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Background and Objective: Automatic tumor segmentation is a critical component in clinical diagnosis 
and treatment. Although single-modal imaging provides useful information, multi-modal imaging provides 
a more comprehensive understanding of the tumor. Multi-modal tumor segmentation has been an essential 
topic in medical image processing. With the remarkable performance of deep learning (DL) methods in 
medical image analysis, multi-modal tumor segmentation based on DL has attracted significant attention. 
This study aimed to provide an overview of recent DL-based multi-modal tumor segmentation methods.
Methods: In in the PubMed and Google Scholar databases, the keywords “multi-modal”, “deep learning”, 
and “tumor segmentation” were used to systematically search English articles in the past 5 years. The date 
range was from 1 January 2018 to 1 June 2023. A total of 78 English articles were reviewed. 
Key Content and Findings: We introduce public datasets, evaluation methods, and multi-modal data 
processing. We also summarize common DL network structures, techniques, and multi-modal image 
fusion methods used in different tumor segmentation tasks. Finally, we conclude this study by presenting 
perspectives for future research.
Conclusions: In multi-modal tumor segmentation tasks, DL technique is a powerful method. With the 
fusion methods of different modal data, the DL framework can effectively use the characteristics of different 
modal data to improve the accuracy of tumor segmentation.
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Introduction

Tumors pose a significant threat to human health and well-
being, with gliomas in the brain, squamous cell tumors in 
the head and neck, melanomas in the skin, and systemic 
lymphomas among the prominent examples (1). Advanced 
medical imaging techniques, including magnetic resonance 

imaging (MRI), computed tomography (CT), and positron 
emission tomography (PET), play a crucial role in tumor 
staging, localization, diagnosis, and treatment planning. 
Accurate segmentation of tumor regions from medical 
images is critical to these processes. However, images 
obtained from a single modality may have limitations in 

https://crossmark.crossref.org/dialog/?doi=10.21037/qims-23-818
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accurately depicting the tumor shape, making multi-modal 
imaging advantageous in tumor segmentation tasks (2,3). 
For instance, in the segmentation of brain gliomas, the 
four MRI sequences T1, T2, T1ce, and fluid-attenuated 
inversion recovery (FLAIR) provide complementary 
information on the tumor shape and other lesion structures 
in the brain (4,5). Similarly, in head and neck tumor 
segmentation, PET and CT images can offer additional 
information on the tumor’s location and contour (6).

Manual tumor segmentation is a common technique 
used in computer-aided diagnosis (CAD) systems, but it has 
limitations due to the subjectivity of doctors’ experience, 
which may lead to deviation, as well as time-consuming 
and labor-intensive processes (7). Therefore, accurate 
automatic segmentation is essential. In recent years, deep 
learning (DL) techniques, for example, convolutional neural 
networks (CNN), have been widely used in multi-modal 
tumor segmentation tasks for various body parts, including 
the brain (8), head and neck (9), and lungs (10). The 
fundamental idea behind these techniques is to learn tumor 
features from training data and automatically segment 
tumors in unknown data, which can reduce the cost of 
manual segmentation and improve segmentation accuracy. 
Multi-modal DL-based tumor segmentation algorithms 
have emerged as a prominent trend and have attracted 
increasing attention for achieving accurate segmentation of 
tumors.

This study provides a comprehensive overview of 
DL algorithms for multi-modal tumor segmentation, 
including public datasets, evaluation methods, segmentation 
networks, common techniques, and evaluation indicators 
analysis under various multi-modal data fusion methods. 
The benchmark dataset from the Open Challenge (https://
grand-challenge.org) can validate the tumor segmentation 

performance under different multi-modal data fusion 
methods, and researchers can either apply these methods 
to specific task datasets or innovate based on them. 
Additionally, publicly available datasets such as BraTS (11) 
for head glioma, HECKTOR (12,13) for head and neck 
squamous cell carcinoma (HNSCC), and autoPET (14) 
for lymphoma, melanoma, or lung cancer, provide valuable 
resources for researchers to develop and evaluate their 
segmentation algorithms.

The discussion of this paper is divided into four main 
parts. The first part introduces multi-modal datasets 
and evaluation methods. The second part describes data 
processing. In the third part, we conduct a retrospective 
analysis of multi-modal data from the perspective of DL 
structures, covering preprocessing, network structures, 
fusion strategies, loss functions, and post-processing 
methods. The fourth part analyzes the tumor location 
retrospectively, focusing on brain gliomas, HNSCC, and 
systemic lymphomas. We present this article in accordance 
with the Narrative Review reporting checklist (available at 
https://qims.amegroups.com/article/view/10.21037/qims-
23-818/rc).

Methods

We performed a search of the PubMed and Google Scholar 
databases for existing research work on multi-modal tumor 
segmentation. The keywords used were “multi-modal”, 
“deep learning”, and “tumor segmentation”. The search 
time comprised research conducted in the past 5 years, 
and the specific time was from 1 January 2018 to 1 June 
2023. The search strategy is shown in Table 1. In the end, a 
total of 78 English articles were reviewed. After searching 
the articles, we analyzed and discussed the applied public 

Table 1 The search strategy summary

Items Specification

Date of search 03/03/2023–06/01/2023

Databases and other sources searched PubMed and Google Scholar

Search terms used Use “multi-modal”, “deep learning”, and “tumor segmentation” as keywords to search

Timeframe 2018–2023

Inclusion and exclusion criteria Published English journals were selected, excluding conferences and non-English 
papers. Papers containing “multi-modal”, “deep learning”, and “tumor segmentation” 
were selected, otherwise they were excluded

Selection process The literature selection was conducted independently by H.X. and Y.T.

https://grand-challenge.org
https://grand-challenge.org
https://qims.amegroups.com/article/view/10.21037/qims-23-818/rc
https://qims.amegroups.com/article/view/10.21037/qims-23-818/rc
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dataset, evaluation metrics, data processing, DL networks 
and technology, and multi-modal tumor segmentation 
methods according to the work content. 

Discussion

Datasets and evaluation methods

Public dataset
This study presents a summary of publicly available datasets 
commonly used for multi-modal tumor segmentation 
tasks. The BraTS Challenge provides MRI datasets with 
multiple sequences, which include T1, T2, T1ce, and 
FLAIR. Additionally, the HECKTOR and autoPET 
challenges provide PET/CT multi-modal datasets. 
Other public datasets, such as Lung-PET-CT-Dx and 
Soft Tissue Sarcoma (STS), are also available on The 
Cancer Imaging Archive (TCIA) website (https://www.
cancerimagingarchive.net). Table 2 summarizes the key 
features of these publicly available datasets.

MRI sequence dataset
The BraTS challenge contains four MRI sequences 
T1, T1ce, T2, and FLAIR sequences. T1 sequences 
provide basic tissue structure and can be used to identify 
morphological features of tumors (4). T1ce sequences can 
reflect the fat content of cells (4). The location and size of 
the lesion can be clearly reflected in the T2 sequences (4). 
Compared with the T2 sequences, FLAIR sequences can 
better show the surrounding conditions of the tumor site, 
and clearly show the edema area (5). BraTS2013 contains 
the data of 65 glioma patients, 30 people as training data, 
and 35 people as testing data. Some 14 of these patients had 
low-grade glioma (LGG) and 51 had high-grade glioma 
(HGG). The BraTS2014 training set contains the data 
of 200 patients, and the testing set contains the data of 
38 patients. On the basis of BraTS2014, the BraTS2015 
training set contains the data of 220 cases of HGG and 
54 cases of LGG, and the testing set contains 110 cases of 
unknown grade data, with a total of 384 cases of data. The 
BraTS2016 dataset and the 2015 dataset have the same 

Table 2 Multi-modal medical image tumor segmentation datasets, including MRI multi-sequence data set and PET/CT dual-modal dataset

Image modality Type of tumor Dataset Year
Number of cases

Training set Validation set Test set

MRI sequence (T1, T2, 
T1ce, FLAIR)

Brain tumor BraTS2013 2013 30 N/A 35

BraTS2014 2014 200 N/A 38

BraTS2015 (11) 2015 274 N/A 110

BraTS2016 (15) 2016 274 N/A 191

BraTS2017 (16) 2017 285 46 146

BraTS2018 (17) 2018 285 66 191

BraTS2019 (18) 2019 335 125 166

BraTS2020 (19) 2020 369 125 166

BraTS2021 (20) 2021 1,251 219 530

PET/CT Head and neck tumor HNC 2017 250 N/A N/A

HECKTOR (12) 2020 201 N/A 53

HECKTOR21 (13) 2021 224 N/A 101

Lung cancer Lung-PET-CT-Dx (21) 2020 355 N/A N/A

Soft tissue sarcoma STS (22) 2015 51 N/A N/A

Malignant melanoma, 
lymphoma, or lung cancer

autoPET (14) 2022 1,014 N/A 150

MRI, magnetic resonance imaging; PET, positron emission tomography; CT, computed tomography; FLAIR, fluid-attenuated inversion 
recovery; N/A, not applicable.

https://www.cancerimagingarchive.net
https://www.cancerimagingarchive.net
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training set, but the testing set has 191 cases. BraTS2017 
contains 210 cases of HGG and 75 cases of LGG, and 
the validation set and testing set contain data of 46 cases 
and 146 cases of unknown grade, respectively. BraTS2018 
training set and BraTS2017 have the same training set, 
and the verification set and testing set contain data of  
66 cases and 191 cases, respectively. BraTS2019 contains 
335 cases of data, including 259 cases of HGG and  
76 cases of LGG. The verification set and testing set 
contain data of 125 cases and 166 cases, respectively. 
BraTS2020 contains data of 369 cases, including 293 cases 
of HGG and 76 cases of LGG. The BraTS2020 dataset and 
the BraTS2019 dataset have the same verification set and 
testing set. BraTS2021 contains multi-institution and multi-

parameter MRI datasets, including 1,251 training sets, 219 
validation sets, and 530 test data. Figure 1 shows an image 
of a patient in the BraTS2021 dataset. 

PET/CT dataset
The HNC dataset, obtained from TCIA, comprises of 
250 patients (192 males and 58 females) who have been 
diagnosed with HNSCC. The data format used for 
storage is Digital Imaging and Communication in Medicine 
(DICOM). In HECKTOR2020, a dataset with 254 cases was 
created based on the HNC dataset, consisting of 201 cases for 
training and 53 cases for testing. HECKTOR2021 further 
expanded this dataset by adding 71 more patients, totaling 
325 patient data. Among them, 224 cases were used for 

A B C D

Figure 1 MRI sequence images of a brain tumor patient in the BraTS2021 (20) database. (A) T1. (B) T2. (C) FLAIR. (D) T1ce. MRI, 
magnetic resonance imaging; FLAIR, fluid-attenuated inversion recovery.

Figure 2 PET/CT images of a patient with squamous cell carcinoma in the HECKTOR database. (A) CT. (B) PET. PET, positron emission 
tomography; CT, computed tomography.

A B
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training, and 101 cases for testing. Figure 2 presents a PET/
CT image of a patient from the HECKTOR2020 challenge 
dataset. The size of CT in the data set is 512×512, and 
the axial resolution is 0.9766×0.9766, whereas that of the 
corresponding PET is 128×128, and the axial resolution 
is 3.516×3.516. Therefore, in order to avoid the difficult 
problem of segmentation caused by low resolution, for 
some methods (23-26) in data preprocessing, the CT and 
PET volume are resampled to an isotropic 1×1×1 mm3 voxel 
spacing using trilinear interpolation. 

The Lung-PET-CT-Dx dataset, sourced from TCIA, 
comprises DICOM-formatted data from 355 patients 
diagnosed with lung cancer. The CT images in the dataset 
are of size 512×512, whereas the corresponding PET images 
are of size 200×200. Figure 3 depicts a PET/CT image of a 
patient from the Lung-PET-CT-Dx dataset.

The STS dataset, sourced from TCIA, comprises data 
from 51 patients diagnosed with soft tissue sarcoma of 
extremities, stored in DICOM format. Each CT image is 
of size 512×512, whereas the corresponding PET image is 
of size 128×128. Figure 4 presents a PET/CT image from a 
patient included in the STS dataset.

The autoPET challenge provides a training set of PET/
CT data for patients diagnosed with melanoma, lymphoma, 
or lung cancer. The dataset includes a total of 1,014 studies 
(900 cases) obtained at the University Hospital Tübingen 
and stored in DICOM, NIfTI, and HDF5 formats on 
TCIA. Figure 5 displays a PET/CT image of a patient in 
the autoPET dataset.

Basic evaluation metrics
Tumor segmentation involves pixel-wise classification of 

A B

Figure 3 PET/CT images of a patient with lung cancer in the Lung-PET-CT-Dx database. (A) CT. (B) PET. PET, positron emission 
tomography; CT, computed tomography.

Figure 4 PET/CT images of a patient with soft tissue sarcoma of extremities in the STS database. (A) CT. (B) PET. PET, positron emission 
tomography; CT, computed tomography.

A B
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the image, and the accuracy of the segmentation can be 
evaluated using a confusion matrix, which indicates the 
relationship between the segmentation result and the 
ground truth. Table 3 provides a summary of the confusion 
matrix.

In tumor segmentation, the confusion matrix serves as a 
representation of the relationship between the segmentation 
results and the ground truth. The basic evaluation 
indicators that can be derived from the confusion matrix 
include accuracy rate (ACC), positive predictive value (PPV), 
sensitivity, known as true positive rate (TPR), specificity, 
known as true negative rate (TNR), Jaccard similarity 
coefficient (JC), dice similarity coefficient (DSC), F1 score, 
and the harmonic mean value of sensitivity (HMSD). ACC 
indicates the percentage of correctly predicted results 
among all samples. PPV reflects the proportion of all 
predicted positive samples that are actually positive. TPR 
signifies the proportion of actual positive samples that are 
predicted as positive. TNR represents the ability to identify 
negative samples, which is the proportion of negative 
samples that are correctly identified. The calculation 
formulas for these indicators are presented in Table 4.

Evaluation metrics based on segmentation boundaries

The evaluation of the boundary of the segmentation result 

can be achieved using two distance metrics: mean surface 

distance (MSD), also known as average symmetric surface 

distance (ASSD), and Hausdorff distance (HD). These two 

A B

Figure 5 PET/CT images of a patient with melanoma in the autoPET database. (A) CT. (B) PET. PET, positron emission tomography; CT, 
computed tomography.

Table 3 Confusion matrix

Confusion matrix
Ground truth

Positive Negative

Positive TP FP

Negative FN TN

TP, true positive; FP, false positive; FN, false negative; TN, true 
negative.

Table 4 Evaluation index and its calculation formula

Assessment Formula

ACC TP TN
TP TN FP FN

+
+ + +

PPV (precision) TP
TP FP+

TPR (sensitivity) TP
TP FN+

TNR (specificity) TN
FP TN+

IoU (JC) TP
TP FP FN+ +

DSC 2
2

TP
TP FP FN+ +

F1 score 2 PPV TPR
PPV TPR
× ×

+

HMSD 2
1/ 1/DSC TPR+

ACC, accuracy; TP, true positive; TN, true negative; FP, false 
positive; FN, false negative; TPR, true positive rate; TNR, true 
negative rate; IoU, intersection over union; JC, Jaccard similarity 
coefficient; DSC, dice similarity coefficient; PPV, positive 
predictive value; HMSD, harmonic mean value of sensitivity.
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metrics are more sensitive to the segmentation boundary. Let 
P denote the predicted tumor, G denote the ground truth 
tumor, and PC and GC denote the corresponding contours. 
The calculation formulas for MSD and HD are as follows:

( ) ( ) ( )1 1 1, min , min ,
2 C C

C C

C C g G p Pp P g GC C

MSD P G d p g d g p
P G∈ ∈

∈ ∈

 
= +  

 
∑ ∑  

[1]

( ) ( ) ( ){ }, max max min , ,max min ,
C CC C

C C g G p Pp P g G
HD P G d p g d g p

∈ ∈∈ ∈
=            [2]

where ( ),d p g  represents the Euclidean distance between 
point p and point g, ,c cp p g G∈ ∈ . cp  and cG  represent the 
total number of pixels on the predicted and ground truth 
contours, respectively.

Evaluation metrics based on segmentation volume
For the task of tumor segmentation, the performance of 
segmentation can be evaluated by measuring the segmented 
volume. The two evaluation indicators commonly used 
are the relative volume difference (RVD) and the absolute 
volume difference (AVD). The calculation formulas for 
RVD and AVD are given below:

( ),
P G

RVD P G
G
−

=                                                            [3]

( ),AVD P G P G= −
 
                                                           [4]

where P is the predicted tumor volume, and G is the actual 
tumor volume.

Data processing

This section will discuss the preprocessing and post-
processing steps applied to the raw data in preparation 
for input to the segmentation network. This includes 
standardizing the data dimensions of different modalities 
and normalizing pixel intensity values prior to input. In cases 
where data are insufficient, data augmentation techniques 
may be employed. Additionally, post-processing techniques 
may be applied to refine the preliminary segmentation results 
generated by the network and improve performance. 

Pre-processing
Data preprocessing is a crucial step in the segmentation task 
that can enhance the network model’s performance. Multi-
modal image registration, in particular, is a crucial step in 
data preprocessing for multi-modal tumor segmentation (27).  
It involves aligning different imaging modalities, such as 
MRI sequences and PET/CT scans, to a common spatial 
reference frame. By performing image registration, the 
inherent spatial discrepancies between modalities are 

minimized, ensuring accurate fusion and correlation of 
tumor information across diverse imaging sources (28). This 
alignment facilitates the creation of a comprehensive and 
integrated view of the tumor, enhancing the segmentation 
process and enabling better visualization and analysis of the 
tumor’s spatial distribution and characteristics (29).

Data size is also an important consideration, and in 
some experiments, the BraTS dataset’s original size of 
240×240×155 is cropped or resized to 128×128×128 to 
reduce storage requirements (30-34). In the HECKTOR 
dataset, where the axial size of PET and CT images is 
different, some methods resample PET/CT images to 
1×1×1 mm in each direction and crop them to 144×144× 
144 size (23,24,35). For the STS dataset, where the PET 
axial size is 128×128, and the CT axial size is 256×256, some 
works (36,37) resize CT to match PET size to 128×128, or 
linearly interpolate PET to CT size (38).

Pixel value processing, such as bias field correction, 
intensity normalization, and intensity shift and scale, is also 
an essential pre-processing step (19,39). For example, some 
methods use the N4ITK method to correct the BraTS 
dataset’s bias field (8,31,40), and then the pixel values are 
normalized (2,16,41) using z-score normalization. For 
the HECKTOR dataset, some methods intercept the 
Hounsfield unit (HU) value of CT images to eliminate 
irrelevant information (25,42,43), and normalize the 
intercepted HU value to [0, 1] or [−1, 1] (9,25,44). For PET 
images, it is typically converted into standard uptake values 
(SUVs) (45), and then z-score normalization is applied.

Finally, data volume augmentation is used to improve 
the model’s robustness and avoid overfitting. Data 
augmentation methods including flip, rotations, random 
noise, scaling, elastic deformations, and the mixed data 
(mix-up) method (46,47) are commonly used in PET/CT 
tumor segmentation tasks. The mix-up (48) technique can 
increase data diversity, which generates randomly weighted 
combined image pairs based on training data pairs. For 
example, the generated mixed training data pair (x,y) can be 
weighted from the original training data pair (x1,y1), (x2,y2) 
and can be expressed as: 

( )1 21x x xλ λ= + −                                                              [5]

( )1 21y y yλ λ= + −
                                                             

[6]

Where ( )~ Beta =0.2λ α  , means that the probability of 
data enhancement is 0.2.

Post-processing
After training a neural network, the resulting prediction 
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may require further refinement using post-processing 
methods to improve segmentation accuracy. These methods 
commonly involve the use of conditional random field (CRF), 
removal of small connected domains and outliers (49), and 
setting thresholds for the number of pixels. For instance, 
Kamnitsas et al. (50,51) utilized CRF to eliminate false 
positives and remove connected domains that contain fewer 
than 250 pixels. In the case of glioma-enhanced region 
segmentation, if the number of pixels in the enhanced 
region is below a predefined threshold, necrotic regions can 
be substituted instead (52,53).

DL network and technology 

This section provides a comprehensive overview of the DL 
network architectures and techniques frequently employed 
in multi-modal tumor segmentation tasks. Among the 
commonly used network structures, CNNs and generative 
adversarial networks (GANs) are prominent. Moreover, 
several techniques are utilized to enhance the segmentation 
performance, such as attention mechanisms and uncertainty 
analysis.

CNN-based methods
CNNs have been widely used in computer vision applications, 
such as image classification (54,55), segmentation (56), and 
detection (57). The basic components of a CNN include 
the convolutional layer, pooling layer, activation layer, and 

fully connected layer. In 2014, Google proposed a network 
structure called GoogleNet (58), which included the 
Inception module. In multi-modal tumor segmentation 
tasks (40,59,60), the Inception module has also been used 
as a component of the structural framework. For example, 
Qayyum et al. (60) used the Inception structure as the 
encoding part in the HNSCC segmentation task. They 
extracted features of different levels to avoid gradient 
disappearance and reduce computational costs, resulting in 
improved segmentation performance. In addition to CNNs, 
the fully connected layer can be removed to obtain the fully 
convolutional network (FCN) (61), which is a milestone in 
the field of image segmentation. FCN is often used in multi-
modal tumor segmentation (53,62-65), and Sun et al. (53)  
constructed a brain glioma segmentation framework 
based on FCN. Their framework is a multi-path structure 
that includes convolutional layers, pooling layers, dilated 
convolutional layers, deconvolutional layers, and activation 
function components. Similarly, the U-Net (56) network 
follows the encoder-decoder network structure and has 
become the most popular model in the field of medical 
image segmentation. Its structure is shown in Figure 6, 
and it consists of multi-level convolutions, including 
downsampling and upsampling operations. To solve the 
problem of feature disappearance in the downsampling 
process, skip connections are designed to fuse the features 
of the encoding part during the upsampling process. Some 
works (10,30,52,66-71) have performed multi-modal tumor 

Convolution

Downsample

Upsample

Copy

Figure 6 U-Net network structure with skip connections for tumor segmentation. The blue box indicates copied feature maps, while the 
white box represents a multi-channel feature map.
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segmentation based on the U-Net framework and achieved 
satisfactory segmentation results. Raza et al. (30) designed 
the encoder part as a residual network based on the U-Net 
framework to solve the problem of gradient disappearance. 
They also designed skip connections between residual 
and convolutional blocks to speed up the training of the 
network.

GAN-based methods
GANs (72) are composed of two competing neural networks: 
a generator and a discriminator. The generator is responsible 
for generating fake data, while the discriminator is used to 
differentiate real and fake data. In the context of multi-modal 
tumor segmentation tasks, the generator can be directly 
utilized to generate segmentation results (73). A typical 
GAN network structure is illustrated in Figure 7, where 
the generator is a U-Net network, and the discriminator is 
a classification network. The predicted result and the real 
label are fed into the discriminator network to distinguish 
whether the input is the predicted result or the actual label. 
In a study by Huang et al. (73), transformer technology was 
employed in the generator against the network framework in 
the nasopharyngeal carcinoma PET/CT dataset, whereas the 
discriminator was used to constrain the final segmentation 
results and achieved good performance. GAN’s generators 
can also be utilized to generate image data to improve the 
feature extraction capabilities for specific modalities. Zhang 
et al. (74) proposed to use two discriminators, where PET/
CT images are encoded separately and the mode-specific 
decoding branch and the fusion branch of the two modalities 
are sent to the discriminator to train the network. This 
approach is used to extract features of a specific modality. 
Moreover, Xiang et al. (75) added a modality discriminator 
based on Zhang’s work to determine whether the fusion 
branch and two specific decoding branches belong to PET or 
CT modality.

Attention methods
In multi-modal tumor segmentation tasks, it is crucial for 
the network to automatically determine which feature 
information is the most informative. Therefore, the 
attention mechanism has been widely used in this area 
(9,18,24,69,76-83). Feature channel attention and feature 
space attention are two common types of attention methods. 
To enhance the tumor region information and suppress 
the normal physiological regions in PET images, spatial 
attention modules have been introduced by Diao et al. (84) 
and Fu et al. (3). In MRI multi-sequence data, Zhou et al. 
(31,32,34) applied channel and spatial attention mechanisms 
for feature fusion after extracting features from four MRI 
sequence images to improve the model’s feature extraction 
ability.

In order to enhance the feature extraction and 
representation capabilities of the network, Hu et al. (85) 
proposed the squeeze-and-excitation network (SENet). 
Compared with traditional weight transfer methods, 
such as transferring feature maps to the next layer, 
SENet establishes interdependence between channels 
and adaptively  corrects  feature strengths among 
channels through a global loss function. Some methods 
(25,42,43,60,86-88) integrate SENet into their own 
network to improve feature extraction abilities. For 
example, Qayyum et al. (60,86) embedded SENet into the 
Inception coding part to obtain useful features, whereas 
Yuan et al. (42,43) and Yan et al. (87) incorporated SENet 
into the ResNet structure to improve tumor segmentation 
performance. Yousefirizi et al. (25) integrated SENet into 
the nnU-Net network to improve head and neck tumor 
segmentation results. Furthermore, Yao et al. (88) combined 
SENet and Dense to enhance feature extraction in PET/
MR pancreatic tumors and improve segmentation accuracy.

In the field of natural language processing, transformer 
technology introduced a self-attention mechanism to connect 

Figure 7 GAN network structure for tumor segmentation. GAN, generative adversarial network.

Segmentation loss

Adversarial loss
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long-sequence long-distance contexts. This concept was later 
extended to image segmentation. Liu et al. (89) proposed the 
Swin Transformer technology that employs sliding window 
technology to achieve parameter reduction and global 
information modeling. Similarly, Cao et al. (90) developed a 
U-Net shaped transformer for medical image segmentation, 
which outperformed CNNs. Several studies built on these 
foundations to address specific segmentation tasks. For 
example, Zhu et al. (91) and Li et al. (92) employed Swin 
Transformers for semantic segmentation. Likewise, Liang 
et al. (93), Huang et al. (73), and Cai et al. (94) used U-Net 
shaped transformers for multi-modal tumor segmentation. 
Yue et al. (95) designed a U-shaped structure with a global 
attention transformer and a local attention transformer 
for esophageal squamous cell carcinoma data, which led to 
improved segmentation outcomes.

Uncertainty mechanism
Quantifying network segmentation uncertainty is a crucial 
aspect of medical image segmentation (37,77,96-98). To 
describe the uncertainty of the segmentation task, De Biase 
et al. (77) utilized generative probability maps. Diao et al. (37)  
proposed the evidence loss function to express the 
uncertainty of the PET and CT output results. The single-
modal segmentation outcomes were eventually merged using 
evidence fusion, whereby the network becomes simpler 
and segmentation performance is enhanced. Hu et al. (97) 
implemented uncertainty analysis using the Monte Carlo 
dropout technique. It proposed uncertainty criteria based 
on lesion regions (impacting DSC and sensitivity) and 
background regions (impacting specificity) to improve 
performance. Huang et al. (98) added an evidence layer to 
the feature space to calculate the uncertainty of each voxel 
and improve segmentation accuracy.

Multi-modal tumor segmentation methods

In recent years, a variety of DL-based methods have been 
proposed to tackle the problem of multi-modal tumor 
segmentation. Specifically, various methods have been 
proposed for brain glioma, HNSCC, and whole-body 
tumor segmentation. 

Brain tumor segmentation
This section will focus on the segmentation of brain glioma 
using the BraTS dataset. We present an overview of the 
current state-of-the-art DL methods for multi-modal 
medical image segmentation in the BraTS challenge, which 

are summarized in Table 5. The methods can be categorized 
into three types based on multi-modal image fusion: input-
level fusion using input data, feature-level fusion based 
on feature extraction, and result-level fusion based on 
segmentation results. The table provides details on the data 
preprocessing technique, segmentation network structure, 
dataset used, as well as Dice results for whole tumor, tumor 
core, and enhanced tumor.

The input-level fusion method involves merging the 
four input MRI sequences (T1, T2, T1ce, and FLAIR) 
into the network model after fusion at the channel layer. 
This method is commonly used for tumor segmentation. 
For instance, Liu et al. (19) proposed a multi-task model 
for segmenting tumors in the BraTS dataset and added a 
variational autoencoder (VAE) to the segmentation network 
to reconstruct the input data as an auxiliary task. The 
reconstruction part extraction helped in segmenting the 
multi-modal feature extraction capabilities of the encoded 
part of the network, leading to improved segmentation 
performance. Similarly, Cai et al. (94) fused multiple 
sequences of the BraTS dataset at the input-level. They 
used the U-Net network as the framework for segmentation 
and employed convolution and transformer blocks as 
the components of the encoding and decoding, thereby 
achieving comprehensive learning of global and local 
information.

Feature-level fusion is also a common approach for 
multi-modal tumor segmentation. After extracting features 
from T1, T2, T1c, and FLAIR sequences, the fusion is 
performed at the feature level. Zhu et al. (91) proposed a 
segmentation model for the BraTS dataset, consisting of 
three modules: segmentation, edge detection, and feature 
fusion. In the segmentation module, T1, T2, T1c, and 
FLAIR sequence data are fused at the input level, whereas 
in the edge detection module, T1ce and FLAIR sequences 
are fused at the input level as special features. The feature 
fusion module fuses the intermediate features of the 
segmentation module and the edge detection module in a 
feature-level manner, enhancing segmentation performance. 
Zhou et al. (34) used independent encoders for four 
different image sequences to learn specific features. They 
employed cross-connections to learn information of related 
modalities, and an attention fusion module to fuse the 
extracted features.

In addition, there are tumor segmentation methods based 
on result-level fusion, such as fusion by majority voting and 
weighted averaging. Ding et al. (100) adopted a dynamic 
decision fusion method to integrate the results from 
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Table 5 Summary of the deep learning approaches for BraTS challenge segmentation 

Fusion method Study Network Pre-processing Database Result DSC (whole/core/enhanced)

Input level (39) 3D U-Net Normalization BraTS18** 0.8839/0.8154/0.7664

VAE Data augmentation

(19)* 3D U-Net Normalization BraTS20 0.8900/0.8300/0.8100

3D ResNet Crop

(8) 2D CNN Bias field correction BraTS13** 0.8800/0.8300/0.7700

Normalization BraTS15 0.7800/0.6500/0.7500

(16) 3D U-Net Normalization BraTS15 0.8500/0.7400/0.6100

Data augmentation BraTS17 0.8960/0.7970/0.7320

(51)* 3D CNN Normalization BraTS15** 0.8490/0.6670/0.6340

CRF

(53)* 3D FCN Crop BraTS18 0.9000/0.7900/0.7700

Normalization BraTS19 0.8900/0.7800/0.7600

(99)* 3D U-Net N/A BraTS15 0.8700/0.7500/0.6400

3D ResNet BraTS17 0.9040/0.8280/0.7780

(94)* 3D Transformer N/A BraTS18 0.7160/0.7610/0.8740

BraTS21 0.8400/0.8740/0.9110

(15) 3D FCN Bias field correction BraTS13 –

CRF Normalization BraTS15 0.8600/0.7300/0.6200

RNN BraTS16 0.8400/0.7300/0.6200

Feature level (34) 3D U-Net Crop BraTS18 0.8560/0.8700/0.7940

Bias field correction

Normalization

(49) 3D U-Net Crop and resize BraTS18 0.8820/0.7860/0.6940

Bias field correction BraTS19 0.8970/0.7750/0.7060

Normalization

(18) 2D U-Net Crop BraTS19 0.9267/0.8947/0.8354

(91)* 2D Transformer Normalization BraTS18 0.9089/0.8796/0.8194

BraTS19 0.9158/0.8924/0.8384

BraTS20 0.9103/0.8822/0.8461

Result level (50)* 3D CNN Bias field correction BraTS17** 0.8860/0.7850/0.7290

3D FCN Normalization

3D U-Net

(100) 2D FCN Normalization BraTS15 0.8500/0.7100/0.6100

2D U-Net BraTS18 0.8300/0.7360/0.7120

*, the method has public code. **, the first result of the challenge. DSC, dice similarity coefficient; VAE, variational autoencoder; CNN, 
convolutional neural network; CRF, conditional random field; FCN, fully convolutional network; N/A, not applicable; RNN, recurrent neural 
network.
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multiple views to improve segmentation performance. First, 
the 3D data is sliced into 2D images from axial, sagittal, and 
coronal directions, and the 2D segmentation results from 
the three directions are fused to obtain the final integrated 
segmentation result. 

Head and neck tumor segmentation
This section discusses the segmentation method for 
HNSCC based on the HECKTOR dataset and summarizes 
a range of state-of-the-art networks based on multi-
modal segmentation, as shown in Table 6. The networks 
are categorized into input-level fusion and feature-level 
fusion, and the table includes information on the network 
structure, preprocessing method, dataset used, and common 
segmentation result indicators. Qayyum et al. validated the 
HECKTOR21 and HECKTOR22 datasets in their work 

(60,86). They fused PET and CT 2-modality images at 
the input-level and then performed segmentation using a 
U-shaped segmentation network. The encoding part of 
the network employed a 3D inception structure with a 3D 
squeeze and excitation module, whereas the decoding part 
was constructed based on ResNet. This approach helped 
to calibrate channel features and integrate coarse and fine 
features for accurate tumor segmentation.

In the context of the HECKTOR dataset, multi-modal 
data can also be segmented by fusing features extracted 
from different modalities in a feature-level manner. Lee 
et al. (9) proposed a dual-path cross-attention U-network 
that encodes PET and CT modalities in two separate paths 
in the encoding layer. The channel attention module is 
used in each layer of encoding to extract key features. The 
modality-specific features are then aggregated using 1×1×1 

Table 6 Summary of the deep learning approaches for HECKTOR challenge segmentation 

Fusion method Study Network Pre-processing Database Result DSC/HD95

Input level (24)* 3D U-Net Normalization HECKTOR20 0.7530/3.28

Clip

(35)* 3D U-Net Normalization HECKTOR20 0.7590/–

(42) 3D ResNet Normalization HECKTOR20 0.7318/–

Crop

Data augmentation

(43) 3D ResNet Normalization HECKTOR21 0.7608/3.27

Crop

Data augmentation

(25) 3D U-Net Normalization HECKTOR21 0.7700/3.01

Clip

(60)* 3D Inception Data augmentation HECKTOR21 0.8110/5.75

3D ResNet

(26) 3D U-Net Normalization HECKTOR21 0.7681/3.15

(86)* 3D Inception Normalization HECKTOR21 
HECKTOR22

0.8240/– 
0.7540/–

Data augmentation

Feature level (9) 3D U-Net Normalization HECKTOR21 0.7367/3.27

Data augmentation

(92) 3D Transformer N/A HECKTOR21 0.7690/–

(101) 2D U-Net N/A HECKTOR21 0.8104/3.42

3D U-Net

*, the method has public code. DSC, dice similarity coefficient; HD95, Hausdorff distance 95%; N/A, not applicable.
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convolution and sent to the decoder for final segmentation. 
Ahmad et al. (101) used the attention mechanism to 
fuse PET modal data features in the decoding part 
after extracting features from CT, which improved the 
segmentation performance of the network. Zhu et al. (102) 
used the cruciform structure extracted from PET images 
as additional information. Then, three different encoders 
performed feature extraction on cruciform structure images, 
PET images, and CT images. The extracted features were 
fused in a feature-level manner to extract tumor structure 
and boundary information. 

Whole body tumor segmentation
This section presents a detailed review and analysis of 
lymphoma segmentation, including a summary of state-of-
the-art networks based on multi-modal segmentation. These 
networks are classified into input-level fusion, feature-level 
fusion, and result-level fusion, and are presented in Table 7 
along with the network structure, preprocessing method, 
data set, and common segmentation result indicators. 
As an example of input-level fusion, Shi et al. (103) used 
the CycleGAN network to generate metabolic anomaly 
appearance (MAA) with whole-body PET/CT data. MAA 
was directly fused with PET and CT at the channel level 
in an input-level manner, and the network was trained to 
improve lymphoma segmentation performance. Wang 
et al. (104-106) used a threshold method to obtain high 
fluorodeoxyglucose (FDG) uptake sites (sFHU) based on 
PET images as additional prior information. Different from 
the study by Shi et al. (103), Wang et al.’s studies (104-106) 

performed feature extraction on sFHU, PET, and CT 
images separately, and then fused the extraction features 
in a feature-level manner to obtain the segmentation 
results. Result-level fusion also yielded good segmentation 
results, as demonstrated by Hu et al. (107), who fused the 
original PET/CT image, the preliminary results of multi-
angle 2D segmentation, and the preliminary results of 3D 
segmentation to perform lymphoma segmentation.

Conclusions 

In this paper, the importance of using multi-modal data 
for accurate tumor segmentation in medical images is 
highlighted. Various DL-based methods for multi-modal 
tumor segmentation are discussed, along with commonly 
used datasets and evaluation methods, multi-modal 
data processing techniques, DL network structures, and 
data fusion methods. Commonly used CNN networks 
such as FCN (53,62-65) and U-Net (10,30,52,66-71), 
as well as GAN-based segmentation methods (73-75), 
are summarized. Attention mechanisms such as channel 
and spatial attention (84), SE module (60,86), and 
transformer attention (89) are also discussed. Uncertainty 
analysis techniques (37,77,96-98) are used to quantify 
segmentation uncertainty and improve segmentation 
results. Tables 5-7 summarize the segmentation methods 
for BraTS, HECKTOR dataset, and whole-body tumor 
dataset, respectively, including the fusion methods of 
different modal data, the network structure used, the data 
processing method, and the segmentation results.

Table 7 Summary of the deep learning approaches for whole body tumor segmentation

Fusion method Study Network Pre-processing Database Result DSC

Input level (103) U-Net Normalization Private data 0.8609

Clip

Feature level (104) 3D U-Net Crop Private data 0.8585

Random rotate

(105) 3D U-Net Crop autoPET 0.6450

Random rotate

(106) 3D U-Net Crop Private data 0.8690

Random rotate

Result level (107) 2D ResU-Net Rescale Private data 0.6664

3D ResU-Net

DSC, dice similarity coefficient.
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Despite the remarkable progress made by CNN and 
GAN networks, as well as attention and uncertainty 
techniques, in multi-modal tumor segmentation, there is 
still a need for further improvement in existing methods. 
There are several research directions that can be explored in 
the future. Firstly, most existing methods fuse multi-modal 
data directly at the input level, feature level, or result level, 
without taking into consideration whether the features 
provided by each modality data are helpful for tumor 
segmentation. Therefore, there is a need for uncertainty 
analysis and quantification of the extracted features to 
further improve segmentation performance. Secondly, in 
whole-body tumor segmentation tasks, such as lymphoma, 
obtaining large and accurate annotations is challenging. 
Therefore, it is a challenging and practical direction to 
explore unsupervised or weakly supervised methods for 
segmenting lymphoma in the absence of or with inaccurate 
annotations.

Automatic tumor segmentation holds paramount 
significance in clinical diagnosis and treatment, and the use 
of multi-modal images allows for a more comprehensive 
representation of tumor characteristics. Thus, this paper 
aimed to review the advancements made in multi-modal 
tumor segmentation based on DL over the past 5 years. 
The research work was scrutinized in terms of the utilized 
datasets, evaluation metrics, data preprocessing techniques, 
DL networks and technology, and multi-modal tumor 
segmentation methods. Additionally, the paper includes a 
thorough analysis of different modality fusion approaches 
concerning tumor segmentation in various contexts. 
Moreover, the paper identifies the urgent challenges that 
demand attention in future research, such as uncertainty 
analysis of extracted features and the exploration of 
unsupervised learning techniques in scenarios with limited 
precise annotations.

Acknowledgments

Funding: This work was supported by the Natural Science 
556 Foundation of Liaoning Province (No. 2022-MS-114).

Footnote

Reporting Checklist: The authors have completed the 
Narrative Review reporting checklist. Available at https://
qims.amegroups.com/article/view/10.21037/qims-23-818/rc

Conflicts of Interest: All authors have completed the ICMJE 

uniform disclosure form (available at https://qims.
amegroups.com/article/view/10.21037/qims-23-818/
coif). All authors report that this work was supported by 
the Natural Science 556 Foundation of Liaoning Province 
(No. 2022-MS-114). The authors have no other conflicts of 
interest to declare.

Ethical Statement: The authors are accountable for all 
aspects of the work in ensuring that questions related 
to the accuracy or integrity of any part of the work are 
appropriately investigated and resolved. 

Open Access Statement: This is an Open Access article 
distributed in accordance with the Creative Commons 
Attribution-NonCommercial-NoDerivs 4.0 International 
License (CC BY-NC-ND 4.0), which permits the non-
commercial replication and distribution of the article with 
the strict proviso that no changes or edits are made and the 
original work is properly cited (including links to both the 
formal publication through the relevant DOI and the license). 
See: https://creativecommons.org/licenses/by-nc-nd/4.0/.

References

1. Burstein HJ, Krilov L, Aragon-Ching JB, Baxter NN, 
Chiorean EG, Chow WA, et al. Clinical Cancer Advances 
2017: Annual Report on Progress Against Cancer From 
the American Society of Clinical Oncology. J Clin Oncol 
2017;35:1341-67.

2. Yang Q, Guo X, Chen Z, Woo PYM, Yuan Y. D(2)-
Net: Dual Disentanglement Network for Brain Tumor 
Segmentation With Missing Modalities. IEEE Trans Med 
Imaging 2022;41:2953-64.

3. Fu X, Bi L, Kumar A, Fulham M, Kim J. Multimodal 
Spatial Attention Module for Targeting Multimodal PET-
CT Lung Tumor Segmentation. IEEE J Biomed Health 
Inform 2021;25:3507-16.

4. Katti G, Ara SA, Shireen A. Magnetic resonance imaging 
(MRI)–A review. International Journal of Dental Clinics 
2011;3:65-70.

5. Stall B, Zach L, Ning H, Ondos J, Arora B, Shankavaram 
U, Miller RW, Citrin D, Camphausen K. Comparison 
of T2 and FLAIR imaging for target delineation in high 
grade gliomas. Radiat Oncol 2010;5:5.

6. Ma, J, Yang X. Combining CNN and Hybrid Active 
Contours for Head and Neck Tumor Segmentation 
in CT and PET Images. In: Andrearczyk V, Oreiller 
V. Depeursinge A, editors. Head and Neck Tumor 

https://qims.amegroups.com/article/view/10.21037/qims-23-818/rc
https://qims.amegroups.com/article/view/10.21037/qims-23-818/rc
https://qims.amegroups.com/article/view/10.21037/qims-23-818/coif
https://qims.amegroups.com/article/view/10.21037/qims-23-818/coif
https://qims.amegroups.com/article/view/10.21037/qims-23-818/coif
https://creativecommons.org/licenses/by-nc-nd/4.0/


Xue et al. Application of DL in multi-modal tumor segmentation tasks1136

© Quantitative Imaging in Medicine and Surgery. All rights reserved.   Quant Imaging Med Surg 2024;14(1):1122-1140 | https://dx.doi.org/10.21037/qims-23-818

Segmentation. HECKTOR 2020. Lecture Notes in 
Computer Science, vol 12603. Cham: Springer. 2021. doi: 
10.1007/978-3-030-67194-5_7.

7. Dubey RB, Hanmandlu M, Vasikarla S. Evaluation of Three 
Methods for MRI Brain Tumor Segmentation. 2011 Eighth 
International Conference on Information Technology: New 
Generations, Las Vegas, NV, USA; 2011:494-9.

8. Pereira S, Pinto A, Alves V, Silva CA. Brain Tumor 
Segmentation Using Convolutional Neural Networks in 
MRI Images. IEEE Trans Med Imaging 2016;35:1240-51.

9. Lee J, Kang J, Shin EY, Kim RE, Lee M. Dual-
Path Connected CNN for Tumor Segmentation of 
Combined PET-CT Images and Application to Survival 
Risk Prediction. In: Andrearczyk V, Oreiller V, Hatt 
M, Depeursinge A. editors. Head and Neck Tumor 
Segmentation and Outcome Prediction. HECKTOR 
2021. Lecture Notes in Computer Science, vol 13209. 
Cham: Springer; 2022:248-56.

10. Protonotarios NE, Katsamenis I, Sykiotis S, Dikaios N, 
Kastis GA, Chatziioannou SN, Metaxas M, Doulamis N, 
Doulamis A. A few-shot U-Net deep learning model for 
lung cancer lesion segmentation via PET/CT imaging. 
Biomed Phys Eng Express 2022.

11. Menze BH, Jakab A, Bauer S, Kalpathy-Cramer J, 
Farahani K, Kirby J, et al. The Multimodal Brain Tumor 
Image Segmentation Benchmark (BRATS). IEEE Trans 
Med Imaging 2015;34:1993-2024.

12. Oreiller V, Andrearczyk V, Jreige M, Boughdad S, 
Elhalawani H, Castelli J, et al. Head and neck tumor 
segmentation in PET/CT: The HECKTOR challenge. 
Med Image Anal 2022;77:102336.

13. Andrearczyk V, Oreiller V, Hatt M, Depeursinge A. 
Head and Neck Tumor Segmentation and Outcome 
Prediction. Second Challenge, HECKTOR 2021, Held 
in Conjunction with MICCAI 2021, Strasbourg, France, 
September 27, 2021, Proceedings. Springer Nature; 2022.

14. Gatidis S, Hepp T, Früh M, La Fougère C, Nikolaou K, 
Pfannenberg C, Schölkopf B, Küstner T, Cyran C, Rubin 
D. A whole-body FDG-PET/CT Dataset with manually 
annotated Tumor Lesions. Sci Data 2022;9:601.

15. Zhao X, Wu Y, Song G, Li Z, Zhang Y, Fan Y. A deep 
learning model integrating FCNNs and CRFs for brain 
tumor segmentation. Med Image Anal 2018;43:98-111.

16. Isensee F, Kickingereder P, Wick W, Bendszus M, 
Maier-Hein KH, editors. Brain tumor segmentation and 
radiomics survival prediction: Contribution to the brats 
2017 challenge. Brainlesion: Glioma, Multiple Sclerosis, 
Stroke and Traumatic Brain Injuries: Third International 

Workshop, BrainLes 2017, Held in Conjunction with 
MICCAI 2017, Quebec City, QC, Canada, September 14, 
2017, Revised Selected Papers 3; Springer; 2018.

17. Weninger L, Rippel O, Koppers S, Merhof D, editors. 
Segmentation of brain tumors and patient survival 
prediction: Methods for the brats 2018 challenge. 
Brainlesion: Glioma, Multiple Sclerosis, Stroke and 
Traumatic Brain Injuries: 4th International Workshop, 
BrainLes 2018, Held in Conjunction with MICCAI 2018, 
Granada, Spain, September 16, 2018, Revised Selected 
Papers, Part II 4; Springer;2019.

18. Fang F, Yao Y, Zhou T, Xie G, Lu J. Self-Supervised 
Multi-Modal Hybrid Fusion Network for Brain 
Tumor Segmentation. IEEE J Biomed Health Inform 
2022;26:5310-20.

19. Liu Y, Mu F, Shi Y, Chen X. Sf-net: A multi-task model 
for brain tumor segmentation in multimodal mri via image 
fusion. IEEE Signal Process Lett 2022;29:1799-803.

20. Baid U, Ghodasara S, Mohan S, Bilello M, Calabrese E, 
Colak E, Farahani K, et al. The RSNA-ASNR-MICCAI 
BraTS 2021 benchmark on brain tumor segmentation and 
radiogenomic classification. 2021. Available online: https://
arxiv.org/abs/2107.02314

21. Li P, Wang S, Li T, Lu J, HuangFu Y, Wang D. A large-
scale CT and PET/CT dataset for lung cancer diagnosis 
[dataset]. The Cancer Imaging Archive 2020. doi: 10.7937/
TCIA.2020.NNC2-0461

22. Vallières M, Freeman CR, Skamene SR, El Naqa I. A 
radiomics model from joint FDG-PET and MRI texture 
features for the prediction of lung metastases in soft-tissue 
sarcomas of the extremities. Phys Med Biol 2015;60:5471-96.

23. Andrearczyk V, Oreiller V, Vallières M, Castelli J, 
Elhalawani H, Jreige M, Boughdad S, Prior JO, 
Depeursinge A. Automatic segmentation of head and 
neck tumors and nodal metastases in PET-CT scans. 
Proceedings of the Third Conference on Medical Imaging 
with Deep Learning, Proceedings of Machine Learning 
Research. 2020;121:33-43.

24. Bourigault E, McGowan DR, Mehranian A, Papież BW. 
Multimodal PET/CT tumour segmentation and prediction 
of progression-free survival using a full-scale UNet with 
attention. Head and Neck Tumor Segmentation and 
Outcome Prediction: Second Challenge, HECKTOR 
2021, Held in Conjunction with MICCAI 2021, 
Strasbourg, France, September 27, 2021, Proceedings. 
Springer; 2022:189-201. Available online: https://arxiv.org/
abs/2111.03848

25. Yousefirizi F, Janzen I, Dubljevic N, Liu YE, Hill C, 

https://arxiv.org/abs/2107.02314
https://arxiv.org/abs/2107.02314
https://arxiv.org/abs/2111.03848
https://arxiv.org/abs/2111.03848


Quantitative Imaging in Medicine and Surgery, Vol 14, No 1 January 2024 1137

© Quantitative Imaging in Medicine and Surgery. All rights reserved.   Quant Imaging Med Surg 2024;14(1):1122-1140 | https://dx.doi.org/10.21037/qims-23-818

MacAulay C, Rahmim A. Segmentation and risk score 
prediction of head and neck cancers in PET/CT volumes 
with 3D U-Net and Cox proportional hazard neural 
networks. Head and Neck Tumor Segmentation and 
Outcome Prediction: Second Challenge, HECKTOR 
2021, Held in Conjunction with MICCAI 2021, 
Strasbourg, France, September 27, 2021, Proceedings 
2022:236-247. 2022 Feb 16. Available online: https://arxiv.
org/abs/2202.07823

26. Wang G, Huang Z, Shen H, Hu Z. The head and neck 
tumor segmentation in PET/CT based on multi-channel 
attention network. Head and Neck Tumor Segmentation 
and Outcome Prediction: Second Challenge, HECKTOR 
2021, Held in Conjunction with MICCAI 2021, 
Strasbourg, France, September 27, 2021, Proceedings. 
Springer; 2022:68-74.

27. Islam KT, Wijewickrema S, O'Leary S. A deep learning based 
framework for the registration of three dimensional multi-
modal medical images of the head. Sci Rep 2021;11:1860.

28. Zitová B, Flusser J. Image registration methods: a survey. 
Image Vision Comput 2003;21:977-1000.

29. Boveiri HR, Khayami R, Javidan R, Mehdizadeh A. 
Medical image registration using deep neural networks: a 
comprehensive review. Comput Electr Eng 2020;87:106767.

30. Raza R, Bajwa UI, Mehmood Y, Anwar MW, Jamal MH. 
dResU-Net: 3D deep residual U-Net based brain tumor 
segmentation from multimodal MRI. Biomed Signal 
Process Control 2023;79:103861.

31. Zhou T, Ruan S, Guo Y, Canu S. A multi-modality fusion 
network based on attention mechanism for brain tumor 
segmentation. 2020 IEEE 17th International Symposium on 
Biomedical Imaging (ISBI), Iowa City, IA, USA, 2020:377-80.

32. Zhou T, Canu S, Vera P, Ruan S. Latent Correlation 
Representation Learning for Brain Tumor Segmentation 
With Missing MRI Modalities. IEEE Trans Image Process 
2021;30:4263-74.

33. Zhou T, Vera P, Canu S, Ruan S. Missing data imputation 
via conditional generator and correlation learning for 
multimodal brain tumor segmentation. Pattern Recognit 
Lett 2022;158:125-32.

34. Zhou T. Modality-level cross-connection and attentional 
feature fusion based deep neural network for multi-modal 
brain tumor segmentation. Biomed Signal Process Control 
2023;81:104524.

35. Iantsen A, Visvikis D, Hatt M. Squeeze-and-Excitation 
Normalization for Automated Delineation of Head and 
Neck Primary Tumors in Combined PET and CT Images. 
In: Andrearczyk V, Oreiller V, Depeursinge A, editors. 

Head and Neck Tumor Segmentation. HECKTOR 2020. 
Lecture Notes in Computer Science, vol 12603. Cham: 
Springer. 2021. doi: 10.1007/978-3-030-67194-5_4.

36. Luo S, Jiang H, Wang M. C(2)BA-UNet: A context-
coordination multi-atlas boundary-aware UNet-like 
method for PET/CT images based tumor segmentation. 
Comput Med Imaging Graph 2023;103:102159.

37. Diao Z, Jiang H, Han XH, Yao YD, Shi T. EFNet: 
evidence fusion network for tumor segmentation from 
PET-CT volumes. Phys Med Biol 2021.

38. Xu G, Cao H, Udupa JK, Tong Y, Torigian DA. 
DiSegNet: A deep dilated convolutional encoder-decoder 
architecture for lymph node segmentation on PET/CT 
images. Comput Med Imaging Graph 2021;88:101851.

39. Myronenko A. 3D MRI Brain Tumor Segmentation Using 
Autoencoder Regularization. In: Crimi A, Bakas S, Kuijf H, 
Keyvan F, Reyes M, van Walsum T, editors. Brainlesion: 
Glioma, Multiple Sclerosis, Stroke and Traumatic Brain 
Injuries. BrainLes 2018. Lecture Notes in Computer 
Science, vol 11384. Cham: Springer; 2019.

40. Chen W, Liu B, Peng S, Sun J, Qiao X. S3D-UNet: 
separable 3D U-Net for brain tumor segmentation. 
Brainlesion: Glioma, Multiple Sclerosis, Stroke and 
Traumatic Brain Injuries: 4th International Workshop, 
BrainLes 2018, Held in Conjunction with MICCAI 2018, 
Granada, Spain, September 16, 2018, Revised Selected 
Papers, Part II 4; Springer; 2019.

41. Wang G, Li W, Ourselin S, Vercauteren T. Automatic 
brain tumor segmentation using cascaded anisotropic 
convolutional neural networks. Brainlesion: Glioma, 
Multiple Sclerosis, Stroke and Traumatic Brain Injuries: 
Third International Workshop, BrainLes 2017, Held 
in Conjunction with MICCAI 2017, Quebec City, QC, 
Canada, September 14, 2017, Revised Selected Papers 3 
2018:178-190. 2017 Dec 15. Available online: https://arxiv.
org/abs/1709.00382

42. Yuan Y. Automatic Head and Neck Tumor Segmentation 
in PET/CT with Scale Attention Network. In: 
Andrearczyk V, Oreiller V, Depeursinge A, editors. Head 
and Neck Tumor Segmentation. HECKTOR 2020. 
Lecture Notes in Computer Science, vol 12603. Cham: 
Springer; doi: 10.1007/978-3-030-67194-5_5.

43. Yuan Y, Adabi S, Wang X. Automatic head and neck 
tumor segmentation and progression free survival analysis 
on PET/CT images. In: Andrearczyk V, Oreiller V, 
Hatt M, Depeursinge A, editors. Head and Neck Tumor 
Segmentation and Outcome Prediction. HECKTOR 
2021. Lecture Notes in Computer Science, vol 13209. 

https://arxiv.org/abs/2202.07823
https://arxiv.org/abs/2202.07823
https://arxiv.org/abs/1709.00382
https://arxiv.org/abs/1709.00382


Xue et al. Application of DL in multi-modal tumor segmentation tasks1138

© Quantitative Imaging in Medicine and Surgery. All rights reserved.   Quant Imaging Med Surg 2024;14(1):1122-1140 | https://dx.doi.org/10.21037/qims-23-818

Cham: Springer; 2022:179-88.
44. Guo Z, Guo N, Gong K, Zhong S, Li Q. Gross 

tumor volume segmentation for head and neck cancer 
radiotherapy using deep dense multi-modality network. 
Phys Med Biol 2019;64:205015.

45. Xue Z, Li P, Zhang L, Lu X, Zhu G, Shen P, Ali Shah 
SA, Bennamoun M. Multi-Modal Co-Learning for Liver 
Lesion Segmentation on PET-CT Images. IEEE Trans 
Med Imaging 2021;40:3531-42.

46. Huang Z, Zou S, Wang G, Chen Z, Shen H, Wang H, 
Zhang N, Zhang L, Yang F, Wang H, Liang D, Niu 
T, Zhu X, Hu Z. ISA-Net: Improved spatial attention 
network for PET-CT tumor segmentation. Comput 
Methods Programs Biomed 2022;226:107129.

47. Wang M, Jiang H, Shi T, Wang Z, Guo J, Lu G, Wang Y, 
Yao YD. PSR-Nets: Deep neural networks with prior shift 
regularization for PET/CT based automatic, accurate, and 
calibrated whole-body lymphoma segmentation. Comput 
Biol Med 2022;151:106215.

48. Zhang H, Cisse M, Dauphin YN, Lopez-Paz D. mixup: 
Beyond empirical risk minimization. 2018 Apr 27. 
Available online: https://arxiv.org/abs/1710.09412

49. Zhang D, Huang G, Zhang Q, Han J, Han J, Wang Y, Yu Y. 
Exploring Task Structure for Brain Tumor Segmentation 
from Multi-modality MR Images. IEEE Trans Image 
Process 2020. [Epub ahead of print]. doi: 10.1109/
TIP.2020.3023609.

50. Kamnitsas K, Bai W, Ferrante E, McDonagh S, Sinclair 
M, Pawlowski N, Rajchl M, Lee M, Kainz B, Rueckert D, 
editors. Ensembles of multiple models and architectures 
for robust brain tumour segmentation. Brainlesion: 
Glioma, Multiple Sclerosis, Stroke and Traumatic Brain 
Injuries: Third International Workshop, BrainLes 2017, 
Held in Conjunction with MICCAI 2017, Quebec City, 
QC, Canada, September 14, 2017, Revised Selected Papers 
3; Springer: 2018.

51. Kamnitsas K, Ledig C, Newcombe VFJ, Simpson JP, 
Kane AD, Menon DK, Rueckert D, Glocker B. Efficient 
multi-scale 3D CNN with fully connected CRF for 
accurate brain lesion segmentation. Med Image Anal 
2017;36:61-78.

52. Isensee F, Kickingereder P, Wick W, Bendszus M, Maier-
Hein KH. No new-net. In: International MICCAI 
brainlesion workshop. Granada: Springer; 2018:234-44.

53. Sun J, Peng Y, Guo Y, Li D. Segmentation of the 
multimodal brain tumor image used the multi-pathway 
architecture method based on 3D FCN. Neurocomputing 
2021;423:34-45.

54. Jmour N, Zayen S, Abdelkrim A. Convolutional neural 
networks for image classification. 2018 International 
Conference on Advanced Systems and Electric 
Technologies (IC_ASET), Hammamet, Tunisia, 
2018:397-402.

55. Rawat W, Wang Z. Deep Convolutional Neural Networks 
for Image Classification: A Comprehensive Review. Neural 
Comput 2017;29:2352-449.

56. Ronneberger O, Fischer P, Brox T. U-net: Convolutional 
networks for biomedical image segmentation. 2015 May 
18. Available online: https://arxiv.org/abs/1505.04597

57. Ren S, He K, Girshick R, Sun J. Faster R-CNN: Towards 
Real-Time Object Detection with Region Proposal 
Networks. IEEE Trans Pattern Anal Mach Intell 
2017;39:1137-49.

58. Szegedy C, Liu W, Jia Y, Sermanet P, Reed S, Anguelov D, 
Erhan D, Vanhoucke V, Rabinovich A. Going deeper with 
convolutions. 2014 Sep 17. Available online: https://arxiv.
org/abs/1409.4842

59. Wang F, Cheng C, Cao W, Wu Z, Wang H, Wei W, Yan 
Z, Liu Z. MFCNet: A multi-modal fusion and calibration 
networks for 3D pancreas tumor segmentation on PET-
CT images. Comput Biol Med 2023;155:106657.

60. Qayyum A, Benzinou A, Razzak I, Mazher M, Nguyen 
TT, Puig D, Vafaee F. 3D-IncNet: Head and Neck (H&N) 
Primary Tumors Segmentation and Survival Prediction. 
IEEE J Biomed Health Inform 2022. doi: 10.1109/
JBHI.2022.3219445.

61. Shelhamer E, Long J, Darrell T. Fully Convolutional 
Networks for Semantic Segmentation. IEEE Trans Pattern 
Anal Mach Intell 2017;39:640-51.

62. Li L, Zhao X, Lu W, Tan S. Deep Learning for Variational 
Multimodality Tumor Segmentation in PET/CT. 
Neurocomputing (Amst) 2020;392:277-95.

63. Bi L, Fulham M, Li N, Liu Q, Song S, Dagan Feng 
D, Kim J. Recurrent feature fusion learning for multi-
modality pet-ct tumor segmentation. Comput Methods 
Programs Biomed 2021;203:106043.

64. Zhao X, Li L, Lu W, Tan S. Tumor co-segmentation in 
PET/CT using multi-modality fully convolutional neural 
network. Phys Med Biol 2018;64:015011.

65. Cui S, Mao L, Jiang J, Liu C, Xiong S. Automatic 
Semantic Segmentation of Brain Gliomas from MRI 
Images Using a Deep Cascaded Neural Network. J 
Healthc Eng 2018;2018:4940593.

66.  Naser MA, van Dijk LV, He R, Wahid KA, Fuller CD. 
Tumor Segmentation in Patients with Head and Neck 
Cancers Using Deep Learning Based-on Multi-modality 

https://arxiv.org/abs/1710.09412
https://arxiv.org/abs/1505.04597
https://arxiv.org/abs/1409.4842
https://arxiv.org/abs/1409.4842


Quantitative Imaging in Medicine and Surgery, Vol 14, No 1 January 2024 1139

© Quantitative Imaging in Medicine and Surgery. All rights reserved.   Quant Imaging Med Surg 2024;14(1):1122-1140 | https://dx.doi.org/10.21037/qims-23-818

PET/CT Images. In Head and Neck Tumor Segmentation: 
First Challenge, HECKTOR 2020, Held in Conjunction 
with MICCAI 2020, Proceedings 1 2021; Lima, Peru: 
Springer International Publishing; 2020;85-98.

67. Murugesan GK, Mccrumb D, Brunner E, Kumar J, Soni 
R, Grigorash V, Chang A, VanOss J, Moore S. Automatic 
Whole Body FDG PET/CT Lesion Segmentation using 
Residual UNet and Adaptive Ensemble. bioRxiv 2023. doi: 
10.1101/2023.02.06.525233

68. Zhong Z, Kim Y, Zhou L, Plichta K, Allen B, Buatti J, Wu 
X. 3D fully convolutional networks for co-segmentation of 
tumors on PET-CT Images. Proc IEEE Int Symp Biomed 
Imaging 2018;2018:228-31.

69. Li J, Chen H, Li Y, Peng Y, Sun J, Pan P. Cross-modality 
synthesis aiding lung tumor segmentation on multi-
modal MRI images. Biomed Signal Process Control 
2022;76:103655.

70. Rahimpour M, Bertels J, Radwan A, Vandermeulen H, 
Sunaert S, Vandermeulen D, Maes F, Goffin K, Koole M. 
Cross-Modal Distillation to Improve MRI-Based Brain 
Tumor Segmentation With Missing MRI Sequences. 
IEEE Trans Biomed Eng 2022;69:2153-64.

71. Jemaa S, Fredrickson J, Carano RAD, Nielsen T, de 
Crespigny A, Bengtsson T. Tumor Segmentation and 
Feature Extraction from Whole-Body FDG-PET/
CT Using Cascaded 2D and 3D Convolutional Neural 
Networks. J Digit Imaging 2020;33:888-94.

72. Goodfellow I, Pouget-Abadie J, Mirza M, Xu B, Warde-
Farley D, Ozair S, Courville A, Bengio Y. Generative 
Adversarial Networks. 2014 Jun 10. Available online: 
https://arxiv.org/abs/1406.2661

73. Huang Z, Tang S, Chen Z, Wang G, Shen H, Zhou 
Y, Wang H, Fan W, Liang D, Hu Y, Hu Z. TG-Net: 
Combining transformer and GAN for nasopharyngeal 
carcinoma tumor segmentation based on total-body 
uEXPLORER PET/CT scanner. Comput Biol Med 
2022;148:105869.

74. Zhang X, Zhang B, Deng S, Meng Q, Chen X, Xiang D. 
Cross modality fusion for modality-specific lung tumor 
segmentation in PET-CT images. Phys Med Biol 2022.

75. Xiang D, Zhang B, Lu Y, Deng S. Modality-Specific 
Segmentation Network for Lung Tumor Segmentation 
in PET-CT Images. IEEE J Biomed Health Inform 
2023;27:1237-48.

76. Zhang Y, Lu Y, Chen W, Chang Y, Gu H, Yu B. 
MSMANet: A multi-scale mesh aggregation network 
for brain tumor segmentation. Appl Soft Comput 
2021;110:107733.

77. De Biase A, Sijtsema NM, van Dijk LV, Langendijk JA, van 
Ooijen PMA. Deep learning aided oropharyngeal cancer 
segmentation with adaptive thresholding for predicted 
tumor probability in FDG PET and CT images. Phys 
Med Biol 2023.

78. Chen S, Li A, Chen J, Zhang X, Jiang C, Xu J. Hybrid 
Attention Fusion Segmentation Network for Diffuse Large 
B-cell Lymphoma in PET-CT. 2022 14th International 
Conference on Wireless Communications and Signal 
Processing (WCSP), Nanjing, China. 2022:72-6.

79. Zhou Y, Jiang H, Diao Z, Tong G, Luan Q, Li Y, Li X. 
MRLA-Net: A tumor segmentation network embedded 
with a multiple receptive-field lesion attention module in 
PET-CT images. Comput Biol Med 2023;153:106538.

80. Kumar A, Fulham M, Feng D, Kim J. Co-Learning 
Feature Fusion Maps from PET-CT Images of Lung 
Cancer. IEEE Trans Med Imaging 2019. [Epub ahead of 
print]. doi: 10.1109/TMI.2019.2923601.

81. Zhang J, Jiang H, Shi T. ASE-Net: A tumor segmentation 
method based on image pseudo enhancement and 
adaptive-scale attention supervision module. Comput Biol 
Med 2023;152:106363.

82. Zhang G, Shen X, Zhang YD, Luo Y, Luo J, Zhu D, Yang 
H, Wang W, Zhao B, Lu J. Cross-Modal Prostate Cancer 
Segmentation via Self-Attention Distillation. IEEE J 
Biomed Health Inform 2022;26:5298-309.

83. Matkovic LA, Wang T, Lei Y, Akin-Akintayo OO, 
Abiodun Ojo OA, Akintayo AA, Roper J, Bradley JD, 
Liu T, Schuster DM, Yang X. Prostate and dominant 
intraprostatic lesion segmentation on PET/CT using 
cascaded regional-net. Phys Med Biol 2021.

84. Diao Z, Jiang H, Shi T. A spatial squeeze and multimodal 
feature fusion attention network for multiple tumor 
segmentation from PET–CT Volumes. Eng Appl Artif 
Intell 2023;121:105955.

85. Hu J, Shen L, Sun G. Squeeze-and-excitation networks. 
2018 IEEE/CVF Conference on Computer Vision 
and Pattern Recognition, Salt Lake City, UT, USA. 
2018:7132-41.

86. Qayyum A, Mazher M, Khan T, Razzak I. Semi-supervised 
3D-InceptionNet for segmentation and survival prediction 
of head and neck primary cancers. Eng Appl Artif Intell 
2023;117:105590.

87. Yan C, Ding J, Zhang H, Tong K, Hua B, Shi S. SEResU-
Net for Multimodal Brain Tumor Segmentation. IEEE 
Access 2022;10:117033-44. 

88. Yao Y, Chen Y, Gou S, Chen S, Zhang X, Tong N. Auto-
segmentation of pancreatic tumor in multi-modal image 

https://arxiv.org/abs/1406.2661


Xue et al. Application of DL in multi-modal tumor segmentation tasks1140

© Quantitative Imaging in Medicine and Surgery. All rights reserved.   Quant Imaging Med Surg 2024;14(1):1122-1140 | https://dx.doi.org/10.21037/qims-23-818

using transferred DSMask R-CNN network. Biomed 
Signal Process Control 2023;83:104583.

89. Liu Z, Lin Y, Cao Y, Hu H, Wei Y, Zhang Z, Lin S, Guo 
B. Swin transformer: Hierarchical vision transformer 
using shifted windows. Proceedings of the IEEE/CVF 
international conference on computer vision. 2021. doi: 
10.1109/ICCV48922.2021.00986

90. Cao H, Wang Y, Chen J, Jiang D, Zhang X, Tian Q, Wang 
M. Swin-unet: Unet-like pure transformer for medical 
image segmentation. Available online: https://arxiv.org/
pdf/2105.05537.pdf

91. Zhu Z, He X, Qi G, Li Y, Cong B, Liu Y. Brain tumor 
segmentation based on the fusion of deep semantics and edge 
information in multimodal MRI. Inf Fusion 2023;91:376-87.

92. Li GY, Chen J, Jang SI, Gong K, Li Q. SwinCross: 
Cross-modal Swin transformer for head-and-neck tumor 
segmentation in PET/CT images. Med Phys 2023. [Epub 
ahead of print]. doi: 10.1002/mp.16703.

93. Liang J, Yang C, Zeng M, Wang X. TransConver: 
transformer and convolution parallel network for 
developing automatic brain tumor segmentation in MRI 
images. Quant Imaging Med Surg 2022;12:2397-415.

94. Cai Y, Long Y, Han Z, Liu M, Zheng Y, Yang W, Chen 
L. Swin Unet3D: a three-dimensional medical image 
segmentation network combining vision transformer and 
convolution. BMC Med Inform Decis Mak 2023;23:33.

95. Yue Y, Li N, Zhang G, Zhu Z, Liu X, Song S, Ta D. 
Automatic segmentation of esophageal gross tumor volume 
in (18)F-FDG PET/CT images via GloD-LoATUNet. 
Comput Methods Programs Biomed 2023;229:107266.

96. Huang L, Ruan S. Application of belief functions to 
medical image segmentation: A review. Inf Fusion 
2023;91:737-56.

97. Hu X, Guo R, Chen J, Li H, Waldmannstetter D, Zhao 
Y, Li B, Shi K, Menze B. Coarse-to-Fine Adversarial 
Networks and Zone-Based Uncertainty Analysis for NK/
T-Cell Lymphoma Segmentation in CT/PET Images. 
IEEE J Biomed Health Inform 2020;24:2599-608.

98. Huang L, Ruan S, Decazes P, Denœux T. Lymphoma 
segmentation from 3D PET-CT images using a deep 
evidential network. Int J Approximate Reasoning 
2022;149:39-60.

99. Zhou C, Ding C, Lu Z, Wang X, Tao D. One-Pass Multi-
task Convolutional Neural Networks for Efficient 
Brain Tumor Segmentation. In: Frangi A, Schnabel J, 

Davatzikos C, Alberola-López C, Fichtinger G, editors. 
Medical Image Computing and Computer Assisted 
Intervention – MICCAI 2018. MICCAI 2018. Lecture 
Notes in Computer Science, vol 11072. Cham: Springer; 
2018. doi: 10.1007/978-3-030-00931-1_73

100. Ding Y, Zheng W, Geng J, Qin Z, Choo KR, Qin Z, Hou 
X. MVFusFra: A Multi-View Dynamic Fusion Framework 
for Multimodal Brain Tumor Segmentation. IEEE J 
Biomed Health Inform 2022;26:1570-81.

101. Ahmad I, Xia Y, Cui H, Islam ZU. AATSN: Anatomy 
Aware Tumor Segmentation Network for PET-CT 
volumes and images using a lightweight fusion-attention 
mechanism. Comput Biol Med 2023;157:106748.

102. Zhu X, Jiang H, Diao Z. CGBO-Net: Cruciform structure 
guided and boundary-optimized lymphoma segmentation 
network. Comput Biol Med 2023;153:106534.

103. Shi T, Jiang H, Wang M, Diao Z, Zhang G, Yao 
YD. Metabolic Anomaly Appearance Aware U-Net 
for Automatic Lymphoma Segmentation in Whole-
Body PET/CT Scans. IEEE J Biomed Health Inform 
2023;27:2465-76.

104. Wang M, Jiang H, Shi T, Yao YD. HD-RDS-UNet: 
Leveraging Spatial-Temporal Correlation Between the 
Decoder Feature Maps for Lymphoma Segmentation. 
IEEE J Biomed Health Inform 2022;26:1116-27.

105. Wang M, Jiang H, Shi T, Yao YD. SCL-Net: Structured 
Collaborative Learning for PET/CT Based Tumor 
Segmentation. IEEE J Biomed Health Inform 2022. [Epub 
ahead of print]. doi: 10.1109/JBHI.2022.3226475.

106. Wang M, Jiang H. Memory-Net: Coupling feature 
maps extraction and hierarchical feature maps reuse 
for efficient and effective PET/CT multi-modality 
image-based tumor segmentation. Knowl Based Syst 
2023;265:110399.

107. Hu H, Shen L, Zhou T, Decazes P, Vera P, Ruan S. 
Lymphoma segmentation in PET images based on multi-
view and Conv3D fusion strategy. 2020 IEEE 17th 
International Symposium on Biomedical Imaging (ISBI), 
Iowa City, IA, USA. 2020:1197-200.

Cite this article as: Xue H, Yao Y, Teng Y. Multi-modal tumor 
segmentation methods based on deep learning: a narrative 
review. Quant Imaging Med Surg 2024;14(1):1122-1140. doi: 
10.21037/qims-23-818

https://arxiv.org/pdf/2105.05537.pdf
https://arxiv.org/pdf/2105.05537.pdf

