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TRIPOD Checklist: Prediction Model Development and Validation 

Section Item Checklist description
Reported on Page 
Number/Line 
Number

Reported on  
Section/Paragraph

Title and abstract

Title 1 D;V Identify the study as developing and/or validating a multivariable prediction model, the target 

population, and the outcome to be predicted.

Abstract 2 D;V Provide a summary of objectives, study design, setting, participants, sample size, predictors, 

outcome, statistical analysis, results, and conclusions.

Introduction

Background and 

objectives

3a D;V Explain the medical context (including whether diagnostic or prognostic) and rationale for developing 

or validating the multivariable prediction model, including references to existing models.

3b D;V Specify the objectives, including whether the study describes the development or validation of the 

model or both.

Methods

Source of data 4a D;V Describe the study design or source of data (e.g., randomized trial, cohort, or registry data), 

separately for the development and validation data sets, ifapplicable.

4b D;V Specify the key study dates, including start of accrual; end of accrual; and, if applicable, end of follow-up.

Participants 5a D;V Specify key elements of the study setting (e.g., primary care, secondary care, general population) 

including number and location of centres.

5b D;V Describe eligibility criteria for participants.

5c D;V Give details of treatments received, if relevant.

Outcome 6a D;V Clearly define the outcome that is predicted by the prediction model, including how and when 

assessed.

6b D;V Report any actions to blind assessment of the outcome to be predicted.

Predictors 7a D;V Clearly define all predictors used in developing or validating the multivariable prediction model, 

including how and when they were measured.

7b D;V Report any actions to blind assessment of predictors for the outcome and other predictors.

Sample size 8 D;V Explain how the study size was arrived at.
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Missing data 9 D;V Describe how missing data were handled (e.g., complete-case analysis, single imputation, multiple 

imputation) with details of any imputation method.

Statistical analysis 

methods

10a D Describe how predictors were handled in the analyses.

10b D Specify type of model, all model-building procedures (including any predictor selection), and method 

for internal validation.

10c V For validation, describe how the predictions were calculated. 

10d D;V Specify all measures used to assess model performance and, if relevant, to compare multiple models.

10e V Describe any model updating (e.g., recalibration) arising from the validation, if done. 

Risk groups 11 D;V Provide details on how risk groups were created, if done.

Development vs. 

validation 

12 V For validation, identify any differences from the development data in setting, eligibility criteria, 

outcome, and predictors.  

Results

Participants 13a D;V Describe the flow of participants through the study, including the number of participants with and 

without the outcome and, if applicable, a summary of the follow-up time. A diagram may be helpful.

13b D;V Describe the characteristics of the participants (basic demographics, clinical features, available 

predictors), including the number of participants with missing data for predictors and outcome.

13c V For validation, show a comparison with the development data of the distribution of important 

variables (demographics, predictors and outcome).  

Model 

development

14a D Specify the number of participants and outcome events in each analysis.

14b D If done, report the unadjusted association between each candidate predictor and outcome.

Model 

specification

15a D Present the full prediction model to allow predictions for individuals (i.e., all regression coefficients, 

and model intercept or baseline survival at a given time point).

15b D Explain how to the use the prediction model.

Model 

performance

16 D;V Report performance measures (with CIs) for the prediction model.

Model-updating 17 V If done, report the results from any model updating (i.e., model specification, model performance). 

Discussion

Limitations 18 D;V Discuss any limitations of the study (such as nonrepresentative sample, few events per predictor, 

missing data).
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Interpretation 19a V For validation, discuss the results with reference to performance in the development data, and any 

other validation data.  

19b D;V Give an overall interpretation of the results, considering objectives, limitations, and results from similar 

studies, and other relevant evidence.

Implications 20 D;V Discuss the potential clinical use of the model and implications for future research.

Other information

Supplementary 

information

21 D;V Provide information about the availability of supplementary resources, such as study protocol, Web 

calculator, and data sets.

Funding 22 D;V Give the source of funding and the role of the funders for the present study.

* Items relevant only to the development of a prediction model are denoted by D, items relating solely to a validation of a prediction model are denoted by V, and items relating to 
both are denoted D;V. We recommend using the TRIPOD Checklist in conjunction with the TRIPOD Explanation and Elaboration document.
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	文本域10120: Page 13/Line 237-246
	文本域1043: "Difficulty-aware and Task-augmentation Based on Meta Learning for Few-shot Diabetic Retinopathy Classification"
	文本域1054: "Introduction
Diabetic retinopathy (DR) is a microvascular complication of diabetes, and one of the leading causes of blindness and vision loss worldwide (1). Early and accurate classification of DR is crucial for appropriate and timely treatment (2). Fundus images are widely used in clinical diagnosis, with five categories of DR according to the international protocol: non-Diabetic Retinopathy, mild non-proliferative DR~(NPDR), moderate NPDR, severe NPDR, and proliferative DR~(PDR) (3,4). Figure 1 shows the five categories of fundus images.
In general, the severity of DR is diagnosed by ophthalmologists based on their clinical experience. However, computer-aided classification technology can significantly save time and improve efficiency and accuracy in DR classification (5). Currently, research in this area can be broadly categorized into two types. The first type is hands-on engineering, which involves traditional methods such as Gabor filters, scale-invariant feature transform, histogram of oriented gradient, and local binary pattern to extract features (6-9). For example, Shahin et al. employed morphological processing to extract pathological features, calculated entropy and homogeneity, input these into a neural network, and achieved 88% sensitivity and 100% specificity (10). Casanova et al. proposed a random forest algorithm that achieved over 90% accuracy in DR classification and assessed DR risk based on fundus and systematic data (11). However, these methods produce weak feature representations and can be adversely affected by characteristic factors (12).
The second type, deep learning methods, have been more widely used in image processing, including DR classification, with convolutional neural networks (CNNs) being particularly popular (13). For example, Garcia et al. used the VGG16 structure to classify fundus images of left and right eyes, achieving 93.65% specificity, 54.47% sensitivity, and 83.68% accuracy (14). Shanthi and Sabeenian et al. proposed an improved AlexNet architecture that boosted model accuracy to 96.25% based on the Messidor dataset (15). Deep learning methods enable end-to-end classification without manual feature extraction, but they require large amounts of labelled training data and expensive computational resources to achieve human-level performance (16,17). Similarly, the creation of large datasets with annotations involves skilled labor, which is costly and time-consuming. In addition, CNNs are prone to overfitting when training data is insufficient, which can be challenging to obtain due to privacy and healthcare laws (18,19). 
Considering the negative impact of limited data on deep learning models, Gao et al. used randomly rotated and flipped fundus images to expand the data (20). Zhou et al. introduced the Diabetic Retinopathy Generative Adversarial Network, which generates fundus images for data augmentation, but the generated data is often poor quality and lacks diversity (21). Transfer learning has been effective in addressing limited data by learning from a source domain to improve performance on a target domain (22,23). However, this method may not work well in complex target domains with insufficient source data.
Recently, meta-learning has attracted attention as a way to rapidly adapt to new tasks using small samples by learning internal representations from multiple classification tasks (24-27). Li et al. achieved an AUC of 83.3% with only five samples per category using meta learning on the ISIC 2018 skin lesion classification dataset (28). Yuan et al. proposed an active meta-learning method that focuses on difficult tasks using Bayesian dropout uncertainty estimation, achieving an accuracy of 90% on a new brain cell type classification task with only 1% of training data and one update step (29)."
	文本域1049: "Abstract
Background: Accurate classification techniques are essential for the early diagnosis and treatment of patients with diabetic retinopathy (DR). However, the limited amount of annotated DR data poses a challenge to existing deep models. This paper proposes a difficulty-aware and task-augmentation based on meta learning (DaTa-ML) method for few-shot DR classification with fundus images.
Methods: The difficulty-aware method operates by dynamically modifying the cross-entropy loss function applied to learning tasks. This methodology exhibits the ability to intelligently down-weight simpler tasks, while simultaneously prioritizing more challenging tasks. These adjustments occur automatically, aiming to optimize the learning process. Additionally, the task-augmentation technique is introduced to enhance the meta-training process by augmenting the number of tasks through image rotation and improving the feature extraction capability. To implement the expansion of meta training tasks, various task instances can be sampled during the meta training stage. Ultimately, the proposed task-augmentation method aims to optimize the model's initialization parameters and enhance meta generalization performance. The DaTa-ML method demonstrates promising results by effectively addressing the challenges associated with few-shot DR classification.
Results: The APTOS 2019 blindness detection dataset is used to evaluate DaTa-ML. Experiments show that even with only 1% of the training data (5-way 20-shot) and a single update step (time reduced by 90%), DaTa-ML achieves 89.6% accuracy on test data, which is a 1.7% improvement over the transfer learning method (i.e., ResNet50 pre-trained on ImageNet), and 16.8% over scratch-built models (i.e., ResNet50 without pre-trained weights), despite having fewer trainable parameters (DaTa-ML is only 0.47% of ResNet50). 
Conclusions: The DaTa-ML method provides a more efficient DR classification solution with little annotated data and offers significant advantages over state-of-the-art methods, providing guidance and assistance to ophthalmologists about the severity of DR."

	文本域1055: "In this paper, we propose the difficulty-aware and task-augmentation based on meta learning (DaTa-ML) model for few-shot DR classification with fundus images. The DaTa-ML can find an initialization point, and subsequent fine-tuning on the target dataset can achieve more accurate results compared to the state-of-the-art methods. The contributions are as follows:
1. The proposed DaTa-ML has a strong learning ability and can be applied to few-shot DR classification.
2. The proposed approach of difficulty-aware and task-augmentation can improve the effectiveness of the meta-training stage and optimize the initialization parameters.
3. The proposed DaTa-ML can adapt to the classification task of DR more quickly by utilizing the prior knowledge learned from multiple classification tasks.
The remaining sections are arranged as follows: Section 2 describes the proposed method in detail, Section 3 shows the experimental results and compares DaTa-ML with other methods, Section 4 discusses the proposed method, and finally, Section 5 concludes the paper. We present this article in accordance with the TRIPOD reporting checklist."
	文本域1057: "The study was conducted in accordance with the Declaration of Helsinki (as revised in 2013). The study was approved by institutional board of Shandong Normal University and individual consent for this retrospective analysis was waived. The few-shot DR classification dataset includes two subsets. Subset 1 is the Mini-ImageNet dataset, which consists of 100 categories with 60,000 color images (36). Subset 2 is the APTOS 2019 Blindness Detection dataset (37), which contains 3,662 fundus images from multiple clinics with different cameras, including non-DR (1805), mild NPDR (370), moderate NPDR (999), severe NPDR (193), and PDR (295). Subset 1 and subset 2 are used for meta-training and meta-testing, respectively."
	文本域10111: Not relevant.
	文本域10117: "For the dichotomous problem, we use commonly used evaluation indexes: accuracy, precision, recall and F1-score to evaluate the performance of the DaTa-ML model. The higher the value of these metrics, the better the performance. However, for the DaTa-ML model, the fundus image is classified into five categories. The Macro Averaging is used as an evaluation indicator, meaning we first statistically assess each category and then arithmetically average of each category. The Macro Averaging is calculated as shown in Equations (8) and (9)...."
	文本域10121: "Considering the distinctions in training methods between the other deep learning-based model and our proposed model, the DaTa-ML was trained in the manner of the N-way K-shot (N=5 and K=1, 5, 10, 20) (38). The inner-loop learning rate and outer-loop learning rate were set to 0.01 and 0.001, respectively, and the model was trained for 10,000 iterations on a meta training set consisting of 500 tasks. The APTOS 2019 Blindness Detection dataset was used for both meta-training and meta-testing, with data augmentation generating 2000 images per class. Of course, the images used for both training and testing consist of 5 categories and are completely different and their intersection is the empty set. Each experiment was performed five times, with early stopping used to avoid overfitting."
	文本域1073: "Subset 2 is the APTOS 2019 Blindness Detection dataset (37)."
	文本域10112: Not relevant.
	文本域10114: Not relevant.
	文本域10118: "Evaluation measures
For the dichotomous problem, we use commonly used evaluation indexes: accuracy, precision, recall and F1-score to evaluate the performance of the DaTa-ML model. The higher the value of these metrics, the better the performance. "
	文本域10122: Not relevant.
	文本域10124: "Experimental setting
Considering the distinctions in training methods between the other deep learning-based model and our proposed model, the DaTa-ML was trained in the manner of the N-way K-shot (N=5 and K=1, 5, 10, 20) (38). The inner-loop learning rate and outer-loop learning rate were set to 0.01 and 0.001, respectively, and the model was trained for 10,000 iterations on a meta training set consisting of 500 tasks. The APTOS 2019 Blindness Detection dataset was used for both meta-training and meta-testing, with data augmentation generating 2000 images per class. Of course, the images used for both training and testing consist of 5 categories and are completely different and their intersection is the empty set. Each experiment was performed five times, with early stopping used to avoid overfitting."
	文本域1074: Page 12/Line 231-232.
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	文本域1080: "Methods
Due to the limited annotated DR training data, DR classification is a few-shot classification problem. In order to address this, The DaTa-ML was proposed for few-shot DR classification using fundus images, as shown in Figure 2...."
	文本域10131: Not relevant.
	文本域10133: Not relevant.
	文本域10135: Not relevant.
	文本域10137: Not relevant.
	文本域10143: Not relevant.
	文本域10147: "The deep learning-based model achieves excellent generalization performance with the large amount of labelled training data. The DaTa-ML model utilizes difficulty-aware and task-augmentation to optimize the meta learning process and obtain the optimal initialization parameters to achieve rapid adaptation on unseen tasks with only a few samples. It outperforms deep learning-based models."
	文本域10151: "As for the limitations of our study, our method necessitates exploration of enhancements in model performance even with sparse data, especially if less than the current 1% of the training set we employ. Further validation is also needed to assess its generalization capabilities over a broader range and diverse input data conditions. The richness and distribution of training data could significantly impact our study results, and this is an aspect of our research that has not yet been explored. Through comparison with other methodologies, our work not only uncovers the potential of the DaTa-ML technique in tackling challenging DR classification tasks but also offers avenues for further performance enhancement. This could be achieved, for instance, by adding the attention mechanism or by optimizing our difficulty-aware and task-augmentation methods. Our approach may also offer valuable insights for researchers working on DR classification research with scanty labeled data.
In the future, we are planning to introduce different meta-learner structures or attention mechanism to achieve the five classifications of DR and further improve the performance of the proposed model, especially for fine-grained classification tasks where subtle differences between classes need to be captured. Additionally, we will continue to explore the potential applications of meta learning in the field of medical image processing."
	文本域1081: "In this work, the total quantity of the meta training set is increased by rotating all the images by 90 degrees, 180 degrees, and 270 degrees. And we can sample different task instances during the meta training stage to implement meta training task expansion. The proposed task-augmentation method can optimize the initialization parameters of the model and improve the meta generalization."
	文本域1082: Page 11/Line 199-203.
	文本域1083: "Methods
Due to the limited annotated DR training data, DR classification is a few-shot classification problem. In order to address this, The DaTa-ML was proposed for few-shot DR classification using fundus images, as shown in Figure 2...."
	文本域1084: "Comparsion of MAML, Da-ML, Ta-ML and DaTa-ML
To better understand the performance of DaTa-ML, Grad-CAM visualizations were used to show that the model effectively focuses on hemorrhage areas and reduces background noise in raw features (41). Figure 5 displays the highlighted results. Additionally, Guided Grad-CAM shows that DaTa-ML weakens unrelated feature areas such as blood vessels....."
	文本域10126: Not need model updating in our study.
	文本域10128: No risk groups in the study.
	文本域10138: Not relevant.
	文本域10140: Not relevant.
	文本域10144: Not relevant.
	文本域10148: Not need model-updating.
	文本域1085: Page 8-12/Line 136-224.
	文本域1086: Page 14-17/Line 265-321.
	文本域10127: N/A
	文本域10129: N/A
	文本域10139: N/A
	文本域10141: N/A
	文本域10145: N/A
	文本域10149: N/A
	文本域1067: Article information: https://dx.doi.org/10.21037/qims-23-567
*As the checklist was provided upon initial submission, the page number/line number reported may be changed due to copyediting and may not be referable in the published version. In this case, the section/paragraph may be used as an alternative reference.
	文本域10152: Page 14-17/Line 265-321.
	文本域10154: Page 20/Line 394-404.
	文本域10158: N/A
	文本域10153: "Comparsion of MAML, Da-ML, Ta-ML and DaTa-ML
To better understand the performance of DaTa-ML, Grad-CAM visualizations were used to show that the model effectively focuses on hemorrhage areas and reduces background noise in raw features (41). Figure 5 displays the highlighted results. Additionally, Guided Grad-CAM shows that DaTa-ML weakens unrelated feature areas such as blood vessels.
Figure 6 presents the adaptation processes of MAML, Da-ML, Ta-ML, and Da-Ta-ML models under 1-shot, 5-shot, 10-shot, and 20-shot. The MAML model was not effective in adapting to DR classification. In contrast, after a gradient update, the accuracy of DaTa-ML significantly improved, indicating the rapid adaptation for meta-test tasks. Furthermore, the accuracy continued to increase with an increase in gradient update steps.
Experimental results presented in Table 2, Table 3, Table 4, and Table 5 showed that DaTa-ML ( ) outperformed the baseline MAML with an accuracy of 0.709 [95% confidence interval (CI): 0.708–0.710], 0.775 [95% CI: 0.772–0.777], 0.832 [95% CI: 0.830–0.834], and 0.896 [95% CI: 0.895–0.897], respectively. The accuracy improvement was 25.6%, 25.9%, 26.3%, and 29.1%, respectively. The accuracy of Da-ML ( ) was 0.531, 0.588, 0.657, and 0.701, which was 7.8%, 7.2%, 8.8%, and 9.6% higher than MAML, respectively. Similarly, Ta-ML achieved an accuracy of 0.582, 0.645, 0.709, and 0.773, which was 12.9%, 12.9%, 14%, and 16.8% higher than MAML. These results also indicate that the accuracy of DaTa-ML improves with an increase in the amount of training data.
Comparsion against the state-of-the-art classification models
The DaTa-ML model is compared with six deep learning-based classification models including AlexNet (42), VGG16 (43), VGG19 (43), ResNet50 (44), GoogLeNet (45) and SqueezeNet (46).
Table 6 shows the performance comparison between the DaTa-ML model and several pre-trained deep learning models. The DaTa-ML (20-shot) model has an accuracy of 0.896 and outperforms ResNet50 by a 1.7% increment. More importantly, the DaTa-ML achieves better performance with only 0.47% parameters of ResNet50. The DaTa-ML also outperforms SqueezeNet with an accuracy increment of 7.3%, even though SqueezeNet has fewer parameters than the comparison methods.
Table 7 shows the performance comparison between the DaTa-ML and scratch-built deep learning models. The DaTa-ML (5-shot) model shows an accuracy of 0.775, outperforming ResNet50 by 4.7%. As training samples increase, the DaTa-ML's accuracy also increases, with the DaTa-ML (20-shot) outperforming the ResNet50 by 16.8% increment.
The confusion matrix for DR classification of different models is shown in Figure 7. Non-DR, moderate NPDR, severe NPDR and PDR are easier to classify than mild NPDR. The mild NPDR, moderate NPDR, severe NPDR and PDR of DaTa-ML (1-shot) and Da-Ta-ML (5-shot) had lower classification accuracy. In addition to the DaTa-ML (20-shot) model, all other models have poor classification accuracy for mild NPDR, and the DaTa-ML (20-shot) confusion matrix outperformed the other models.
Figure 8 shows the receiver operating characteristic curve (ROC curve) of the DaTa-ML model under 20-shot, where labels 0-4 represent the five categories of DR. The area under the ROC curve of non-DR, mild NPDR, moderate NPDR, severe NPDR and PDR are 0.93, 0.87, 0.89, 0.90 and 0.91, respectively, demonstrating the effectiveness of the DaTa-ML.
Visualization using t-SNE
The t-Distributed Stochastic Neighbor Embeding (t-SNE) has been developed to reduce dimensionality of high-dimensional data to 2D and 3D space for display purposes (47). Figure 9 presents the t-SNE analysis of the DR test data to compare the Da-Ta-ML and other models. All models in the t-SNE diagram aim to divide these learned features into five clusters. We observed that the t-SNE embedding generated by DaTa-ML (20-shot) could clearly separate the five groups. Therefore, the DaTa-ML learned identifiable features compared to other methods when there were only 20 training samples for each category, which made the classification more accurate."
	文本域10155: "Conclusion
In this paper, we present the DaTa-ML method that combines difficulty-aware and task-augmentation methods within a meta-learning framework to improve few-shot DR classification. The difficulty-aware method dynamically adjusts the cross-entropy loss function to focus on difficult tasks automatically. The task-augmentation method increases the number of meta-training tasks by rotating images and improves feature extraction capability. Ablation studies have demonstrated that difficulty-aware and task-augmentation methods complement each other. Compared to existing deep learning methods, the DaTa-ML method achieves satisfactory results with a small number of samples. Thus, this work helps provide a second opinion to ophthalmologists about the severity of DR."
	文本域10159: Not need to supplementary Material
	文本域10156: "In the future, we are planning to introduce different meta-learner structures or attention mechanism to achieve the five classifications of DR and further improve the performance of the proposed model, especially for fine-grained classification tasks where subtle differences between classes need to be captured. Additionally, we will continue to explore the potential applications of meta learning in the field of medical image processing."
	文本域10160: "Funding: The authors acknowledge the support from the National Natural Science Foundation of China (61971271), the Jinan City-School Integration Development Strategy Project (JNSX2021023), the Shandong Province Major Technological Innovation Project (2022CXGC010502) and the Shandong Province Major Technological Innovation Project (2022CXGC020507)."
	文本域10157: Page 20/Line 388-393.
	文本域10161: Page 20-21/Line 406-410.


