systolic 
blood pressure, CSVD burden (all above P<0.001) and 
RMPs (PAVR=0.030, PCRAE<0.001, PCRVE=0.025, PFD<0.001,  
Pglobal artery width=0.265, Pglobal vein width<0.001). Between different 
groups of CSVD burden, statistically significant differences 
were found in age, sex, education level, current drinking, 
current smoking, history of hypertension, diabetes or 
coronary heart disease, FBG, systolic blood pressure, 
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Table 1 Features of the participants between cognitive decline group and no cognitive decline group

Clinical variables All (n=905)
Cognitive decline group 

(n=488)
No cognitive decline 

group (n=417)
P value

Age, year, mean ± SD 55.42±12.02 59.61±10.67 50.52±11.65 <0.001

Sex (female), n (%) 493 (54.5) 295 (60.5) 198 (47.5) <0.001

Education, secondary level and above, n (%) 670 (74.0) 293 (60.0) 377 (90.4) <0.001

Body mass index, kg/m2, mean ± SD 25.21±3.40 25.37±3.25 25.01±3.56 0.113

Smoking, n (%) 221 (24.4) 130 (26.6) 91 (21.8) 0.104

Alcohol, no-drinker n (%) 679 (75.0) 362 (74.2) 317 (76.0) 0.490

Hypertension, n (%) 433 (47.8) 265 (54.3) 168 (40.3) <0.001

Diabetes, n (%) 100 (11.0) 58 (11.9) 42 (10.1) 0.457

Coronary heart disease, n (%) 2 (0.2) 2 (0.4) 0 0.503

Fasting blood glucose, mmol/L, median [IQR] 5.13 [4.73, 5.66] 5.26 [4.82, 5.79] 5.04 [4.68, 5.47] <0.001

SBP, mmHg, median [IQR] 133 [120, 148] 136 [122, 151] 129 [115, 143] <0.001

DBP, mmHg, median [IQR] 79.33 [70.67, 87.67] 78.84 [70.33, 87.33] 79.33 [71, 88] 0.541

TC, mmol/L, median [IQR] 5.09 [4.48, 5.83] 5.11 [4.46, 5.77] 5.07 [4.50, 5.85] 0.622

CSVD, n (%) <0.001

0 296 (32.7) 101 (20.7) 195 (46.8)

1 271 (29.9) 147 (30.1) 124 (29.7)

2 189 (20.9) 125 (25.6) 64 (15.3)

3 90 (9.9) 65 (13.3) 25 (6.0)

4 59 (6.5) 50 (10.2) 9 (2.2)

AVR, mean ± SD 0.723±0.128 0.715±0.142 0.733±0.108 0.030

CRAE, μm, mean ± SD 155.118±28.443 151.918±29.351 158.863±26.864 <0.001

CRVE, μm, mean ± SD 217.139±34.388 214.807±36.912 219.868±30.954 0.025

FD, mean ± SD 1.305±0.084 1.290±0.089 1.324±0.074 <0.001

Global artery width, μm, mean ± SD 79.273±12.850 78.838±13.791 79.782±11.632 0.265

Global vein width, μm, mean ± SD 127.652±28.860 132.885±33.257 121.529±21.063 <0.001

MoCA, median [IQR] 25 [22, 27] 23 [20, 24] 28 [27, 29] <0.001

SD, standard deviation; IQR, interquartile range; SBP, systolic blood pressure; DBP, diastolic blood pressure; TC, total cholesterol; CSVD, 
cerebral small vessel disease; AVR, retinal arteriole/venular ratio; CRAE, central retinal arteriolar equivalent; CRVE, central retinal venular 
equivalent; FD, fractal dimension; MoCA, Montreal Cognitive Assessment.

diastolic blood pressure and RMPs (P<0.05).

Association of RMPs with cognitive decline

Ordinal logistic regression model result after adjusting 
for all the potential confounders in Model 3 showed that 
FD [odds ratio (OR): 0.098, 95% confidence interval 

(CI): 0.015–0.639; P=0.015] and global vein width (OR: 
1.010, 95% CI: 1.005–1.015; P<0.001) were significantly 
associated with the risk of cognitive decline (Table 3). Wider 
global vein width and less complicated FD were associated 
with a significantly higher risk of cognitive decline when 
adjusting for Model 1 (global vein width: OR for tertile 2: 
1.144, 95% CI: 0.815–1.605, P for trend <0.001; OR for 
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Table 2 Characteristics of the study participants according to CSVD burden

Clinical variables All (n=905) CSVD0 (n=567) CSVD1 (n=189) CSVD2 (n=149) P value

Age, year, mean ± SD 55.42±12.02 50.47±11.09 61.89±8.34 66.03±7.89 <0.001

Sex (female), n (%) 493 (54.5) 306 (54.0) 77 (40.7) 31 (20.8) <0.001

education, secondary level and above, n (%) 670 (74.0) 483 (85.2) 112 (59.3) 75 (50.3) <0.001

Body mass index, kg/m2, mean ± SD 25.21±3.40 25.07±3.48 25.35±3.43 25.54±3.05 0.269

smoking, n (%) 221 (24.4) 178 (31.4) 87 (46.0) 95 (63.8) <0.001

Alcohol, no-drinker n (%) 679 (75.0) 334 (58.9) 87 (46.0) 64 (43.0) <0.001

Hypertension, n (%) 433 (47.8) 212 (37.4) 104 (55.0) 115 (77.2) <0.001

Diabetes, n (%) 100 (11.0) 39 (6.9) 30 (15.9) 31 (20.8) <0.001

Coronary heart disease, n (%) 2 (0.2) 0 0 2 (1.3) 0.007

Fasting blood glucose, mmol/L, median [IQR] 5.13 [4.73, 5.66] 5.09 [4.71, 5.54] 5.14 [4.76, 5.78] 5.40 [4.89, 6.28] <0.001

SBP, mmHg, median [IQR] 133 [120, 148] 128 [116, 143] 137 [125, 150] 146 [134, 159] <0.001

DBP, mmHg, median [IQR] 79.33 [70.67, 87.67] 78.33 [70, 87.33] 79.67 [71.67, 87.33] 82.33 [72.33, 89] 0.090

TC, mmol/L, median [IQR] 5.09 [4.48, 5.83] 5.14 [4.54, 5.85] 5.05 [4.36, 5.87] 4.98 [4.38, 5.67] 0.235

AVR, mean ± SD 0.723±0.128 0.773±0.106 0.720±0.109 0.686±0.197 <0.001

CRAE, μm, mean ± SD 155.118±28.443 159.653±27.082 151.206±25.169 142.822±32.967 <0.001

CRVE, μm, mean ± SD 217.139±34.388 220.544±31.284 213.373±33.212 208.960±44.241 <0.001

FD, mean ± SD 1.305±0.084 1.323±0.077 1.286±0.083 1.259±0.089 <0.001

Global artery width, μm, mean ± SD 79.273±12.850 79.701±11.501 80.750±14.355 75.771±15.044 0.001

Global vein width, μm, mean ± SD 127.652±28.860 122.543±23.415 130.541±34.792 143.433±33.123 <0.001

MoCA, median [IQR] 25 [22, 27] 26 [24, 28] 24 [21, 26] 22 [19, 25] <0.001

CSVD0, mild group; CSVD1, moderate group; CSVD2, severe group. CSVD, cerebral small vessel disease; SD, standard deviation; IQR, 
interquartile range; SBP, systolic blood pressure; DBP, diastolic blood pressure; TC, total cholesterol; AVR, retinal arteriole/venular ratio; 
CRAE, central retinal arteriolar equivalent; CRVE, central retinal venular equivalent; FD, fractal dimension; MoCA, Montreal Cognitive 
Assessment.

tertile 3: 1.351, 95% CI: 0.953–1.915, P for trend <0.001; 
FD: OR for tertile 2: 0.969, 95% CI: 0.686–1.370, P for 
trend <0.001; OR for tertile 3: 0.829, 95% CI: 0.565–1.219,  
P for trend <0.001) and after further adjustment for Model 3 
(global vein width: OR for tertile 2: 1.117, 95% CI: 0.793–
1.574, P for trend <0.001; OR for tertile 3: 1.290, 95% CI: 
0.901–1.847, P for trend <0.001; FD: OR for tertile 2: 0.964, 
95% CI: 0.678–1.369, P for trend <0.001; OR for tertile 
3: 0.849, 95% CI: 0.574–1.257, P for trend <0.001) in the 
highest tertile of RMPs index levels compared with the 
lowest (Table 4). 

Association of RMPs with CSVD burden

After adjusting for Model 3, the global artery width was 

an independent risk factor of severe CSVD burden (OR: 
0.985, 95% CI: 0.974–0.997; P=0.013) (Table 5). The OR 
of severe CSVD burden of the highest tertile of global 
vein width compared with the lowest was 1.546 (95% CI: 
1.004–2.290, P for trend <0.001) after adjusting for Model 3. 
After adjustment of potential confounders in Model 3, the 
OR of severe CSVD burden in the highest tertile of global 
artery width in comparison to the lowest was 0.550 (95% 
CI: 0.373–0.811, P for trend =0.002) (Table S1).

Mediation by CSVD burden

The mediation pathway model with coefficients is shown 
in Figure 2. The indirect effect was −0.0011 (−0.0027, 
−0.0002), direct effect was −0.0156 (−0.0234, −0.0077), and 

https://cdn.amegroups.cn/static/public/QIMS-23-927-Supplementary.pdf
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Table 3 Associations between retinal microvascular parameters and 
cognitive function

Retinal vascular 
parameters

Model 
Cognitive function

β (95% CI) P value

AVR 1 0.291 (0.087–0.975) 0.045

2 0.313 (0.091–1.074) 0.065

3 0.336 (0.097–1.164) 0.085

CRAE 1 0.996 (0.991–1.001) 0.097

2 0.996 (0.991–1.001) 0.120

3 0.996 (0.991–1.002) 0.170

CRVE 1 1.000 (0.996–1.004) 0.855

2 1.000 (0.995–1.004) 0.825

3 1.000 (0.996–1.004) 0.871

FD 1 0.095 (0.015–0.594) 0.012

2 0.096 (0.015–0.620) 0.014

3 0.098 (0.015–0.639) 0.015

Global artery width 1 0.990 (0.980–1.001) 0.072

2 0.991 (0.980–1.001) 0.091

3 0.992 (0.981–1.003) 0.164

Global vein width 1 1.010 (1.005–1.015) <0.001

2 1.010 (1.005–1.015) <0.001

3 1.010 (1.005–1.015) <0.001

Model 1: adjusted for age, sex, and education. Model 2: model 
1 + FBG, BMI, smoking, alcohol use, TC. Model 3: Model 2 + 
SBP, HR, and use of antihypertensive and/or lipid-modifying 
medication. CI, confidence interval; AVR, retinal arteriole/venular 
ratio; CRAE, central retinal arteriolar equivalent; CRVE, central 
retinal venular equivalent; FD, fractal dimension; FBG, fasting 
blood glucose; BMI, body mass index; TC, total cholesterol; 
SBP, systolic blood pressure; HR, heart rate. 

total effect was −0.0167 (−0.0246, −0.0088). Thus, 6.59% 
(ab/c) of the total effect between the association of global 
vein width and cognitive decline was attributable to the 
presence of CSVD burden.

Discussion

In this study, we investigated the associations of RMPs 
with CSVD burden and cognitive function. The study 
demonstrated that RMPs (FD, global vein width), measured 
using a deep learning method on fundus photographs, were 
independent risk factors of cognitive decline. The global 

artery width and global vein width were associated with 
the development of CSVD, even after taking into account 
potential confounders. Additionally, mediation analyses 
indicated that CSVD burden was a mediating factor in 
the association between global vein width and cognitive 
function.

The embryological origins and physiological properties 
of the retinal and cerebral microvasculature are similar. 
Several previous studies have focused on the association 
between RMPs and cognitive function and reported 
controversial results (10,22,23). A prospective study involving 
491 participants suggested that narrower retinal arteriolar 
calibre and wider retinal venular calibre were associated 
with increased risk of cognitive decline (24). In addition, 
another cross-sectional study of 69 subjects indicated that 
the retinal microvascular network was altered in cognitive 
impairment group compared to the controls, and the FD 
decreased significantly (25). Consistent with these studies, 
our study found that RMPs (FD, global vein width) were 
associated with an increased risk of cognitive impairment. 
Additionally, with the aggravation of cognitive function, 
global vein width tended to increase, whereas FD tended to 
express less complexity. Although the exact mechanism is 
yet unknown, a number of possible candidate methods, such 
as endothelial dysfunction, blood-brain barrier dysfunction, 
systemic inflammation, and other vascular risk factors, have 
been suggested as possible explanations for this association 
(26,27). However, in contrast to our study, two studies failed 
to detect any associations between RMPs and cognitive 
loss (10,28). The underlying reason for this variation could 
be due to the study’s design, outcome measures, enrolled 
population’s vascular risk factors, age, or gender. 

CSVD is a slowly developing disease with nonspecific 
symptoms. The development of CSVD is thought to be 
influenced by endothelial dysfunction, hypoperfusion, 
inflammation, and oxidative stress (29,30). On cerebral 
MRI, the following signs of CSVD can be seen: lacunar, 
white WMHs, EPVS, and CMBs. A total CSVD assessment 
could help assess the combined impact of neuropathological 
changes in CSVD because of the simultaneous occurrence 
and joint effects of various MRI indicators (31). It is 
believed that the retinal microvasculature acts as a “window” 
to reflect the health of the cerebral microvasculature (32). 
Retinal alterations may indicate pathological processes 
in the central nervous system and can be examined non-
invasively using imaging techniques. Moreover, because 
retinal biomarkers provide information on tissue structure 
and function at the microscopic level, they may enable for 
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Table 4 ORs (and 95% CIs) of cognitive decline according to tertiles of RMPs

Variables
Cognitive decline

Model 1 Model 2 Model 3

FD

Tertile 1 (<1.300) 1.0 (reference) 1.0 (reference) 1.0 (reference)

Tertile 2 (1.300–1.354) 0.969 (0.686–1.370) 0.964 (0.680–1.366) 0.964 (0.678–1.369)

Tertile 3 (>1.354) 0.829 (0.565–1.219) 0.842 (0.570–1.244) 0.849 (0.574–1.257)

P value for trend <0.001

Global vein width

Tertile1 (<114.474) 1.0 (reference) 1.0 (reference) 1.0 (reference)

Tertile2 (114.474–130.282) 1.144 (0.815–1.605) 1.145 (0.851–1.610) 1.117 (0.793–1.574)

Tertile3 (>130.282) 1.351 (0.953–1.915) 1.337 (0.940–1.902) 1.290 (0.901–1.847)

P value for trend <0.001

Model 1: adjusted for age, sex, and education. Model 2: Model 1 + FBG, BMI, smoking, alcohol use, TC. Model 3: Model 2 + SBP, HR, and 
use of antihypertensive and/or lipid-modifying medication. OR, odds ratio; CI, confidence interval; RMPs, retinal microvascular parameters; 
FD, fractal dimension; FBG, fasting blood glucose; BMI, body mass index; TC, total cholesterol; SBP, systolic blood pressure; HR, heart rate.

the early detection of CSVD in less severe or asymptomatic 
phases (33). 

There is mounting evidence that retinal biomarkers are 
related to the emergence of various CSVD imaging features, 
which is important for the increased risk of cognitive 
impairment (20,34). It has been reported that the CSVD 
burden was associated with a wider CRVE, a smaller AVR, 
and a higher incidence of vessel tortuosity (35). A further 
study indicated that cerebral WMH might be partially 
predicted by non-invasive fundus photography via deep 
learning algorithm (36). Different from the previous study, 
our research failed to detect any associations between the 
total CSVD burden score and conventional RMPs (CRAE, 
CRVE, FD, AVR). A possible explanation for the lack of 
association may be that other disorders that can have a 
profound effect on ocular biomarkers (such as hypertension, 
diabetes and coronary/cardiovascular disease), and may 
obscure a possible neurodegenerative effect (20,37). Another 
explanation can be that our study was based on the whole 
population (aged 23–83 years), while other age-related 
processes may affect ocular biomarkers (38). 

Many recent algorithms show outstanding outcomes on 
retinal vasculature owing to the blooming development 
of deep learning. Correlations between blood vessel 
morphology and diseases can be examined based on the 
segmentation results. The NFN+ method and vignetting 
mask strategy were previously created by our team to 

achieve retinal vessels segmentation, and they were 
validated on 50 randomly selected fundus images from the 
collected dataset (12,39). Using this method, we discovered 
connections between renal function and retinal blood 
vessels features in those with type 2 diabetes mellitus (21). 
In this research, more characteristics were included based 
on deep learning segmentation. Our study indicated that 
the presence of the global vessel width (global vein width 
and global artery width) is an independent risk factor for 
the development of CSVD, after adjusting for potential 
confounding factors. The global vessel width is a new 
parameter for assessing the retinal vasculature, calculated 
by the NFN+ software. It represents the evaluation of the 
whole retinal vein (artery) using deep learning techniques. 
We believe that these parameters allow for a more 
comprehensive assessment of retinal vascular structure and 
is therefore more sensitive than the previous retinal vascular 
parameter.

The current study observed that RMPs was closely 
associated with both CSVD and cognitive decline. CSVD 
should be taken into account when exploring the relationship 
between RMPs and cognitive decline, but to our knowledge 
very few studies do so. Our findings revealed a partial 
mediating role of severe CSVD burden on the association 
between global vein width and cognitive decline, supporting 
the hypothesis that wider global vein width could indicate 
an exacerbation of CSVD, which, in turn, increased the risk 
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Table 5 Associations between retinal microvascular parameters 
and CSVD

Retinal vascular 
parameters

Model 
CSVD burden

β (95% CI) P value

AVR 1 0.401 (0.113–1.427) 0.158

2 0.462 (0.126–1.691) 0.244

3 0.513 (0.137–1.923) 0.322

CRAE 1 0.996 (0.991–1.002) 0.172

2 0.997 (0.991–1.002) 0.269

3 0.999 (0.993–1.004) 0.630

CRVE 1 1.001 (0.996–1.005) 0.849

2 1.001 (0.996–1.005) 0.808

3 1.002 (0.997–1.006) 0.462

FD 1 0.483 (0.072–3.261) 0.455

2 0.586 (0.083–4.151) 0.593

3 0.769 (0.103–5.754) 0.798

Global artery width 1 0.979 (0.968–0.990) <0.001

2 0.980 (0.968–0.991) <0.001

3 0.985 (0.974–0.997) 0.013

Global vein width 1 1.006 (1.001–1.011) 0.013

2 1.006 (1.001–1.011) 0.014

3 1.005 (1.000–1.010) 0.050

Model 1: adjusted for age, sex, and education. Model 2: Model 
1 + FBG, BMI, smoking, alcohol use, TC. Model 3: Model 2 + 
SBP, HR, and use of antihypertensive and/or lipid-modifying 
medication. CSVD, cerebral small vessel disease; CI, confidence 
interval; AVR, retinal arteriole/venular ratio; CRAE, central retinal 
arteriolar equivalent; CRVE, central retinal venular equivalent; 
FD, fractal dimension; FBG, fasting blood glucose; BMI, body 
mass index; TC, total cholesterol; SBP, systolic blood pressure; 
HR, heart rate.

Direct effect c' =−0.0156

Indirect effect =−0.0011a b

Total effect c =−0.0167

CSVD burden Mediation effect (ab/c) =6.59%

Global vein width Cognitive decline

Figure 2 Mediation analysis of CSVD burden on the association between global vein width and cognitive decline. Adjusted by module 3. 
CSVD, cerebral small vessel disease.

of cognitive impairment. The main strength of our study is 
that we took CSVD burden into account when analyzing 
the relationship between RMPs and cognitive decline. 
Another advantage is that we used a novel deep-learning 
system to measure retinal vessel. Given its precision and 
accuracy, this system can lessen the possibility of human 
mistake in retinal grading and has substantially lower inter- 
and intra-grader variability. In addition, the system has 
developed new retinal vascular parameters to better reflect 
retinal microvascular changes.

There were some limitations to this study. First, because 
this was a cross-sectional study, a causal association between 
CSVD and cognitive function could not be established. 
Second, because the participants in the current research 
were recruited from a single institution in China, the 
findings may not be generalizable to other populations. 
Third, the current study did not distinguish between 
patients with dementia and those without dementia. To 
overcome this issue, additional research is required in 
the future. Fourthly, it is probable that there are residual 
confounding factors which have not been accounted for, 
such as pulse cycle variation in an individual’s retinal 
calibre, that might have affected the associations found (40). 
Additionally, because our study individuals did not have any 
biomarker tests, our findings were not disease pathology 
specific. 

Conclusions

In conclusion, our research demonstrated that RMPs are 
independent risk factors for cognitive decline and the 
development of CSVD. Furthermore, the association 
between RMPs and cognitive decline appeared to be 
partially mediated by the CSVD burden. In the future, 
prospective studies are needed to determine the causality of 
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this association.
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Table S1 ORs (and 95% CIs) of CSVD burden according to tertiles of RMPs

Variables
CSVD burden

Model 1 Model 2 Model 3

Global vein width

Tertile 1 (<114.474) 1.0 (reference) 1.0 (reference) 1.0 (reference)

Tertile 2 (114.474–130.282) 1.090 (0.736, 1.615) 1.083 (0.729, 1.607) 1.009 (0.674, 1.509)

Tertile 3 (>130.282) 1.698 (1.164, 2.478) 1.713 (1.169, 2.511) 1.546 (1.004, 2.290)

P value <0.001

Global artery width

Tertile 1 (<74.065) 1.0 (reference) 1.0 (reference) 1.0 (reference)

Tertile 2 (74.065–82.805) 0.647 (0.448, 0.933) 0.642 (0.444, 0.930) 0.708 (0.486, 1.031)

Tertile 3 (>82.805) 0.468 (0.323, 0.680) 0.468 (0.321, 0.682) 0.550 (0.373, 0.811)

P value 0.002

Model 1: adjusted for age, sex, and education. Model 2: Model 1 + FBG, BMI, smoking, alcohol use, TC. Model 3: Model 2 + SBP, HR, 
and use of antihypertensive and/or lipid-modifying medication.
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