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Background: Patients with lymphoma receive multiple positron emission tomography/computed 
tomography (PET/CT) exams for monitoring of the therapeutic response. With PET imaging, a reduced 
level of injected fluorine-18 fluorodeoxyglucose ([18F]FDG) activity can be administered while maintaining 
the image quality. In this study, we investigated the efficacy of applying a deep learning (DL) denoising-
technique on image quality and the quantification of metabolic parameters and Deauville score (DS) of a low 
[18F]FDG dose PET in patients with lymphoma.
Methods: This study retrospectively enrolled 62 patients who underwent [18F]FDG PET scans. The low-
dose (LD) data were simulated by taking a 50% duration of routine-dose (RD) PET list-mode data in the 
reconstruction, and a U-Net-based denoising neural network was applied to improve the images of LD 
PET. The visual image quality score (1 = undiagnostic, 5 = excellent) and DS were assessed in all patients 
by nuclear radiologists. The maximum, mean, and standard deviation (SD) of the standardized uptake value 
(SUV) in the liver and mediastinum were measured. In addition, lesions in some patients were segmented 
using a fixed threshold of 2.5, and their SUV, metabolic tumor volume (MTV), and tumor lesion glycolysis 
(TLG) were measured. The correlation coefficient and limits of agreement between the RD and LD group 
were analyzed.
Results: The visual image quality of the LD group was improved compared with the RD group. The 
DS was similar between the RD and LD group, and the negative (DS 1–3) and positive (DS 4–5) results 
remained unchanged. The correlation coefficients of SUV in the liver, mediastinum, and lesions were all 
>0.85. The mean differences of SUVmax and SUVmean between the RD and LD groups, respectively, were 0.22 
[95% confidence interval (CI): –0.19 to 0.64] and 0.02 (95% CI: –0.17 to 0.20) in the liver, 0.13 (95% CI: 
–0.17 to 0.42) and 0.02 (95% CI: –0.12 to 0.16) in the mediastinum, and –0.75 (95% CI: –3.42 to 1.91), and 
–0.13 (95% CI: –0.57 to 0.31) in lesions. The mean differences in MTV and TLG were 0.85 (95% CI: –2.27 
to 3.98) and 4.06 (95% CI: –20.53 to 28.64) between the RD and LD groups. 
Conclusions: The DL denoising technique enables accurate tumor assessment and quantification with LD 
[18F]FDG PET imaging in patients with lymphoma.
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Introduction

Fluorine-18 (18F) fluorodeoxyglucose positron emission 
tomography/computed tomography ([18F]FDG PET/CT) 
is widely used for tumor staging and therapy evaluation 
in patients with lymphoma. Despite the favorable overall 
survival rate and consequent prolongation of life span in 
patients with lymphoma, the cumulative radiation dose of 
multiple PET/CT exams and its associated cancer risk cannot 
be ignored, especially in pediatric patients who are sensitive 
to radiation or those who need multiple PET/CT exams to 
monitor the therapeutic response (1). Recommendations of 
minimal [18F]FDG dose and acquisition time were established 
by nuclear medicine societies (2-4) to help PET centers 
implement good imaging practices following an as-low-as-
reasonably-achievable (ALARA) principle. With new imaging 
technologies being developed, a greater number of studies 
are being conducted for further dose reduction.

Lower injected activity or shorter scan duration 
without sacrificing diagnostic image quality represents a 
desirable goal for PET imaging protocol optimization (5).  
However, a lower injected dose leads to higher image 
noise and suboptimal diagnostic image quality. In recent 
years, deep learning (DL) has been widely investigated in 
medical imaging fields (6-8). DL denoising techniques can 
significantly reduce image noise (9,10), which allows for a 
decrease in injected activity in oncology patients. However, 
the effects of the DL denoising technique on the diagnostic 
image quality and tumor evaluation of low-dose (LD) [18F]
FDG PET/CT in patients with lymphoma has not been 
fully investigated. Therefore, the aim of this study was 
to investigate the impact of the DL denoising technique 
on image quality, tumor quantification, and Deauville 
score (DS) of half-dose [18F]FDG PET in patients with 
lymphoma. To this end, two nuclear medicine radiologists 
assessed the visual image quality score, DS, and quantitative 
parameters of PET images to characterize the stability and 
reproducibility of the technique.

Methods

Patients

This retrospective study enrolled 62 patients with 

lymphoma confirmed via the pathology from April 2021 
to October 2022 in the Affiliated Hospital of Qingdao 
University. The patients were referred to [18F]FDG 
PET/CT exams for initial staging or follow-up studies. 
The patients were enrolled if their PET images were of 
diagnostic quality without artifacts and if the list-mode 
PET data were available for additional reconstructions. The 
mean age of the patients was 55±18 years, the mean body 
weight was 65±13 kg, and the mean injected [18F]FDG dose 
was 6.9±1.4 mCi (0.11±0.01 mCi/kg). The other patient 
characteristics are listed in Table 1. The study was conducted 
in accordance with the Declaration of Helsinki (as revised 
in 2013). This study was approved by the Institutional 
Ethics Committee of the Affiliated Hospital of Qingdao 
University and the informed consent was waived due to the 
retrospective nature of this study.

Image acquisition protocol

The patients were instructed to fast for 6 hours without 
extreme exercise before the PET/CT scans. When the 
patient arrived at the imaging center, the level of blood 
glucose was measured to ensure a level of less than  
11.0 mmol/L. The [18F]FDG solution was administered 
intravenously based on the patient’s weight (0.1 mCi/kg). 
The patients then rested in a waiting room with a quiet and 
warm environment for approximately 55 minutes (min).

All images were acquired with a United Imaging uMI 
Vista PET/CT scanner (United Imaging Healthcare, 
Shanghai, China) that integrated a 24-cm axial field-of-view 
(FOV) lutetium-yttrium oxyorthosilicate (LYSO) crystal-
based digital PET and an 80-detector CT scanner. A CT 
scan was performed for attenuation correction and anatomic 
localization using a 120-kVp tube voltage and an 80-mAs 
tube current. The PET images were acquired in a three-
dimensional (3D) list mode from the upper thighs to the 
skull base with an emission time of 2 min per patient bed.

The standard-of-care PET images were generated 
using the 2-min list-mode PET data with ordered subset 
expectation-maximization (OSEM) reconstruction. The 
OSEM reconstruction used two iterations, 20 subsets, 
150×150 matrix dimensions, a 600-mm FOV, a 2.85-mm 
slice thickness, 4.5-mm Gaussian postfiltering, time of flight 
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(TOF), attenuation correction, scatter correction, decay 
correction, and other vendors’ default corrections. The LD 
PET was simulated by using the first minute of the PET 
list-mode data, which allows for intrapatient comparison. 
The simulated LD PET images were generated by applying 
a convolutional denoising neural network (HYPER DLR, 
United Imaging Healthcare) after OSEM reconstruction 
using the same settings as those of the standard-of-
care PET. The HYPER DLR is a US Food and Drug 
Administration (FDA) 510 k cleared denoising neural 
network for PET imaging. This denoising neural network 
is applied after OSEM reconstruction as a DL-based image 
processing function, specifically developed to reduce image 
noise in [18F]FDG PET. It is based on a U-Net architecture 
with residual network (ResNet)-style blocks and dense 
convolutional network (DenseNet)-like connections. In 
this study, the training datasets included 393 PET scans 
from four centers with United Imaging Healthcare PET/

CT scanners (the data of our center was not involved in 
the training procedure). More details of the neural network 
architecture illustration and training procedure can be 
found in the supplementary file (Appendix 1) and the related 
literature (9). Hereafter, we refer to the standard-of-care 
PET images with OSEM reconstruction as the routine-
dose (RD) group and the simulated LD PET images after 
applying the denoising neural network as the LD group.

Image evaluation

Two nuclear radiologists, reader 1 and reader 2 with 4 and 
6 years of experience in oncology PET/CT, respectively, 
assessed the visual image quality of PET images using a 
5-point scale. A score of 1 to 5 was given to the images with 
nondiagnostic, acceptable, moderate, good, or excellent 
image quality, respectively. The readers also reported the 
DSs for the visual interpretation of [18F]FDG uptake in 
the same reading session. The readers scored the images 
independently without knowing the other’s results, and the 
case reading orders were randomized to reduce the memory 
effects. The readers were blind to patient information and 
the reconstruction settings. The visual image assessment 
was performed on a commercial medical image workstation 
(uWS-MI, United Imaging Healthcare). The axial, coronal, 
sagittal, and fusion views of PET/CT images were available, 
and the windowing [target/background (T/B)] could 
be freely adjusted by the raters. To evaluate intrareader 
repeatability, reader 1 repeated the assessment of the 
visual image quality and the DS 2 weeks after the initial 
assessment.

Two nuclear radiologists with 4 and 6 years of experience 
in oncology PET/CT performed the quantitative 
evaluation. The evaluation included two parts: the 
quantitative evaluation in the liver and the mediastinum 
and the quantification evaluation of the tumor. In the first 
part, a circular region of interest (ROI) was placed in a 
homogeneous area of the right liver lobe parenchyma on 
PET images. The area of the ROI was 1,040 mm2 and 
was used for all patients. Similar to the ROI placement 
in the liver, another ROI was placed in the mediastinum 
blood pool (aorta arch) with a fixed size of 480 mm2. The 
maximum standardized uptake value (SUVmax), mean SUV 
(SUVmean), and SD in the liver ROI and the mediastinal ROI 
were measured. The coefficient of variation (COV) was 
calculated by dividing the SD by the SUVmean of the liver or 
the mediastinum ROI and presented in percentages.

In the second part of the quantitative evaluation, the 

Table 1 Patient characteristics

Characteristics Value

Female/male* 33/29

Age (years) 55±18 [13, 76]

Weight (kg) 65±13 [42, 120]

Height (cm) 166±12 [108, 185]

Body mass index (kg/m2) 23.6±3.4 [15.1, 35.1]

Injected dose (MBq) 256.0±52.6  
[160.2, 455.1]

Injected dose per patient weight (MBq/kg) 3.9±0.2 [3.4, 4.8]

Blood glucose (mmol/L) 6.0±1.0 [4.4, 10.6]

Uptake time (min) 62±11 [50, 85]

Treatment naïve/chemotherapy cases* 38/24

Cases with Deauville score of 1/2/3/4/5* 24/2/5/4/27

Lymphoma type*

Diffuse large B-cell lymphoma 35

Marginal zone lymphoma 7

Hodgkin lymphoma 6

NK/T-cell lymphoma 4

Follicular lymphoma 3

Other non-Hodgkin lymphomas 7

The values are presented as the mean ± standard deviation 
[range]. *, the values are counts. NK, natural killer.
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SUVmax, SUVmean, metabolic tumor volume (MTV), and 
tumor lesion glycolysis (TLG) were measured at the 
selected lesions using 3D Slicer software (v. 5.0.2). The 
lesion was selected by the radiologist according to the 
following criteria: the lesion can be segmented using a SUV 
threshold larger than 2.5, the volume of the lesions was 
larger than 1.0 cm3, and the border of the lesion could be 
clearly defined to make a valid paired comparison between 
the RD and LD group. If there were more than multiple 
candidate lesions in a patient, a maximum of four lesions 
with the largest size and higher SUVs were included. 
Before starting quantitative measurement, the two nuclear 
radiologists reached a consensus regarding the lesion 
selection and then performed the segmentation individually.

The structural similarity index measure (SSIM) and 
peak signal to noise ratio (PSNR) were respectively used 
as the measurements of the fidelity and quality of images 
that had been adopted in DL clinical study workflows (11). 
The SSIM and PSNR were calculated on LD images using 
RD images as the original images. Furthermore, the DL 
denoising neural network was applied on RD images to 
create the reference images for calculating SSIM and PSNR 
for RD and LD images such that the reference images had 
lower noise than did RD images. The code is available on 
online (https://github.com/msyan/QD_DLR).

Statistical analysis

The data were analyzed with the R v. 4.2.0 software (The 
R Foundation of Statistical Computing) and Microsoft 
Excel (2016 edition). The visual image quality scores 
were compared between the RD and LD group with the 
Wilcoxon signed-rank test. The DS was analyzed with the 
contingency table. The inter- and intrareader agreements 
of the categorical scores were assessed with Cohen κ. The 
correlation and limits of agreement (LoA) of SUVmax and 
SUVmean in the liver and the mediastinum between the 
RD and LD groups were analyzed with the Spearman 
correlation coefficient and Bland-Altman plots. The LoA 
was defined as the mean difference between the RD and LD 
group and its 95% confidence interval (CI). The correlation, 
linear relationship, and LoA of the lesions’ measurements 
(SUVmax, SUVmean, MTV, and TLG) between the RD and 
LD group were analyzed with the Spearman correlation 
coefficient, linear regression, and Bland-Altman plots. 
Because the lesions’ measurements varied in a large range, 
the percentages of the LoA were calculated to determine 
their relative differences. The percentage mean difference 

was calculated by dividing the difference between the RD 
and LD group by the measurement of the RD group. LoA 
and intraclass correlation coefficient (ICC) were applied to 
ascertain the interreader agreement of the quantitative data.

Results

Among the 62 participants enrolled in this study, 78 lesions 
in 30 patients were included in the quantitative tumor 
evaluation. There was no lesion or the lesions did not meet 
the criteria in the other 32 patients. The MTVs of the 
lesions were 27.52±48.18 cm3, and the lesion’s SUVmax was 
14.26±9.11.

The visual image quality score was comparable or better 
in the LD group compared with the RD group (Figure 1).  
In the RD group, the rater scored 0, 24, 32, 6, and  
0 cases with a visual image quality score of 1, 2, 3, 4, and  
5 respectively. In contrast, in the LD group, 0, 3, 23, 36, and 
0 cases received a score of 1 to 5, respectively. Therefore, 
cases in the LD group attained higher scores compared with 
the RD group, and this result was statistically significant 
(RD 2.7±0.6 vs. LD 3.5±0.6; P<0.001). The inter- and 
intrareader agreements were excellent in the visual image 
quality score (κ=0.92 and κ=0.99).

Using the LD images instead of the RD images did 
not change the patient management but did have a user-
dependent impact on the decision of the DS. In the RD 
group, one of the readers rated 24, 2, 5, 4, and 27 cases 
with a DS of 1 to 5, respectively, and the assignment of the 
DS was not changed when the LD group was used instead 
(Figures 2,3). Meanwhile, the other reader assigned 24, 
2, 5, 4, and 27 cases to the RD group and 24, 3, 4, 4, and  
27 cases to the LD group with a DS of 1 to 5, respectively. 
Reader 1 obtained the same DS in the RD and LD groups 
as that of the reader 2 after 2 weeks. The discrepancy in the 
DS between the RD and LD groups occurred in a case after 
follow-up of three cycles of chemotherapy. In this case, a 
score of 2 was assigned using the RD images, but a score of 
3 was assigned using the LD images. Further data analysis 
showed that the variance in the mediastinal SUVmax between 
the RD and LD groups might have caused this discrepancy. 
The SUVmax in the liver, mediastinum, and lesion were 3.28, 
2.38, and 2.29 in the RD group, respectively, and were 2.80, 
2.19, and 2.24 in the LD group, respectively. However, this 
discrepancy did not change patient management. The inter- 
and intrarater agreements were excellent for the DS (κ=0.99 
and κ=0.99).

The data of SUVmax, SUVmean, SD, and COV in the 

https://github.com/msyan/QD_DLR
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Figure 1 The maximum intensity projection views of the routine-dose and the low-dose PET images. The upper row showed the routine-
dose images and the lower row showed the respective U-Net denoised low-dose images. (A) The PET image of a 74-year-old woman 
with diffuse large B-cell lymphoma after 6 cycles of chemotherapy demonstrated a complete metabolic response (Deauville score 1). (B) 
A 34-year-old woman with natural killer/T-cell lymphoma obtained a Deauville score of 2 after multiple cycles of chemotherapy. (C) The 
images of a 67-year-old woman with diffuse large B-cell lymphoma after chemotherapy showed a soft-tissue nodule in left pelvic cavity with 
an SUVmax of 2.31 (Deauville score 3). (D) A 69-year-old man with marginal zone lymphoma had high metabolic lymph nodes in peritoneal 
and retroperitoneal spaces. The maximal SUVmax was 3.67 (Deauville score 4). (E) A 47-year-old man with diffuse large B-cell lymphoma 
after chemotherapy had a nodule in the left thyroid lobe with a SUVmax of 7.48 (Deauville score 5). PET, positron emission tomography; 
SUVmax, maximum standardized uptake value.

liver and mediastinum are shown in Table 2. The SUVmax 
and SUVmean in the liver and mediastinum were highly 
correlated between the RD and LD groups, with a 
correlation coefficient of 0.86 to 0.97. The LoA between 
the RD and LD group in the SUVmax and SUVmean were 
good. The mean difference of the LoA between the RD 
and LD group was less than 0.22 for SUVmax and 0.02 for 
SUVmean, and the 95% CI of the differences was –0.19 to 
0.64 for SUVmax and –0.17 to 0.20 for SUVmean. The SD was 
smaller in the LD group than in the RD group. In line with 
the SD result, the COV was also smaller in the LD group, 
suggesting the image noise measurement of the LD group 
was better compared with the RD group in both the liver 
and mediastinum. 

The SUVmax, SUVmean, MTV, and TLG of the lesions 

were highly correlated between the RD and LD groups. 
All correlation coefficients were larger than 0.99. The 
linear regression analysis indicated that the relationship 
of the lesions’ SUVmax, SUVmean, MTV, and TLG between 
the RD and LD group could be well fit with straight lines  
(Figure 4A-4D). The slopes of the lines were 1.05, 1.03, 
0.97, and 0.98 for SUVmax, SUVmean, MTV, and TLG, 
respectively. The adjusted R2 values were larger than 0.98 in 
all linear regression models, suggesting excellent goodness 
of fit.

In the LoA analysis, the mean differences between the 
RD and LD groups were –0.88 (95% CI: –3.47 to 1.71) 
for SUVmax, –0.17 (95% CI: –0.69 to 0.35) for SUVmean, 
0.69 (95% CI: –2.40 to 3.77) for MTV, and 2.74 (95% 
CI: –15.92 to 21.40) for TLG. The percentages of the 
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Figure 2 A 39-year-old woman with relapsed Hodgkin lymphoma. The body weight was 77 kg, the height was 162 cm, and the body mass 
index was 29.3 kg/m2. (A) The maximum intensity projection view images showed that the low-dose group had a better image quality 
compared with the routine-dose group. (B) The axial view images showed high uptake lymph nodes in the left supraclavicular and left 
external iliac zones. The image noise of the routine-dose group was higher in the liver and therefore resulted in a lower visual image quality 
score as compared with that of the low-dose group (scores of 2 vs. 3 in the routine-dose group and the low-dose group, respectively). 
The Deauville score was 5 for both the routine-dose group or the low-dose group. The low-dose group with the deep-learning denoising 
technique provided sufficient image quality in the patient with a high body mass index. MIP, maximum intensity projection.

Figure 3 A 59-year-old man with diffuse large B-cell lymphoma. (A) The maximum intensity projection view images had a better visual 
image quality score in the low-dose group (score =4) than in the routine-dose group (score =3). (B) The axial view images showed high 
metabolic activity lesions in the spleen and small lymph nodes in the spleen and retroperitoneal spaces. The Deauville score was 5 for both 
the routine-dose group and the low-dose group. Using low-dose images with the deep-learning denoising technique can delineate small 
lesions with a diameter less than 1 cm. MIP, maximum intensity projection.
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Table 2 SUVs, SD, and COV in the mediastinum and liver of the RD and LD group

Measurement RD group LD group LoA Correlation coefficient

Mediastinal SUVmax 2.09±0.34 1.96±0.30 0.13 [−0.17, 0.42] 0.86

Mediastinal SUVmean 1.65±0.28 1.63±0.28 0.02 [−0.12, 0.16] 0.97

Mediastinal SD 0.20±0.08 0.15±0.03 0.05 [−0.10, 0.19] –

Mediastinal COV (%) 12.03±4.93 9.21±2.02 2.82 [−6.23, 11.86] –

Liver SUVmax 2.83±0.42 2.60±0.35 0.22 [−0.19, 0.64] 0.88

Liver SUVmean 2.19±0.28 2.17±0.28 0.02 [−0.17, 0.20] 0.95

Liver SD 0.25±0.06 0.18±0.05 0.06 [−0.01, 0.14] –

Liver COV (%) 11.29±2.26 8.45±2.03 2.84 [−0.50, 6.17] –

The data of SUV, SD, and COV in the RD and LD groups are the mean ± SD. The values of the LoA are the mean difference with 95% 
confidence intervals between the RD and LD groups. SUV, standardized uptake value; SD, standard deviation; COV, coefficient of 
variation; RD, routine dose; LD, low dose; LoA, limits of agreement; SUVmax, maximum SUV; SUVmean, mean SUV.

mean differences between the RD and LD groups were 
–5.32% (95% CI: –22.31% to 11.67%) for SUVmax, –1.83% 
(95% CI: –9.17% to 5.50%) for SUVmean, 1.98% (95% 
CI: –13.46% to 17.41%) for MTV, and 0.24% (95% CI: 
–15.44% to 15.92%) for TLG (Figure S2). The Bland-
Altman plots for lesions’ SUVmax, SUVmean, MTV, and 
TLG are shown in Figure 4E-4H). In Table 3, the ICC and 
LoA showed excellent reliability for lesion measurements 
between the two readers. 

The median, mean, and first and third quartiles of SSIM 
were 0.9975, 0.9972, 0.9961, and 0.9986, respectively, 
for LD images when RD was used as the reference. The 
median, mean, and first and third quartiles of PSNR were 
53.74, 54.76, 51.98, and 57.97, respectively, for LD images 
when RD was used as the reference. Using the DL denoised 
standard-of-care PET images as the reference, the median, 
mean, and first and third quartiles of SSIM were 0.9984 vs. 
0.9989, 0.9983 vs. 0.9989, 0.9976 vs. 0.9986, and 0.9993 vs. 
0.9994, respectively, for LD and RD images; meanwhile, the 
median, mean, and first and third quartiles of PSNR were 
55.88 vs. 58.36, 57.43 vs. 0.58.76, 53.82 vs. 56.46, and 61.02 
vs. 60.47, respectively, for LD and RD images. Figure S3  
displays the comparison of SSIM and PSNR between the 
RD and LD images.

Discussion

This study demonstrated the capability of the DL denoising 
technique in LD [18F]FDG PET in patients with lymphoma. 
Our results showed that with a 50% reduction of [18F]FDG 
dose, the visual image noise score and quantitative image 

noise index in the liver and mediastinum were improved 
with DL denoising compared with those of routine [18F]
FDG dose PET with OSEM reconstruction. Furthermore, 
the SUVs in the liver, mediastinum, and lesions and the 
MTV and TLG in the lesions were highly correlated 
and had good LoA between the RD and LD groups. All 
correlation coefficients were higher than 0.86. The mean 
difference between the RD and LD groups was less than 
0.22 in the SUVmax of the liver and mediastinum, 0.02 in 
the SUVmean of the liver and mediastinum, –0.75 (–5.32%) 
in the SUVmax of the lesions, –0.13 (–1.83%) in the SUVmean 
of the lesions, 0.85 (1.98%) in the MTV of the lesions, 
and 4.06 (0.24%) in the TLG of the lesions. The DSs 
were mostly consistent between the RD and LD groups, 
and the classifications of negative (DS 1–3) and positive 
(Deauville 4–5) results were unchanged, suggesting patient 
management was unaffected. In summary, applying DL 
denoising neural networks in PET with a 50% reduction of 
[18F]FDG dose improved and maintained the image quality, 
tumor quantification accuracy, and DS in patients with 
lymphoma. Therefore, the DL denoising technique can 
reduce the radiation burden of PET studies in patients with 
lymphoma without sacrificing diagnostic image quality or 
efficacy.

Reducing radiation dose in accordance with the ALARA 
principle while maintaining diagnostic image quality of 
PET/CT is important provide benefit to patients (12,13) 
but also aid in the work of PET technologists (14). With 
the advance of PET techniques, the [18F]FDG dose can 
be further reduced (15-19). Among these techniques, DL 
denoising neural network is a promising approach that 

https://cdn.amegroups.cn/static/public/QIMS-23-817-Supplementary.pdf
https://cdn.amegroups.cn/static/public/QIMS-23-817-Supplementary.pdf
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Figure 4 The agreement of lesions’ SUVmax, SUVmean, MTV, and TLG between the RD and LD group. (A-D) The scatter plots of SUVmax, SUVmean, MTV, and 
TLG. The linear regression lines and their coefficients are shown. (E-H) The Bland-Altman plot of SUVmax, SUVmean, MTV, and TLG. The dotted lines indicate 
the LoA of the RD and LD groups, and the mean differences and their 95% CIs are shown next to the line. For better visualization of a wider range of data points, 
the x-axis of (C,D,G,H) and the y-axis of (C,D) are plotted in the logarithmic scales. The absolute differences in MTV and TLG between the RD and LD group 
increased for the lesions with a larger MTV and TLG (G,H). However, the excellent goodness of fit in the linear regression models (C,D) and small percentage 
LoA (Figure S2) on larger values of MTV and TLG suggested a limited relative difference. SUVmax, maximum standardized uptake value; RD, routine-dose; LD, 
low-dose; SUVmean, mean standardized uptake value; MTV, metabolic tumor volume; TLG, tumor lesion glycolysis; LoA, limits of agreement.
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Table 3 Interreader agreement between the two radiologists for lesion measurements

Lesion measurement Reader 1 Reader 2 ICC LoA

SUVmax 2.09±0.34 1.96±0.30 1 −0.01 [−0.25, 0.23]

SUVmean 1.65±0.28 1.63±0.28 1 −0.00 [−0.07, 0.07]

MTV (cm3) 0.20±0.08 0.15±0.03 1 −0.01 [−0.39, 0.38]

TLG (g/mL·cm3) 12.03±4.93 9.21±2.02 1 −0.03 [−1.20, 1.15]

The data of SUV, MTV, and TLG between reader 1 and reader 2 are the mean ± SD. The values for the LoA are the mean difference and 
95% confidence intervals between the two readers. ICC, intraclass correlation coefficient; LoA, limits of agreement; SUVmax, maximum 
standardized uptake value; SUVmean, mean standardized uptake value; MTV, metabolic tumor volume; TLG, tumor lesion glycolysis; SD, 
standard deviation.

can reduce the [18F]FDG dose by 25–87.5% in oncology 
patients (9,20-23). Xing et al. (9) reported that a U-Net-
based convolutional neural network, such as the one used 
in our study, improved signal-to-noise ratio and contrast-
to-noise ratio with a 25–50% reduction of the counts of 
coincidence events in oncology patients. Weyts et al. (21) 
showed that, with a 2.5D encoder-decoder U-Net neural 
network, the image quality of half-duration PET could 
be recovered and satisfy clinical requirements in oncology 
patients. Similarly, Theruvath et al. (22) showed that the 
assessment of treatment response was correct using PET-
magnetic resonance (MR) with a 50% reduction in [18F]
FDG dose in children and young patients with lymphoma. 
Furthermore, Sanaat et al (23) demonstrated that a cycle-
consistent generative adversarial network model could 
generate PET images with one-eighth of injected activity 
while maintaining the performance of image quality, 
lesion detection, and quantification accuracy in whole-
body PET tumor imaging. In line with these studies, our 
results suggested that the qualitative and quantitative image 
quality of 50% dose of [18F]FDG PET with a U-Net-
based denoising neural network can satisfy the clinical 
requirements for tumor quantification, staging, and 
treatment assessment in patients with lymphoma.

The percentages of [18F]FDG dose reduction depend 
on the reference dose level, PET performance, and DL 
algorithms. In this study, the reference dose standard was 
an injection of 0.11 mCi/kg [18F]FDG multiplied by an 
emission time of 2 min per bed, which is concordant with 
the recommendation of the minimal injected dose and scan 
time product; that is, 7 MBq/kg/min per bed, according to 
a procedure guideline for [18F]FDG PET tumor imaging 
published in 2015 (2). This weight-based injection dose 
was shown to be efficient in minimizing the injected dose 
and improve the image quality [17]. The state-of-the-art 

digital PET/CT with higher TOF resolution may allow 
further reduction of [18F]FDG dose or of acquisition time in 
lymphoma and tumor PET imaging (16,21). These studies 
suggest that the reference level of the injected dose is an 
evolving target with the advance of PET technologies, and 
this is the reason we referred to the standard-of-care PET 
protocol as the “routine” dose instead of the “full” dose in 
this study. A previous study using the same DL technique 
as used in our study reported a 25–50% reduction with a 
reference protocol of 3 min per bed and a 259-MBq [18F]
FDG dose in PET tumor imaging. Our results supported 
a 50% reduction in patients with lymphoma with a 
reference of 2 min per bed and a similar injected dosage. 
The difference in the percentage of dose reduction may be 
a result of the PET system performance and fine-tuning 
of the neural network to adapt to different PET scanner 
models. Moreover, another study (23) reported the superior 
performance of the generative adversarial network on dose 
reduction in [18F]FDG PET tumor imaging compared 
with the residual neural network; a 87.5% reduction was 
found to be feasible, which is higher than reported in 
our and others’ studies (9,20,21). We speculate that the 
superior performance may be attributed to the generative 
adversarial network, as suggested by other research (24,25). 
Another possible explanation for this is that other studies 
use the training and testing data from the same PET/CT 
scanner (23-25), while the DL model in our study was a 
commercial product that was developed with training data 
from other centers and other PET systems (9). Therefore, 
the performance is less optimized to a specific PET model 
but more generalized to multiple centers and/or scanners, 
as has been demonstrated in a multicenter and multivendor  
study (26). Nevertheless, more multicenter clinical 
evaluations are needed to validate the appropriate [18F]FDG 
dose reduction for PET tumor imaging with DL denoising 
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techniques and to establish new reference dose levels.
Additionally, other cross-center studies should be 

conducted to address the challenge of ensuring the reliable 
performance of DL in real-world applications (27). In our 
research, we used a DL denoising neural network technique 
to reduce image noise in PET images. The effectiveness of 
the neural network was independently validated on a third-
party dataset, which suggests the DL denoising technique 
can be potentially used in real-world clinical practice. One 
plausible explanation for this success could be that the neural 
network was trained to distinguish between noise and the 
actual signal in the PET images. The training targets of the 
network were normal-dose PET images, while the training 
inputs were LD PET images. To make the process practical, 
we simulated LD PET images by uniformly downsampling 
the list-mode data of normal-dose PET during the image 
reconstruction phase. This approach allowed us to create 
almost-ideal paired datasets for training and enabled 
the neural network to learn the noise characteristics of 
LD PET. An added advantage of this method was the 
reduced need for human intervention, thereby avoiding 
potential  previously described uncertainties (27).  
However, this approach does face challenges related to 
generalization. Since the training datasets exclusively 
consisted of [18F]FDG PET images from a single vendor’s 
scanner, the algorithm’s performance on other PET tracers 
may be limited. Adapting the algorithm for different noise 
characteristics of other scanners would require fine-tuning. 
Moreover, the simulation method for LD PET used in 
our study relies on list-mode PET raw-data for additional 
image reconstruction, demanding extra data storage and 
management effort. These concerns and limitations should 
be further investigated in future studies. 

Our results showed that the DL denoising technique 
can maintain or improve the diagnostic image quality of 
low [18F]FDG PET in patients with lymphoma. These 
results were consistent with the finding of previous studies 
(21,28). Furthermore, the quantitative consistency of 
SUV between LD PET with DL denoising and RD PET 
was demonstrated in a larger population. Although our 
data showed a good overall agreement in MTV and TLG 
between the RD and LD group, it is interesting to see 
how absolute differences increased with larger MTV and 
TLG, while the relative differences did not (Figure 4 and  
Figure S1). This may be due to the lesion segmentation 
method. A lesion segmented with a fixed threshold of  
2.5 could include more voxels in the images with higher 
noise such as in the RD group compared with the DL-

processed LD group. This phenomenon becomes more 
notable on the lesions with a large MTV or TLG, for 
example, >50 or >500, respectively. Other segmentation 
methods, such as adaptive threshold, statistical methods, or 
majority vote schemes, should be studied in the future. In 
line with a previous study that used the TOF technique (16), 
we found the DS was concordant between the RD group 
and DL processed LD group. In summary, our results 
support the use of low [18F]FDG dose PET imaging with 
DL denoising techniques in patients with lymphoma that 
can enhance safety for patients and potentially save the cost 
of tracer use in PET exams (19).

Our study has limitations. We investigated a low [18F]
FDG dose with simulation. A true low-injected-dose study 
should be performed to validate our results. Furthermore, 
a 50% reduction of the injected dose was chosen in this 
study based on our preliminary study (Figures S4,S5) and 
the results of previous studies (9,21). However, the limits 
of dose reduction should be investigated further. The 
participants with a DS of 2–4 accounted for 17.7% of the 
study cohort. A study with a larger cohort and balanced 
inclusion regarding DS can provide higher statistical power 
to investigate the concordance of the DS.

Conclusions

The DL denoising technique may enable a lower dose of 
[18F]FDG in PET imaging for patients with lymphoma. Our 
data showed that the SUV quantification, tumor burden 
evaluation, and DS assessment were correct for staging and 
treatment response assessment in patients with lymphoma 
subjected to a 50% dose of [18F]FDG in PET with the 
DL denoising neural network. This result can be used to 
support the use of DL denoising techniques in LD PET 
tumor imaging to minimize the risk associated with the 
radiation and reduce the medical cost of using PET tracers.
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Figure S1 The diagram of HYPER DLR. (A) The neural network is constructed based on a U-Net architecture with ResNet blocks and 
DenseNet skip connections. (B) The diagram of the ResNet block used in the neural network. This figure was adapted from Xing et al. (9) under 
the Creative Commons Attribution 4.0 International (CC BY) License. ResNet, residual network; DenseNet, dense convolutional network.

Appendix 1

The neural network architecture and training procedure

The architecture of the HYPER DLR neural network is derived from the U-Net-based architecture incorporated with 
residual network (ResNet) blocks and the dense convolutional network (DenseNet) connection techniques (9). Figure S1 
illustrates the network structure. In this network, a long residual path is used to connect the input to the output, which 
allows for the network to learn the image noise component between the target image and the input image, accelerating 
the convergence of the deep network. Similar to U-Net, the neural network blocks at higher levels have a larger matrix 
size and hence a higher spatial resolution. In contrast, the DenseNet connections are included in each level to decrease the 
information loss. Furthermore, the ResNet blocks are used at the majority of the nodes to avoid vanishing gradient problem 
and further improving the performance of the deep neural networks.

To train the neural network, 313 positron emission tomography (PET) studies were used, and an additional 80 studies were 
used for validation. The data were gathered from four sites equipped with PET/computed tomography (PET/CT) scanners 
manufactured by United Imaging Healthcare. The age of the patients ranged from 18 to 90 years, with a median age of 55 years. 
The injected dose for the scans varied between 3.1 to 4.3 MBq/kg, and the acquisition time was 90 to 180 seconds per bed for 
the body torso.

During training, the network used retrospective PET reconstructions with 50% acquisition time as input, resulting in 

Supplementary
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Figure S2 The percent LoA for the lesion SUVmax, SUVmean, MTV, and TLG. The dotted lines are the mean of the difference and its 95% 
CI. The values for the mean and 95% CI are noted next the lines. The x-axis of c and d is plotted in the logarithmic scale for better data 
visualization. LoA, limits of agreement; SUVmax, maximum standardized uptake value; RD, routine-dose; LD, low-dose; SUVmean, mean 
standardized uptake value; MTV, metabolic tumor volume; TLG, tumor lesion glycolysis; CI, confidence interval.

high-noise PET images. The training targets were retrospective reconstructions with a full acquisition time, yielding low-
noise PET images. All images underwent reconstruction using the ordered subset expectation maximization (OSEM) 
algorithm with time of flight (TOF) and point spread function (PSF) kernels, which is the standard-of-the-art reconstruction 
algorithm configuration. The parameters for iteration number and subsets were 2 and 20, respectively. The voxel size 
of the reconstructed images was 2.34×2.34×2.68 mm3. To enhance the network’s robustness and reduce overfitting, data 
augmentation techniques such as horizontal and vertical flips were applied. All training images were resampled to ensure 
uniform matrix size and spatial resolution. The image intensities were normalized within the range of [0, 1]. 

The network used a 2.5D processing approach, in which five slices of input images corresponded to one slice of the 
target image. Specifically, image patches with a dimension of 64×64×5 were used as the training input, while patches with a 
dimension of 64×64×1 served as the training target.

During the training process, the L1 loss function was adopted, and the model was trained using the adaptive moment 
estimation (ADAM) optimizer. The initial learning rate was set to 1×10−4 and was halved after 20 epochs. The network was 
trained with a batch size of 32 for over a total of 200 epochs.

The implementation of the network was carried out using the PyTorch framework and Python 3.7. For testing, a computer 
with a single Quadra P5000 GPU was used with CUDA library version 8.0 and cuDNN version 7.0.5.

The percent limits of agreement of the quantitative measurement for the lesions (Figure S2)

A B

C D
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Figure S3 The comparison of SSIM and PSNR between LD images derived from the DL denoising technique and RD images without DL 
(standard reconstruction). The y-axis and x-axis are the difference and mean between LD image group with DL and the RD image group 
without DL, respectively. The horizontal solid lines represent the median of the difference. Both lines are below zero, which indicate that 
the value of the SSIM and PSNR was slightly lower in the LD images with DL compared with the RD images without DL when RD images 
with DL were used as the reference. SSIM, structural similarity index measure; PSNR, peak signal to noise ratio; LD, low-dose; DL, deep 
learning; RD, routine-dose.

Structural similarity index measure (SSIM) and peak signal to noise ratio (PSNR) (Figure S3)
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Figure S4 The box plot of visual image quality scores in the preliminary study. The red circles are the image quality scores. The dots are the 
outliers of the box plot. 

The results of the preliminary study 

We conducted a preliminary study before starting the final study presented in the paper. The aims of the preliminary study 
were to (I) to help inform the standards for image quality scores and (II) to determine a duration for the reconstructions; 
that is, the level of the dose reduction. In the preliminary study, five patients with lymphoma undergoing fluorine-18 
fluorodeoxyglucose ([18F]FDG) PET/CT were enrolled. The data of these patients were not used in the final study. To reach 
agreement on the standard of image quality score, three nuclear radiologists reviewed the PET images and scored the image 
quality using a 5-point scale in a joint session. The radiologists were the same readers who scored the images in the final 
study.

The PET images were reconstructed using six protocols. The standard-of-care protocol in our department was the OSEM 
reconstruction with 2 minutes (min) list-mode data (OSEM 2 min). Furthermore, the deep learning (DL) denoising neural 
network was applied to five protocols with 0.5-, 0.75-, 1.0-, 1.25-, and 1.5-min duration data (DL 0.5 min, DL 0.75 min, DL 
1 min, DL 1.25 min, and DL 1.5 min, respectively). 

The visual image quality scores are shown in the Figure S4, which shows that the median of the visual image quality score 
for D-processed images decreased when the duration decreased from 1 to 0.5 min, while it became flat at durations of 1, 1.25, 
and 1.5 min. We concluded that a duration of 1 min with DL reconstructions can obtain superior image quality compared 
with OSEM reconstructions. Although the median score of 0.75 min was on par with OSEM 2 min, DL 1 min was selected 
due to preferred image quality (Figure S5) and substantially reduced duration.
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Figure S5 Illustration of the DL denoising technique and the reconstruction duration. This preliminary result indicated that a duration of  
1 min with the deep learning denoising technique is appropriate to acquire the correct diagnosis and avoid false-positive findings (arrowheads). 
DL, deep learning; OSEM, ordered subset expectation maximization.


