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Background: Osteoporotic vertebral compression fractures (OVCFs) are the most common type of 
fragility fracture. Distinguishing between OVCFs and other types of vertebra diseases, such as old fractures 
(OFs), Schmorl’s node (SN), Kummell’s disease (KD), and previous surgery (PS), is critical for subsequent 
surgery and treatment. Combining with advanced deep learning (DL) technologies, this study plans to 
develop a DL-driven diagnostic system for diagnosing multi-type vertebra diseases.
Methods: We established a large-scale dataset based on the computed tomography (CT) images of  
1,051 patients with OVCFs from Luhe Hospital and used data of 46 patients from Xuanwu Hospital as 
alternative hospital validation dataset. Each patient underwent one examination. The dataset contained 
11,417 CT slices and 19,718 manually annotated vertebrae with diseases. A two-stage DL-based system was 
developed to diagnose five vertebra diseases. The proposed system consisted of a vertebra detection module 
(VDModule) and a vertebra classification module (VCModule). 
Results: The training and testing dataset for the VDModule consisted of 9,135 and 3,212 vertebrae, 
respectively. The VDModule using the ResNet18-based Faster region-based convolutional neural network 
(R-CNN) model achieved an area under the curve (AUC), false-positive (FP) rate, and false-negative (FN) 
rate of 0.982, 1.52%, and 1.33%, respectively, in the testing dataset. The training dataset for VCModule 
consisted of 14,584 and 47,604 diseased and normal vertebrae, respectively. The testing dataset consisted of 
4,489 and 15,122 diseased and normal vertebrae, respectively. The ResNet50-based VCModule achieved 
an average sensitivity and specificity of 0.919 and 0.995, respectively, in diagnosing four kinds of vertebra 
diseases except for SN in the testing dataset. In the alternative hospital validation dataset, the ResNet50-
based VCModule achieved an average sensitivity and specificity of 0.891 and 0.989, respectively, in 
diagnosing four kinds of vertebra diseases except for SN.
Conclusions: Our proposed DL system can accurately diagnose four vertebra diseases and has strong 
potential to facilitate the accurate and rapid diagnosis of vertebral diseases.
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Introduction

Osteoporosis usually leads to fragility fractures, especially 
in the vertebrae, hip, distal radius, proximal humerus, 
and pelvis. Osteoporotic vertebral compression fractures 
(OVCFs) are the most common fragility fractures and 
would lead to loss of fractured vertebral height, intractable 
back pain, decreased cardiopulmonary function, and 
gastrointestinal dysfunction (1). OVCFs and their 
accompanying pain may lead to prolonged bed rest, reduced 
activity, and further loss of bone mass (2). OVCFs also 
present a major and growing public concern worldwide 
(3,4). The 1-year mortality rate for patients with OCVFs is 
higher than that of the general population (5), and the 4-year 
survival rate is only 50% (6). Moreover, OVCFs require 
huge investments in medical treatment and nursing, thereby 
imposing a heavy burden on individuals and society (7).

The onset of OVCFs is insidious, and only 25% of 
OVCFs have obvious causes, such as resulting from a fall (8). 
This leads to a much lower consultation rate among patients 
with OVCFs than among those with other osteoporotic 
fractures (9). Although the consultation rate for OVCFs 
is increasing year by year, underdiagnosis still occurs (9). 
A multicenter study conducted across different countries 
showed a false-negative (FN) rate of OVCFs to as high 
as 34% (10). This combination of low consultation rate 
and high FN rate meant that only 28.8% of patients with 
OVCFs started anti-osteoporosis therapy within 1 year after 
the occurrence of the OVCFs (11). Timely and appropriate 
treatment for OVCFs can effectively reduce the refracture 
risk of other vertebrae and the hip (12).

In clinical practice, several medical imaging techniques, 
including X-rays, magnetic resonance imaging (MRI), and 
computed tomography (CT), play an important role in 
diagnosing OVCFs. In radiological images, OVCFs exhibit 
obvious loss of height in the anterior, middle, or posterior 
dimension of the vertebral body. X-rays are the fastest and 
easiest method to implement and are a primary OVCF 
screening method. However, the sensitivity and specificity 
of X-rays are relatively low (10,13). MRI can display the 
anatomy of the spine and is the gold standard in OVCF 
diagnosis (14,15); however, MRI is expensive and time-
consuming, and cannot achieve a timely diagnosis (16).  

MRI imaging also has some contraindications, such as 
in patients with pacemaker devices. CT images can also 
display vertebral fractures well, with higher accuracy than 
X-rays, and are easier to obtain than MRI (17). Non-
enhanced spine CT is usually considered a standard test for 
fast exclusion or closer assessment of suspected or known 
vertebral fractures (18). However, occult fractures without 
significant vertebral compression have only subtle imaging 
features on CT (19) and are easily overlooked, leading to 
FN diagnoses (20).

In recent years, deep learning (DL)-assisted diagnosis 
has emerged in the medical field and has made significant 
contributions to medical imaging analysis (21-25). Several 
DL-assisted OVCF diagnostic systems based on CT images 
have been reported. For example, Tomita et al. developed a 
coupled DL system to analyze whole-spine non-segmented 
sagittal CT images from 713 patients with thoracic and 
lumbar OVCFs and 719 individuals without OVCFs (26). 
The proposed DL system used a convolutional neural 
network (CNN) to extract image features and a long short-
term memory (LSTM) network to aggregate the features 
and make the final diagnosis for the full CT scan. The 
system achieved a sensitivity, specificity, and area under 
the curve (AUC) of 0.85, 0.96, and 0.91, respectively, in 
129 hold-out CT scans. Kolanu et al. reported a computer-
aided diagnosis (CAD) system developed from 1,696 chest 
or abdominal CT scans and showed an OVCF diagnostic 
specificity and sensitivity of 0.92 and 0.54, respectively (27). 
However, these reported studies only classified the presence 
or absence of OVCFs throughout the CT scan and did not 
pinpoint the specific locations of the injured vertebrae.

Many different types of vertebra diseases are encountered 
in clinical practice. Kummell’s disease (KD), also called 
avascular necrosis of a vertebral body or a sign of avascular 
necrosis of a vertebral body, is a specific type of OVCF (28). 
KD usually has collapsed vertebrae and intravertebral vacuum 
cleft and fluid. Due to obvious intravertebral instability, 
patients with KD are prone to progress to delayed vertebral 
body collapse, resulting in significant kyphosis, nerve 
compression, and delayed neurological dysfunction (29). 
Conservative treatment is often unsatisfactory in most 
patients with KD, and more aggressive surgical options 
are usually required (30). Therefore, early diagnosis 
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and early surgical intervention are important for these 
patients. Schmorl’s node (SN) is defined as herniation of 
the discs into the vertebral body through the endplate (31),  
and discrete indentations of the endplates are related to 
degenerative disc disease. Certain types of SNs or the 
occurrence of SNs in combination with OVCFs may 
produce low back pain symptoms similar to OVCFs (32), 
and medium-sized or large SNs may be misinterpreted as 
endplate fracture (33). Percutaneous vertebroplasty (PVP) 
surgery is an effective treatment for vertebral fractures. 
However, previous surgery (PS) may affect the mechanical 
characteristics of the spine and have a potential impact on 
recurrent fractures. PS has a significant highlighting signal 
in the CT image at the site of cement injection. Therefore, 
distinguishing among various vertebra diseases is clinically 
important. Prior literature reported that DL methods can 
diagnose OVCFs from medical images (26,27). Hence, we 
hypothesized that CT images contain rich features and 
well-trained DL models can recognize key features for the 
diagnosis of multi-types vertebral diseases.

Our aim in the present study was to develop a DL-
assisted diagnostic system based on CT images that could 
achieve a single vertebra-level diagnosis. We further 
improved the practicability of the system by considering 
several vertebra diseases, including OVCF, old fractures 
(OFs), SN, KD, and PS. The proposed system has great 
potential for improving the efficiency and reliability of 
the vertebral fracture diagnostic process. We present 
this article in accordance with the TRIPOD reporting 
checklist (available at https://qims.amegroups.com/article/
view/10.21037/qims-23-685/rc).

Methods

Patient cohorts

This retrospective study was conducted in accordance with 
the Declaration of Helsinki (as revised in 2013). The study 
was performed in accordance with relevant guidelines and 
regulations, and approved by the Institutional Review Board 
of Beijing Luhe Hospital, Capital Medical University (No. 
2023-LHKY-022-02). Written informed consent was taken 
from all individual participants. We collected patients from 
two institutes: Beijing Luhe Hospital and Xuanwu Hospital. 
All patients were diagnosed with OVCFs and underwent 
surgery. All patients underwent X-ray, CT, and MRI 
examinations. X-rays were used to confirm the location of 
fractures and locate them during surgery. The aim of this 

study was to achieve high accuracy in diagnosing vertebral 
diseases based on CT scans. MRI examinations were used 
to ensure the reliability of disease diagnosis during the 
construction of a multi-type disease dataset. Each patient’s 
vertebral fracture diagnosis was made by three senior 
spine surgeons according to the patient’s imaging and 
clinical history. Each patient’s sagittal CT images spanned 
multiple thoracic and lumbar vertebrae. The acquired 
sagittal CT images covered the vertebrae from T1 to L5 
(Table S1). Details about imaging parameters are shown in 
supplementary materials (Appendix 1).

The patient cohort from Luhe Hospital consisted of 
1,198 patients diagnosed with OVCFs from 1 January 2015 
to 31 December 2020. Inclusion criteria were as follows: (I) 
age ≥55 years; (II) both male and female were considered; 
(III) patients had undergone X-ray, CT, and MRI 
examinations; (IV) thoracic or/and lumbar vertebrae were 
considered. Exclusion criteria were as follows: (I) vertebral 
fracture due to high violence injury, such as traffic injury 
or fall from height injury; (II) incomplete imaging data and 
abnormal image quality; (III) pathological fracture due to 
primary malignant tumor or metastatic tumor. We analyzed 
a total of n=1,051 patients (excluding 112 patients with 
incomplete image data, 21 patients with poor image quality, 
eight patients with multiple myeloma, and six patients with 
metastatic tumors). 

The training cohort contained 8,548 CT slices from 
819 patients, and the testing cohort contained 2,456 CT 
slices from 232 patients (Table 1). The training and testing 
cohorts showed no significant differences in age, gender 
distribution, or dual-energy X-ray absorptiometry (DEXA) 
T-scores. We also collected an alternative Hospital validation 
cohort from Xuanwu Hospital, containing 467 CT slices 
of 46 patients from the period of 1 January 2015 to 31 
December 2020.

Annotation of the datasets

Three spine surgeons who have been specializing in spine 
surgery for more than 15 years made vertebra diagnoses 
according to the patient’s spinal CT images and clinical 
history. For the vertebra detection task, all vertebrae in the 
CT images were annotated by bounding boxes (Bboxes). 
All annotations were assigned the same label of “vertebra”. 
For the vertebra classification task, only the vertebrae with 
injuries were annotated by Bboxes. Five kinds of injured 
vertebrae were considered: OVCF, OF, SN, KD, and PS. 
Surgeons annotated each CT slice independently, followed 

https://qims.amegroups.com/article/view/10.21037/qims-23-685/rc
https://qims.amegroups.com/article/view/10.21037/qims-23-685/rc
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Table 1 Demographic data of patients

Characteristics
Luhe Hospital  

(training cohort)
Luhe Hospital  
(testing cohort)

Xuanwu Hospital  
(alternative hospital validation cohort)

Patient count 819 232 46

Age (year) 73±8 72±8 76±9

Sex, n (%)

Male 192 (23.4) 52 (22.4) 13 (28.3)

Female 627 (76.6) 180 (77.6) 33 (71.7)

DEXA T-score −2.9±1.3 −2.9±1.4 −2.9±0.5

Number of slices 8,548 2,456 467

Data were presented as mean ± SD or n (%). The training cohort, testing cohort, and alternative hospital validation cohort showed no 
significant differences in gender distribution (Pearson χ2 test, χ2=0.732, P=0.693). These datasets also showed no significant differences 
in DEXA T-score (ANOVA Bartlett’s test with Tukey’s multiple comparisons; P=0.368). The patients used for alternative hospital 
validation were older than the patients in the training and testing cohorts from Luhe Hospital (ANOVA Bartlett’s test with Tukey’s multiple 
comparisons; P=0.004; Train vs. Test P=0.093; Train vs. Validation, P=0.003; Test vs. Validation, P=0.014). DEXA, dual-energy X-ray 
absorptiometry; SD, standard deviation; ANOVA, analysis of variance.

by consulted co-annotation for inconsistent initial diagnoses 
(Figures S1,S2).

Development of the DL-based vertebra diagnostic system

We overcame the limitations in the traditional vertebra 
disease diagnosis workflow by developing an intelligent 
DL-based vertebra diagnostic system (Figure 1A-1E). The 
DL workflow of the system consisted of three modules  
(Figure 1A): a vertebra detection module (VDModule), a 
vertebra extraction module (VEModule), and a vertebra 
classification module (VCModule). For an input CT slice, 
the VDModule first detected all vertebrae and calculated the 
exact Bbox of all vertebrae (Figure 1B). The VEModule then 
extracted multiple image patches according to the determined 
Bbox using several combined image-processing operations 
(Figure 1C). Finally, the extracted vertebra image patches 
were passed into the VCModule to achieve the diagnosis 
(Figure 1D). Five vertebra diseases (OVCF, OF, SN, KD, and 
PS) were considered in this study. Notably, these vertebra 
diseases are not mutually exclusive, and several may occur 
in the same vertebra. We accounted for this disease co-
occurrence problem and adopted a multi-output DL model 
in the VCModule (Figure 1D). The system was developed and 
validated using the datasets from the two hospitals (Figure 1E).

Development of the VDModule 

We developed a VDModule based on Faster region-based 

CNN (R-CNN) architecture. The Faster R-CNN models 
were trained to automatically determine the Bboxes of all 
vertebrae in each CT slice. A pretrained ResNet18 model 
and MobileNet v2 model were used as the backbone of the 
Faster R-CNN model. We adopted the input image size of 
1,024×1,024 to develop the VDModule. The original sagittal 
CT slices were usually not square (image height 743±111, 
image width 619±122). We normalized the image size and 
avoid image deformation by adopting center-cropping and 
zero-padding techniques to modify all sagittal CT images to 
a 1,024×1,024 size. We enlarged the image and Bbox datasets 
eight-fold using offline data augmentation (Figure S3) (3); 
this augmentation strategy did not decrease the reliability 
of ground truth and was proved efficient for detecting cells 
from cytopathology images (34). Other parameter settings 
are shown in supplementary material (Appendix 1).

Evaluation of the VDModule 

We adopted three different measurements to evaluate the 
performance of the VDModule. First, we calculated the 
precision-recall curve and the corresponding mean average 
precision (mAP) value for each Faster R-CNN model. 
Second, we set a threshold of 0.75 for the probability of 
vertebra detection results and compared the number of 
detected and annotated vertebrae for each image. Third, 
we compared the spatial relationship between the Bboxes 
of detected and annotated vertebrae. We calculated the 
intersection over minimum (IoM) score between two Bboxes 

https://cdn.amegroups.cn/static/public/QIMS-23-685-Supplementary.pdf
https://cdn.amegroups.cn/static/public/QIMS-23-685-Supplementary.pdf
https://cdn.amegroups.cn/static/public/QIMS-23-685-Supplementary.pdf
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Flowchart of intelligent DL-based  
vertebra diagnostic system Vertebra detection module (VDModule)

Automatically determine the exact 
bounding boxes of all vertebrae.

Vertebra classification
module (VCModule)

multi-output 
DL model

Compress fracture

Old fracture

All analyzed patients (n=1,051)

Training dataset (n=819)
Testing dataset (n=232)

External validation dataset
Xuanwu hospital patients (n=46)

Excluded 147 patients:
Incomplete data (112)
Poor image quality (21)
Multiple myeloma (8)
Metastatic tumor (6)

Schmorl’s node

Kummell’s disease

Previous surgery

Normal

Luhe hospital patients (n=1,198)

Object
detection
DL model

Spinal CT image

All bounding
boxes

Detection
module

Disease
types

Extraction
module

Classification
module

Annotation
Training
DL workflow

Vertebra 1

Vertebra

Vertebra 1

Vertebra 2Vertebra 2

Vertebra extraction module (VEModule)

A

C D E

B

Figure 1 Architecture of intelligent DL-based vertebra diagnostic system. (A) Flowchart for the development of a DL-based vertebra 
diagnostic system. Expert annotation included two types: labeling all vertebrae by Bboxes for training vertebra detection models and 
labeling vertebrae with diseases for training vertebra classification models. The DL workflow consists of three modules: a VDModule, a 
VEModule, and a VCModule. (B) The function of the VDModule. The VDModule processes the clinical CT image and automatically 
determines the exact Bbox of all vertebrae. Left, clinical CT image. Right, detected vertebrae. The VDModule is developed based on 
object-detection DL models. (C) The function of VEModule. The VEModule obtains multiple samples from one Bbox of the target 
vertebra by implementing scaling and random translation, thereby realizing data augmentation. The eight cropped vertebra image 
patches shown as gray and green Bboxes correspond to vertebrae 1 and 2, respectively. (D) The function of the VCModule. The 
VCModule is developed based on a multi-output DL model and implements the diagnosis of the input vertebra patch. The vertebra 
types recognized by VCModule include OVCF, OFs, SN, KD, PS, and normal. (E) Two patient cohorts were used in this study. The 
training and testing datasets were from Luhe Hospital and the alternative hospital validation dataset was from Xuanwu Hospital. DL, 
deep learning; CT, computed tomography; VDModule, vertebra detection module; VEModule, vertebra extraction module; VCModule, 
vertebra classification module; Bboxes, bounding boxes; OVCF, osteoporotic vertebral compression fracture; OF, old fracture; SN, 
Schmorl’s node; KD, Kummell’s disease; PS, previous surgery.

as the area of the intersection between two Bboxes divided 
by the minimum area of the Bboxes. We named a detected 
Bbox and an annotated Bbox as a hit if their IoM was larger 
than 0.5. The FN error scenario referred to annotated 
but not detected vertebrae. The false-positive (FP) error 
scenario referred to incorrectly detected vertebrae. 

Development of the VCModule 

We considered six vertebra categories in this study, 
including five disease categories (OVCF, OF, SN, KD, and 
PS) and one normal category. The five disease categories 
were not mutually independent. Hence, we developed 
a VCModule based on a multi-output DL model. We 
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developed the VCModule in two steps. We first constructed 
the vertebra patch dataset for the VCModule; we used the 
VDModule to detect all vertebrae, and we eliminated the 
detected vertebrae that largely overlapped the diseased 
vertebrae to obtain the normal vertebrae. We then 
developed vertebra classification models. A pretrained 
ResNet50 served as the backbone of the DL model using 
transfer learning techniques. We used random over-
sampling and random under-sampling strategies to solve 
the class imbalance problem, and used data augmentation 
techniques to solve the overfitting problem. These re-
sampling strategies were applied only to the training 
dataset, and not to the testing dataset and alternative 
hospital validation dataset. In the original training dataset, 
the samples for different vertebra diseases were highly 
imbalanced (counts of vertebra patches: OVCF 8,046; OF 
3,257; SN 824; KD 478, PS 1,979; normal 47,604; Table 2). 
We used the count of the OVCF samples, which was the 
disease category with the most samples, as the reference 
for the re-sampling operation. The normal vertebra class 
was the majority class, and we randomly chosen a part 
of the samples for training using under-sampling. The 
number of chosen normal vertebrae was twice the OVCF 
count. The OF, SN, KD, and PS categories were the 
minority classes, and we randomly duplicated the samples 
to half the OVCF counts using over-sampling. After re-
sampling, we established a more balanced training dataset 
for the various vertebra categories (counts of vertebra 
patches: OVCF 8,046; OF 4,023; SN 4,023; KD 4,023; PS 
4,023; normal 16,092).

Other parameter settings are shown in supplementary 
material (Appendix 1).

Evaluation of the VCModule 

We adopted three kinds of measurements to evaluate the 
performance of the VCModule. First, we calculated the 

one-vs.-all confusion matrix of the target and other labels 
for each vertebra category. Second, we calculated the one-
vs.-all ROC curve. Third, we calculated several criteria 
to evaluate the diagnostic performance. For each disease 
category, true positive (TP) and false negative (FN) means 
accurately and incorrectly classified diseased vertebrae, 
respectively, while true negative (TN) and false positive 
(FP) means accurately and incorrectly classified normal 
vertebrae, respectively. For each vertebra category, we 
calculated five quantitative measurements: sensitivity, 
specificity, positive predictive value (PPV), negative 
predictive value (NPV), and F1 score. The PPV and 
sensitivity are also called precision and recall, respectively. 
The F1 score is the harmonic mean of precision and 
recall and provides a balanced evaluation of the model’s 
performance.

TPSensitivity
TP FN

=
+  

[1]

TNSpecificity
TN FP

=
+  

[2]

TPPPV
TP FP

=
+  

[3]

TNNPV
TN FN

=
+  

[4]

21 Precision RecallF
Precision Recall
× ×

=
+  

[5]

Statistical analysis

Data were analyzed using GraphPad 7.0 and IBM SPSS 
Statistics 26 softwares. Data were presented as mean ± 
standard deviation (SD). Frequency distribution was tested 
by Pearson Chi-square (χ2) test. Statistical analysis was 
performed using one-way analysis of variance (ANOVA), 
with Bartlett’s test and Tukey’s multiple comparisons. 

Table 2 Dataset of image patches for all classes

Dataset
Compression 

fracture
Old fracture

Schmorl’s  
node

Kummell’s 
disease

Previous  
surgery

Normal

Training dataset 8,046 (12.9) 3,257 (5.2) 824 (1.3) 478 (0.8) 1,979 (3.2) 47,604 (76.5)

Testing dataset 2,536 (12.9) 893 (4.6) 154 (0.8) 204 (1.0) 702 (3.6) 15,122 (77.1)

Alternative hospital dataset 398 (13.0) 66 (2.1) 23 (0.7) 56 (1.8) 102 (3.3) 2,425 (79.0)

Data were presented as samples, n (%).

https://cdn.amegroups.cn/static/public/QIMS-23-685-Supplementary.pdf
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Statistical significance was set at P<0.05. 

Results

Performance of the VDModule in vertebra detection

We achieved automatic vertebra diagnosis from the original 
images by first developing a VDModule based on the Faster 
R-CNN model to detect all the vertebrae in the input 
image (Figure 2A). The training dataset for the VDModule 
consisted of 1,082 images with 9,135 vertebrae, and the 
testing dataset consisted of 405 images with 3,212 vertebrae. 
The vertebrae-level ratio of training and testing datasets 
for VDModule was approximately 3:1. Both the ResNet18 
and MobileNet v2-based models were well trained, with 
increased region proposal accuracy and decreased loss as the 
iteration increased (Figure 2B). The ResNet18-based faster 
R-CNN model showed significantly better performance 
than the MobileNet v2-based faster R-CNN model in 
vertebra detection task (comparison of the precision-recall 
curve, Wilcoxon signed rank test, P<0.001; mAP; ResNet18, 
0.982; MobileNet v2, 0.941; Figure 2C). 

We also quantitatively evaluated the relationship between 
the annotations and the ResNet18-based model detection 
results. The numbers of manually annotated and model-
detected vertebrae in each CT slice were significantly 
linearly correlated in the testing datasets (Figure 2D). We 
also divided the annotated and model-detected vertebrae 
into three types (hit, FN, and FP) to assess the reliability 
of the ResNet18-based model (Figure 2E). The developed 
ResNet18-based model showed high performance with the 
testing datasets, yielding FP and FN rates of 1.52% and 
1.33%, respectively (Figure 2F). Our experimental results 
showed that the proposed VDModule achieved accurate 
and reliable vertebra detection.

Performance of the VCModule in vertebra classification 

In the single vertebra level dataset, the training dataset 
consisted of 14,584 manually annotated diseased vertebrae 
and 47,604 semi-automatically detected normal vertebrae 
(Figure 3A,3B), and the testing dataset consisted of 4,489 
manually annotated diseased vertebrae and 15,122 semi-
automatically detected normal vertebrae (Table 2). The 
vertebrae-level ratio of training and testing datasets for 
VCModule was approximately 3:1.

We used the established training and testing datasets to 
develop a multi-output classification model based on ResNet-50 

to classify each vertebra into six classes independently: 
OVCF, OF, SN, KD, PS, and normal (Figure 3C-3F). The 
VCModule exhibited high performance for the OVCF, 
OF, KD, and PS classes in both the training and testing 
datasets (training dataset: sensitivity 0.945±0.052, specificity 
0.997±0.004, PPV 0.964±0.026, NPV 0.998±0.003, F1 
score 0.954±0.033, Table 3 and Figure S4; testing dataset: 
sensitivity 0.919±0.082, specificity 0.995±0.006, PPV 
0.930±0.037, NPV 0.996±0.004, F1 score 0.924±0.056, 
Table 3 and Figure 3E). The F1 scores for the training and 
testing datasets showed no significant differences (t-test, 
P=0.390). However, the VCModule exhibited relatively 
poor performance for SN diagnosis (training dataset: 
sensitivity 0.713, specificity 0.998, PPV 0.781, NPV 0.997, 
F1 score 0.745; testing dataset: sensitivity 0.756, specificity 
0.995, PPV 0.532, NPV 0.998, F1 score 0.624; Table 3, 
Figure 3E and Figure S4).

Alternative hospital validation of the DL-based vertebra 
diagnostic system

We also applied the proposed vertebra diagnostic system 
to an alternative hospital validation dataset from another 
center (Figure 4A,4B). The alternative hospital validation 
dataset included 467 CT slices from 46 patients at Xuanwu 
Hospital (Table 1), and consisted of 645 manually annotated 
diseased vertebrae and 2,425 semi-automatically detected 
normal vertebrae (Table 2). The VCModule also exhibited 
good performance in diagnosing OVCF, OF, KD, and PS 
classes (sensitivity 0.891±0.111, specificity 0.989±0.021, 
PPV 0.902±0.103, NPV 0.997±0.002, F1 score 0.892±0.079, 
n=4; Table 3 and Figure 4B). However, the VCModule 
exhibited relatively poor performance in SN diagnosis 
(sensitivity 0.213, specificity 1.000, PPV 0.842, NPV 0.994, 
F1 score 0.340, Table 3 and Figure 4B). Our experimental 
results showed that the proposed vertebra diagnostic system 
can accurately and reliably diagnose OVCF, OF, KD, and 
surgery diseases.

Discussion

In this study, we established a deep-learning vertebra 
disease diagnosis system based on CT images that can 
accurately diagnose five vertebra diseases: OVCF, OF, SN, 
KD, and PS. We used a Faster R-CNN model to detect 
each vertebra in the CT image, and a subsequent multi-
output DL model to achieve a vertebra-level diagnosis. The 
multi-output DL model is suitable even for cases with co-

https://cdn.amegroups.cn/static/public/QIMS-23-685-Supplementary.pdf
https://cdn.amegroups.cn/static/public/QIMS-23-685-Supplementary.pdf
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Figure 2 Automatic vertebra detection using the Faster R-CNN model. (A) Architecture of the Faster R-CNN for vertebrae. From left to right, clinical CT 
image, feature extraction operation implemented by CNN, region proposal network to generate Bbox candidates, ROI pooling to combine the features and Bbox 
candidates, vertebra recognition network, and vertebra detection results. (B) The plots of region proposal accuracy and loss versus iteration in the training process. 
Left axis, region proposal accuracy (black line). Right axis, training loss (red line). Solid line, ResNet18-based Faster R-CNN model. Dotted line, MobileNet v2-
based Faster R-CNN model. (C) Evaluation of the detection performance in the testing dataset. The plot of the precision-recall curve. Gray, MobileNet v2-based 
model with a mAP of 0.9406. Blue, ResNet18-based model with a mAP of 0.9823. (D) Evaluation of the vertebra detection count in the testing dataset. Scatter 
plot of the number of detected vertebrae using the ResNet18-based model and the number of annotated vertebrae. The size of the scatter is proportional to the 
CT image sample size. (E) Spatial evaluation of vertebra detection. Left, visualization of the expert annotation and the ResNet18-based vertebra detection results. 
Right, an example of the evaluation criteria between annotation and detection. Three evaluation types: hit, false negative, and false positive. Yellow, annotated 
Bbox. Blue, detected Bbox. (F) Distribution of the error vertebrae in the ResNet18-based VDModule. Left, histogram plot of the number of images versus the 
number of FP vertebrae. The mean FP rate is 1.52%. Right, histogram plot of the number of images versus the number of FN vertebrae. The mean FN rate is 1.33%. 
R-CNN, region-based convolutional neural network; CT, computed tomography; CNN, convolutional neural network; ROI, region of interest; Bbox, bounding 
box; mAP, mean average precision; FP, false-positive; FN, false negative.
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Figure 3 Intelligent vertebra classification using the multi-output DL model. (A) Flowchart showing the construction of the vertebra patch dataset to develop 
the vertebra classification models. Vertebrae with various disease types were annotated by experts. All vertebrae in the CT image were detected using the 
trained Faster R-CNN model. The normal vertebrae were acquired by subtracting the diseased vertebrae from all detected vertebrae. (B) Visualization of the 
method for constructing the vertebra patch dataset. Left, expert annotation of a vertebra with OVCF, a vertebra with OF, and a vertebra with SN. Middle, 
all vertebrae detected by the Faster R-CNN model. Right, diseased vertebrae and normal vertebrae. Yellow, vertebrae with determined types. Blue, vertebrae 
without determined types. (C) Sample of various types of vertebrae. The disease vertebrae include those with OVCF, OF, SN, KD, and PS. (D) The plots of 
training accuracy and loss versus iteration. Left axis, training accuracy (black line). Right axis, training loss (red line). (E) One-vs.-all confusion matrix plot for the 
ResNet50-based multi-output model in testing dataset. (F) One-vs.-all ROC curve. Insert plot, enlarged graph in the selected range. CT, computed tomography; 
SN, Schmorl’s node; OVCF, osteoporotic vertebral compression fractures; OF, old fracture; KD, Kummell’s disease; PS, previous surgery; ROC, receiver operating 
characteristic; DL, deep learning; R-CNN, region-based convolutional neural network.
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Table 3 Quantitative evaluation of VCModule for six classes in the Luhe and Xuanwu Hospital datasets

Dataset Class Sensitivity Specificity PPV NPV F1 score

Lehe dataset (Train) OVCF 0.984 0.991 0.939 0.998 0.961

OF 0.886 0.998 0.954 0.994 0.919

SN 0.713 0.998 0.781 0.997 0.745

KD 0.917 1.000 0.963 0.999 0.939

PS 0.993 1.000 1.000 1.000 0.997

Lehe dataset (Test) OVCF 0.958 0.986 0.910 0.994 0.934

OF 0.808 0.996 0.911 0.991 0.856

SN 0.756 0.995 0.532 0.998 0.624

KD 0.913 0.999 0.913 0.999 0.913

PS 0.997 0.999 0.986 1.000 0.992

Xuanwu dataset (Test) OVCF 0.980 0.957 0.775 0.997 0.866

OF 0.741 0.997 0.860 0.994 0.796

SN 0.213 1.000 0.842 0.994 0.340

KD 0.874 1.000 0.982 0.998 0.925

PS 0.970 1.000 0.991 0.999 0.980

VCModule, vertebra classification module; PPV, positive predictive value; NPV, negative predictive value; OVCF, osteoporotic vertebral 
compression fractures; OF, old fracture; SN, Schmorl’s node; KD, Kummell’s disease; PS, previous surgery. 

One-vs.-all ROC

False positive rate

0.0

CF

1.0

0.75
0 0.25

SN PS

OF KD Normal

0.5 1.0

One-vs.-all confusion matrix (%, alternate hospital validation)

OVCF class

KD class

83.26

98.13

97.58

96.63

99.21

19.52

0.26

0.23

0.56

0.10

0.59

0.98

3.70

0.03

0.26

0.03

0.03

1.05

12.77

1.60

1.60

3.24

0.16

79.45

N
eg

at
iv

e
N

eg
at

iv
e

P
os

iti
ve

P
os

iti
ve

G
ro

un
d 

tr
ut

h 
cl

as
s

OF class

PS class

SN class

Normal class

Tr
ue

 p
os

iti
ve

 r
at

e

1.0

0.5

0.0

Predicted class

Negative Negative NegativePositive Positive Positive

A B

Figure 4 Alternative hospital validation of the DL-based vertebra diagnostic system. (A) One-vs.-all confusion matrix plot for the ResNet50-
based multi-output model. (B) One-vs.-all ROC curve. Insert plot, enlarged graph in the selected range. OVCF, osteoporotic vertebral 
compression fractures; OF, old fracture; SN, Schmorl’s node; KD, Kummell’s disease; PS, previous surgery; ROC, receiver operating 
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occurrence of multiple vertebra diseases.
Artificial intelligence-based diagnosis of vertebral 

diseases is gaining increasingly more attention. Prior 
literature reported several DL-based models in diagnosing 
OVCFs with the sensitivity of 0.54 to 0.85 and specificity 
of 0.92 to 0.96 (26,27). The diagnostic system proposed in 
this study was developed and validated in a larger dataset 
and achieved better performance. Furthermore, as most 
of the reported studies focused only on OVCFs (26,27), 
automatic diagnosis of multi-type vertebra diseases remains 
a challenging problem. Our proposed DL model achieved 
high performance in classifying four vertebra diseases: 
OVCF, OF, KD, and PS. The precise diagnosis of vertebral 
disease subtypes would play an important role in guiding 
subsequent surgery and treatment. We also achieved single 
vertebra-level diagnosis, which provides more accurate 
diagnostic information than a CT slice-level diagnosis 
(26,27). We used a Faster R-CNN model-based vertebra 
detection method to calculate the location of the vertebrae. 
In the literature, several studies have reported the on use of 
vertebral body segmentation to localize individual vertebrae 
(35,36). We also validated the generalization and reliability 
of the proposed system using an alternative hospital 
dataset acquired from another institute using a scanner 
and scanning parameters that differed from those used for 
the training and testing datasets. The proposed diagnostic 
system was based on two-dimensional (2D) images and 2D 
DL models. The adopted 2D models in this study worked 
fine in both vertebra detection and classification tasks. 
Besides, 2D models are usually easier to train and run faster 
than three-dimensional (3D) models. However, if 3D spatial 
features are key factors in a task, such as assessing vertebral 
morphology, the 3D DL models would be a better choice.

X-rays are also an important method for fracture 
diagnosis and have the advantages of fast speed, low cost, 
and low radiation intensity (37). Several X-ray-based DL 
models have been reported for fracture recognition (38,39). 
However, one study pointed out that lateral X-ray-based 
OVCF diagnostic models have diagnosis failure rates of as 
high as 20% for T5–T10 fracture (40). The occlusion by the 
diaphragm and lungs in lateral spine X-rays adversely affects 
the sensitivity and specificity of an X-ray-based DL model. 
Our CT-based DL model exhibited high performance in 
multiple vertebra disease diagnostic tasks, revealing that the 
combination of DL and CT would be a promising method 
for vertebra diagnosis.

The proposed DL-based diagnostic system for multi-type 
vertebra diseases used supervised learning. Although this 

method requires lots of prior diagnostic results as training 
data, it has the advantages of high accuracy and reliability 
and is suitable for clinical diagnosis. After the diagnostic 
system is established, the system can be integrated into 
clinical workflow in several ways. First, the proposed DL 
system can diagnose lots of samples very quickly, and it 
can even realize real-time diagnosis by interfacing with 
imaging instruments. The proposed DL system is especially 
suitable for emergencies or occasions of lacking medical 
resources. Second, the system can be retrained in real 
clinical workflow to further improve its performance. One 
possible way is that experts reconfirm difficult cases based 
on the system’s diagnostic results and correct the cases 
that are incorrectly diagnosed by the DL system. These 
corrected cases are then incorporated into the training data 
and retrain the diagnostic models to continuously improve 
their performance.

This study had several limitations. First, the training and 
testing datasets had class imbalance problem. The number 
of SN and KD samples was much smaller than other 
vertebra types, such as OVCF, OF, PS, and the normal. 
Although random over-sampling was adopted to overcome 
this problem, the resampling operation would introduce 
bias in the model. Second, the proposed system performed 
diagnosis at the vertebral level and slice level rather than 
at the patient level. The proposed system can be applied to 
determine whether a patient has certain vertebrae diseases 
(such as OVCF). For example, if one and more slice of a 
target vertebra is diagnosed with OVCF, the system can 
alert the radiologist that the patient is at higher risk of 
OVCF. Radiologists can focus on these high-risk vertebrae 
quickly and spend less time examining low-risk vertebrae, 
thus improving work efficiency. However, the current 
system does not recognize the vertebra position and it does 
not assess the overall condition of all vertebrae, leading 
to the inability in performing more complex tasks such as 
assessing the spine’s health condition and predicting re-
fracture probability. Third, the SN diagnosis performance 
was relatively poor. In both the training and testing datasets, 
the proposed system exhibited high specificity and NPV 
but poor sensitivity and PPV. These results suggested that 
the model was unfit for the SN diagnostic task and did not 
capture the key features of SN. There may be two main 
reasons. First, the number of SN samples was too few. 
Second, the key features of SN were closer to OVCF and 
OF, leading to high difficulty in recognizing SN. Notably, 
the number of KD was even less than SN, but DL models 
recognized KD accurately on both training and testing 
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datasets. The main reason for this phenomenon is that 
KD has obvious features that significantly differentiate 
it from other types of vertebral diseases. Establishing a 
larger-scale and high-quality SN dataset as well as adopting 
more powerful DL architectures would be possible ways 
to achieve better performance in SN diagnosis. In future 
research, we plan to increase the size of the datasets and 
build multicenter datasets that can more accurately validate 
the reliability and generalization ability of the system. 
Furthermore, we would directly compare the model’s 
performance with that of human experts to outline the 
importance of the DL models, revealing the potential value 
of the diagnostic system in real-world clinical applications.

Conclusions 

In conclusion, the proposed DL system can accurately 
diagnose four vertebra diseases: OVCF, OF, KD, and PS. 
To the best of our knowledge, no other DL system has 
been reported to perform this refined multi-type diagnosis 
of vertebra diseases. The proposed CT-based DL system 
provides an innovative method for multi-type vertebral 
disease diagnosis and has strong potential to facilitate 
accurate and rapid diagnosis of vertebral diseases. 
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Supplementary

Appendix 1 

CT scanner and imaging parameters

At Luhe Hospital, the CT images were acquired in an axial orientation using a Philips Ingenuity Core 128 CT scanner at  
120 kV, 300 mAs, and 1 mm thickness. The acquired images were reconstructed using a Philips Portal Workstation in sagittal 
view (3 mm thickness) in the digital imaging and communications in medicine (DICOM) format and downloaded to Hina 
MIIS-RIS PACS system. At Xuanwu Hospital, the CT images were acquired in axial orientation using a GE Revolution 
CT scanner at 120 kV, 200-500 mAs, and 0.625 mm thickness. The acquired images were reconstructed using a GE AW4.7 
Workstation to sagittal view (2 mm thickness) in DICOM format and downloaded to a UniWeb Viewer PACS system.

We further used a Hina MIIS-RIS at Luhe Hospital and a UniWeb Viewer system at the Xuanwu Hospital, and we 
converted the CT slices from the DICOM format to the JPEG format. The format conversion was achieved by linear 
mapping of the values in the DICOM image to a minimum of 0 and a maximum of 255. Converting the DICOM image to 
a JPEG image led to a perceptible loss in image quality, but this quality loss had little effect on the ability of the surgeons to 
make a correct diagnosis.

Annotation of dataset

Surgeons implemented annotations on JPEG image of each CT slice using the LabelMe tool (version 5.0.1). The injured 
vertebrae annotation process consisted of three steps: independent annotation, consistency checking, and consulted 
co-annotation (Figure S1,S2). First, three spine surgeons implemented diagnoses and annotations for every CT slice 
independently. Second, we implemented consistency checking for all annotations. We compared the annotations on each CT 
slice from the three surgeons to find inconsistent annotations. Finally, for the inconsistent annotations, all three surgeons 
rechecked the patient’s spinal CT images and corresponding MRI T1 and T2 images together to reach consensus. 

Parameter settings for vertebra detection module

Vertebra detection module (VDModule) was developed to detect all vertebrae in teach CT slice. For the object detection 
task, the Bboxes are rectangular and are sensitive to random rotation operation. Rotation augmentation in an arbitrary degree 
would affect the precision of Bboxes and make the ground truth less reliable, thereby likely hurting model performance. We 
ensured the reliability of the Bboxes after augmentation by adopting several specific operations, including horizontal and 
vertical flipping, rotating 90 degrees, or a multiple of 90 degrees. We enlarged the image and Bbox datasets eight-fold using 
offline data augmentation (Figure S3).

Other parameter settings were set as follows: batch size 3; maximum epoch 5; learning rate 10-3; and stochastic gradient 
descent with momentum (SGDM) optimizer. The DL architectures and experiments were implemented on a computer with 
MATLAB 2021a and configured with an Nvidia GeForce GTX 1080 Ti GPU with 11 GB of memory.

Calculation of Bboxes for normal category vertebrae

In the annotation process of the vertebra classification task, only the vertebrae with injury were annotated in each image. The 
remaining vertebrae were the “normal” category. We automatically calculated the Bboxes of the normal category vertebrae. 
First, the Bboxes of all vertebrae were determined using the developed VDModule for each CT slice. Second, we abandoned 
the detected Bboxes that largely overlapped with at least one annotated disease Bbox (IoM ≥0.5). The remaining annotated 
Bboxes that had little or no spatial overlap with the disease Bboxes were deemed normal category vertebrae. 

Development of the vertebra extraction module

The vertebra extraction module (VEModule) was used to construct the vertebra image patch dataset for the vertebra 
classification task. Each Bbox of a CT slice underwent three steps in the image patch extraction process. First, the Bbox was 
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augmented five-fold through translation and scaling. The horizontal and vertical translation range was [-10 to 10] pixels. The 
value of the scaling range was [0.9–1.1]. Second, the CT image was cropped using each Bbox and the image size was modified 
to 196×196 pixels using zero-padding and center-crop operations. Third, the image patch was rescaled to 224×224 pixels to 
fit the subsequent DL models. For the training dataset, all augmented image patches were used for training. For the testing 
dataset, the average diagnostic results of the augmented image patches were used as the final diagnostic results. 

Parameter settings for vertebra classification module

We developed vertebra classification module (VCModule) to classify six vertebra categories. We used random over-sampling 
and under-sampling strategies to solve the class imbalance problem, and used data augmentation techniques to solve the 
overfitting problem.

In the training dataset, the samples for different vertebra diseases were highly imbalanced. We used random over-
sampling and random under-sampling strategies to establish a more balanced training dataset for various vertebra categories. 
Over-sampling can lead to an overfitting problem, especially for classes with few original samples. Hence, we used data 
augmentation techniques to solve the overfitting problem. The data augmentation consisted of multiple image processing 
operations, including image rotation, image translation, noise addition, and brightness and contrast modification. Other 
parameter settings were as follows: maximum epoch, 15; batch size, 64; learning rate, 10-2; learning rate decays with a ratio of 
0.2 every 5 epochs; and SGDM optimizer.

Table S1 Distribution of diseased thoracic and lumbar vertebrae

Vertebra location Luhe Hospital cohort: patient count (percentage) Xuanwu Hospital cohort: patient count (percentage)

T1 0 (0.0%) 0 (0.0%)

T2 0 (0.0%) 0 (0.0%)

T3 0 (0.0%) 0 (0.0%)

T4 1 (0.1%) 0 (0.0%)

T5 9 (0.9%) 0 (0.0%)

T6 34 (3.2%) 0 (0.0%)

T7 41 (3.9%) 1 (2.2%)

T8 49 (4.7%) 3 (6.5%)

T9 39 (3.7%) 2 (4.3%)

T10 39 (3.7%) 1 (2.2%)

T11 86 (8.2%) 3 (6.5%)

T12 282 (26.8%) 11 (23.9%)

L1 285 (27.1%) 14 (30.4%)

L2 148 (14.1%) 7 (15.2%)

L3 107 (10.2%) 11 (23.9%)

L4 84 (8.0%) 3 (6.5%)

L5 24 (2.3%) 1 (2.2%)

T, thoracic vertebra; L, lumbar vertebra. 
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Figure S1 Annotation process for vertebrae with consistent initial diagnoses. (A) Consistent diagnosis and annotations on a computer 
tomography (CT) slice by three surgeons independently. (B) Final consistent annotations by the three surgeons.

A B

Figure S2 Annotation process for vertebrae with inconsistent initial diagnoses. (A) Inconsistent diagnosis and annotations on a computer 
tomography (CT) slice by three surgeons independently. All surgeons diagnosed thoracic vertebra T11 and lumbar vertebra L1 as 
osteoporotic vertebral compression fracture (OVCF) and Schmorl’s node (SN), respectively. Surgeons 1 and 2 diagnosed thoracic vertebra 
T10 as OVCF, but surgeon 3 diagnosed T10 as Normal. (B) Consulted co-annotation by the three surgeons for inconsistent annotations 
based on CT images and the corresponding MRI T1 and T2 images. The arrows indicate that T10 has obvious OVCF characteristics on 
MRI T1 and T2 images. (C) Final consistent annotations by the three surgeons. T10, T11 and L1 were diagnosed as OVCF, OVCF, and 
SN, respectively.
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Figure S3 Eight types of augmentation operations used for both image and bounding boxes. Each blue rectangle represents one annotated 
or detected vertebra.

Figure S4 Performance of the DL-based vertebra diagnostic system in the training dataset. (A) One-vs.-all confusion matrix plot for 
ResNet50-based multi-output model. (B) One-vs.-all ROC curve. Insert plot, enlarged graph in the selected range.

A B


