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Background: Positron emission tomography (PET) imaging encounters the obstacle of partial volume 
effects, arising from its limited intrinsic resolution, giving rise to (I) considerable bias, particularly for 
structures comparable in size to the point spread function (PSF) of the system; and (II) blurred image 
edges and blending of textures along the borders. We set out to build a deep learning-based framework for 
predicting partial volume corrected full-dose (FD + PVC) images from either standard or low-dose (LD) 
PET images without requiring any anatomical data in order to provide a joint solution for partial volume 
correction and de-noise LD PET images. 
Methods: We trained a modified encoder-decoder U-Net network with standard of care or LD PET 
images as the input and FD + PVC images by six different PVC methods as the target. These six PVC 
approaches include geometric transfer matrix (GTM), multi-target correction (MTC), region-based voxel-
wise correction (RBV), iterative Yang (IY), reblurred Van-Cittert (RVC), and Richardson-Lucy (RL). The 
proposed models were evaluated using standard criteria, such as peak signal-to-noise ratio (PSNR), root 
mean squared error (RMSE), structural similarity index (SSIM), relative bias, and absolute relative bias.
Results: Different levels of error were observed for these partial volume correction methods, which were 
relatively smaller for GTM with a SSIM of 0.63 for LD and 0.29 for FD, IY with an SSIM of 0.63 for LD and 
0.67 for FD, RBV with an SSIM of 0.57 for LD and 0.65 for FD, and RVC with an SSIM of 0.89 for LD and 
0.94 for FD PVC approaches. However, large quantitative errors were observed for multi-target MTC with an 
RMSE of 2.71 for LD and 2.45 for FD and RL with an RMSE of 5 for LD and 3.27 for FD PVC approaches. 
Conclusions: We found that the proposed framework could effectively perform joint de-noising and 
partial volume correction for PET images with LD and FD input PET data (LD vs. FD). When no magnetic 
resonance imaging (MRI) images are available, the developed deep learning models could be used for partial 
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Introduction

As a nuclear medicine imaging technology, positron 
emission tomography (PET) is a key imaging modality in 
the diagnosis and treatment planning of cancer patients 
(1,2). A sufficient dose of radioactive tracer should be 
injected into the patient to acquire high-quality PET 
images for diagnostic purposes at the cost of exposing the 
body to ionizing radiation (3-6). The dosage of the injected 
radiotracer should be decreased to an acceptable level to 
limit the radiation risk, based on the well-known as low as 
reasonably achievable (ALARA) principle (7). However, a 
reduction of standard of care radiotracer dose would result 
in poor PET image quality, as well as a noise-induced 
quantitative bias, considering the statistical characteristics 
of PET image formation (8-10). Moreover, the partial 
volume effect (PVE), which is the result of detector size and 
sensitivity limitation in PET imaging, leads to considerable 
bias, especially for structures of the order of the full width at 
half maximum (FWHM) of the point spread function (PSF) 
of the system, spill-in and spill-out across the neighboring 
regions, and ambiguity at tissue boundaries (7,8,11). In this 
light, prior to the quantitative evaluation of metabolism and 
physiology of the organs/lesions, partial volume correction 
(PVC) and noise suppression are desirable in PET studies.

The PVC techniques may be divided into two categories: 
reconstruction-based and post-reconstruction approaches 
(12-15). In the reconstruction-based method, anatomical 
information could be incorporated into an iterative image 
reconstruction method, as prior information, to compensate 
for the PVE across different anatomical regions. The salient 
differentiation between reconstruction-based PVC and 
post-reconstruction PVC can be delineated based on the 
framework through which PVC is imparted to the PET 
image. In the context of reconstruction-based PVC, the 
correction paradigm is inherently assimilated during the 
PET image reconstruction phase, leveraging concurrent 
anatomical delineations procured from magnetic resonance 

imaging (MRI). Such integration seeks to augment the 
fidelity of the PET representation by mitigating the spatial 
resolution degradation and blurring attributable to partial 
volume effects. the high spatial resolution and soft tissue 
contrast of MRI are leveraged to guide the reconstruction 
of PET images. Specifically, during the reconstruction 
process, the anatomical details obtained from MRI are 
utilized to provide a priori information or constraints. 
Conversely, post-reconstruction PVC techniques administer 
the correction subsequent to the PET image reconstruction, 
harnessing anatomical demarcations from structural 
modalities like MRI to circumscribe pertinent regions of 
interest. Subsequently, uptake quantifications within these 
demarcated zones undergo rectifications to counterbalance 
the influences of the partial volume effect. In essence, 
while reconstruction-based PVC synergizes MRI-derived 
anatomical insights during the PET image reconstruction 
continuum, post-reconstruction PVC rectifies uptake 
metrics within circumscribed anatomical confines informed 
by MRI (16-18). It is worth mentioning that only computed 
tomography (CT) images were solely used for the purpose 
of attenuation and scatter correction in the experimental 
setup or study (19,20).

Regarding the conventional noise reduction techniques in 
emission tomography (21-24), machine learning approaches 
have demonstrated an outstanding ability to restore the 
image quality in emission tomography (6,23,25,26). In this 
regard, Xu et al. developed a fully convolutional encoder-
decoder residual deep network model to estimate standard-
dose PET images from ultra-low-dose (LD) data. Their 
proposed deep network outperformed the non-local mean 
(NLM) and block-matching 3D filters in terms of peak 
signal-to-noise ratio (PSNR), structural similarity index 
(SSIM), and root mean squared error (RMSE) (27). Cui  
et al. introduced an unsupervised deep learning method for 
PET image denoising, which shows promise in enhancing 
the diagnostic capabilities of PET imaging. The network 

volume correction on LD or standard PET-computed tomography (PET-CT) scans as an image quality 
enhancement technique.
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was provided with both the initial noisy PET image and 
the prior image of the patient as instructional labels. 
Their findings demonstrated that the proposed approach 
outperformed the conventional Gaussian, NLM, and block-
matching 4D filters (28).

A number of approaches have been proposed for the 
correction of PVE in PET imaging (post-reconstruction 
methods), which include geometric transfer matrix  
(GTM) (29), multi-target correction (MTC) (30), region-
based voxel-wise correction (RBV) (31), iterative Yang  
(IY) (32),  reblurred Van-Cittert  (RVC) (33),  and 
Richardson-Lucy (RL) (33). The first four PVC methods 
are region-based and require anatomical information and/or 
regions of interest, while the latter two are deconvolution-
based applied at the voxel level. Post-reconstruction PVC 
and de-noising approaches are frequently employed in PET 
imaging; however, a joint estimate of the partial volume 
corrected and de-noised PET images would be crucial 
particularly in LD PET imaging (34-37). In this regard, Xu 
et al. suggested a framework for a combined PET image de-
noising, PVC, and segmentation by an analytical approach. 
Their findings demonstrated that the proposed framework 
could effectively eliminate noise and correct PVE (38). For 
joint PVC and noise reduction, Boussion et al. integrated 
deconvolution-based approaches (RL and RVC) with 
wavelet-based de-noising. This method improved the 
accuracy of tissue delineation and quantification without 
sacrificing functional information when tested on clinical 
and simulated PET images (34). Matsubara et al. predicted 
the PVC maps using the deepPVC model trained with both 
magnetic resonance (MR) and 11C-PiB PET images. Their 
results suggest that the deepPVC model learns valuable 
features from the MR and 11C-PiB PET images, allowing 
the prediction of PV-corrected maps (39).

Since most PVC approaches rely on anatomical 
information obtained from MRI scans (17), co-registration 
of PET and MRI data is required. The utilization of 
anatomical information in PVE correction would not 
be straightforward due to the absence of MRI image in 
most clinical routines, internal organ motion, patient 
uncontrolled movements, and changes in the appearance 
and size of structures in anatomical and functional imaging 
(34,40). In this study, we proposed a deep learning solution 
for joint PVC and noise reduction in LD PET imaging. 
Our investigation employs both LD and full-dose (FD) 
PET images independently as inputs for an adapted 
encoder-decoder U-Net architecture. For training our 
deep learning model, we utilized FD PET images subjected 

to six widely recognized PVC techniques, denoted as 
FD + PVC, as the intended targets. Notably, FD + PVC 
generated through six distinct methodologies served as 
our comparative benchmark. The essence of our proposed 
deep learning framework lies in its dual objectives: the 
concurrent mitigation of noise artifacts and implementation 
of PVC techniques on LD PET images. It should be noted 
that no PVC was performed on the LD PET images and 
these images were only considered as the input of the 
model to predict FD + PVC (simultaneous PVC and noise 
reduction). 

Methods

The study was conducted in accordance with the 
Declaration of Helsinki (as revised in 2013). The 
Institutional Ethics Committee of Razavi Hospital at Imam 
Reza University in Mashhad, Iran, approved the study. 
Individual consent for the retrospective analysis was waived.

Data acquisition

Between January 2020 and January 2021, a total of  
185 patients diagnosed with head and neck cancer were 
referred for 18F-FDG brain PET/CT scans as part of 
the initial staging of their cancer. However, 25 of these 
patients had to be excluded from the study. The reasons for 
exclusion included the presence of severe metal artifacts 
in the CT images, leading to suboptimal or erroneous 
PET attenuation and scatter correction in 8 cases, issues 
arising from bulk motion occurring between the CT and 
PET acquisition in 11 cases, motion artifacts within the 
PET imaging of 3 patients, and instances where the raw 
PET data, also known as list mode data, was found to be 
corrupted in 3 additional patients. For the purposes of this 
study, only clinical datasets without significant artifacts were 
deemed suitable for inclusion, and no additional criteria 
were imposed for data collection.

Clinical 18F-FDG brain PET/CT images (head and 
neck cancer) were collected for 20 min on a Biograph 
16 PET/CT scanner (Siemens Healthineers, Germany) 
following a standard of care injection dose of 205±10 MBq 
for 160 patients (the patient data were randomly divided 
into training, validation, and test datasets; 100 subjects 
for training, 20 subjects for validation, and 40 subjects for 
test). A low-intensity CT scan (110 kVp, 145 mAs) was 
conducted before collecting the PET data to correct for 
the purpose of attenuation and scatter correction. The 
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PET-CTAC images underwent scatter correction, utilizing 
the single-scatter simulation (SSS) method across two 
iterations. The entire corrections required for quantitative 
PET imaging including random, normalization, decay, etc., 
were performed within PET image reconstruction. This 
model scanner has a PSF equivalent to a Gaussian function 
with FWHM of 4–5 mm. In this regard, a PSF with an 
FWHM of 4.5 mm was considered for PVC methods. 
Written consents were acquired from patients participated 
in this study. The PET data were obtained in a list-
mode format to allow for the generation of synthetic LD 
data by randomly selecting 5% of the events (i.e., under-
sampling) within the acquisition time. A 5% reduction in 
imaging time retains an acceptable signal-to-noise ratio. A 
greater reduction might introduce excessive noise, while a 
lesser reduction may not offer significant dynamic value. 
Although noise does pose challenges to the networks, the 
signal-to-noise ratio remains adequate. Before embarking 
on the development of deep learning models, we applied 
six distinct PVC methods. For each method, we utilized 
two frameworks: one with LD input images and the other 
with FD input images. This resulted in a total of 12 models 
for the network. Subsequently, all the PET images were 
converted to standard uptake value (SUV) units. To manage 
the dynamic range of PET intensities, these images were 
uniformly normalized by a factor of 10 across the dataset.

It’s important to highlight that the intensity conversion 
of all PET images into SUV was based on body weights and 
injected doses, thereby preserving the quantitative value of 
the PET images. The absolute SUV value plays a crucial 
role in clinical studies. Hence, our measurements focused 
on gray matter without normalization to any specific region. 
We employed a general normalization factor of 10 to aid the 
network’s training. The overarching goal was to maintain 
the clinical significance of the PET images. To achieve 
accurate image quantification, normalization using a factor 

of 10 was deemed essential. This approach remains the sole 
method to retrieve the original SUV from the generated 
images. The quantitative parameters were then calculated/
reported in SUV unit the results section. For deep learning 
training, the reconstructed PET images were up-sampled 
into a matrix of 144×144×120 with a voxel size of 2 mm ×  
2 mm × 2 mm. Total FOV is 576 mm × 576 mm × 480 mm, 
and FOV after cropping is X mm × Y mm × Z mm. Up-
sampling did not affect quantification. The comparison with 
reference data were conducted in the up-sampled mode 
to avoid any errors introduced by the image resize. Table 1 
summarizes specific patient demographics data in detail.

Partial volume correction approaches

The PETPVC toolbox (17) was used to execute PVC 
on the PET images of 160 patients, with 20 subjects for 
validation and 40 for testing. The PETPVC was created 
utilizing the Insight Segmentation and Registration Toolkit 
(Insight Software Consortium, USA) in a C++ environment. 
Based on the fact that they are commonly used in research 
and clinical trials, six methods were selected for their 
effectiveness, feasibility of implementation, and relevance 
to clinical practice, including GTM (29), MTC (30),  
RBV (31), IY (32), RVC (33), and RL (33). Labbé 
(LAB) and Müller-Gärtner (MG) techniques are not 
recommended and may not provide satisfactory results for 
PVC in amyloid PET data (41). The automated anatomical 
labeling (AAL) (42) brain PET template/atlas was employed 
and transferred/co-registered to the patients’ PET-CT 
scan to apply PVC. The process included loading images, 
transferring them to the atlas space through affine transfer, 
resampling, matching the atlas to the images, and zoning 
in the standard atlas space. To regionalize the patient 
space, the atlas was transferred to the patient space using 
the inverse of the affine transfer performed in the previous 
step. The patient’s image was registered to a template, and 
the transformation was used to transfer anatomical regions 
onto the target patient. This enabled the application of 
PVC using the AAL atlas as a reference and the training 
of deep learning models based on ground truth anatomical 
brain regions. The AAL brain mask was employed for four 
of these PVC techniques, namely GTM, MTC, RBV, and 
IY, since these techniques are region-based and require 
anatomical masks for implementing PVC. Brain area masks 
are used instead of an MR image; however, the MR image is 
still considered the most accurate. This process ensures that 
the masks, like the MR image, function as intended. The 

Table 1 Demographics of patients included in this study, with age 
and weight expressed as mean ± standard deviation

Variable Training Test Validation

Number 100 40 20

Male/female 59/41 23/17 12/8

Age (years) 63±8 60±18 63±4.5

Weight (kg) 71±6 69±12 72±11

Indication/diagnosis: head and neck cancer staging or follow-up 
examinations.
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brain regions mask was not used for the two deconvolution-
based algorithms, namely RVC and RL. The six PVC 
methods are briefly discussed in the following sections.

GTM
The GTM (29) is a region-based method for PVC, which 
depends on anatomical information in terms of boundaries 
between different regions. The GTM is formulated by  
Eq. [1].

( ) ( ) ( )1,1 , ,1T N G N N r N−= ×
 

[1]

Wherein T represents real activity uptakes in each 
anatomical (brain) area, G represents the spill-over of 
activity from one region to another, registered in a matrix 
of size N (numbers of regions), and r is the vector of mean 
activity in each region as measured from the input (original) 
PET data. The spill-over activity (Gi,j) of the region (i) 
into the region (j) is calculated through the smoothing 
area (i) with the system’s PSF and multiplying with the 
region (j). The remaining voxels are then added together 
and normalized by the total activity in the area (i). When 
the spill-over activity of all regions into all others have 
been computed, the true activity values (T) can be found 
by applying: T=G−1. The GTM method assumes that 
activity within an area is uniform, and a single value would 
represent its activity uptake.

IY
The IY methodology (32) is similar to Yang’s method (43), 
wherein instead of applying the GTM method, the mean 
values of individual areas are calculated from the input PET 
data itself. The mean value estimations are then adjusted by 
applying Eq. [2] in an iterative fashion. 
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k
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Here, Tk,i is the estimated mean value of region (i) at the 
iteration (k), and fk is an estimation of the PVE corrected 
image at the iteration (k). In this equation, ( ) ( ),
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n

k k i i
i
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=

 =  ∑  
is a piece-wise version of the PET image with a mean value 
for each region. h(x) is the estimated average PET signal 
value in a region. Pi(x) is the PVC of a target in a voxel. 
Finally, the image Sk is a piece-wise constant image that 
represents average values for each region.

RBV
The RBV approach (31) is a hybrid methodology that 
employs the algorithm developed by Yang et al. (43) to 

accomplish both region- and voxel-based PVC. The mean 
activity levels in each region are first determined using the 
GTM approach. Afterward, Eq. [3] is employed to carry out 
a voxel-by-voxel PVC.

( ) ( ) ( )
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s x
f x f x
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Here,  ( ) ( )
1
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i i
i
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 =  ∑  s tands  for  a  synthet ic  image 
generated by the GTM technique (mean value is used for 
each region).

MTC
The MTC (30) is a combined region- and voxel-based 
PVC technique, where in the mean activity levels in each 
region are first determined using the GTM approach, and 
thereafter, the whole area is corrected voxel-by-voxel. The 
MTC PVC technique is implemented through Eq. [4]. 
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≠
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=
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∑
 

[4]

where fC is the PVC corrected picture, ⊗ stands for the 
convolution operator, h denotes the system’s PSF, f denotes 
the input (original) image, Pi and Pj indicates the brain/
anatomical regions, and Ti is the corrected mean value of 
region (i) obtained from the GTM technique. The variable 
j denotes the target region or structure under consideration. 
Each target region will have a corresponding value of j.

Deconvolution techniques
Without any requirement for anatomical information or 
segmentation, two deconvolution techniques are applied to 
reduce the PVE. However, the efficiency of these procedures 
is restricted, and in some situations, these methods may result 
in noise amplification. When no anatomical information is 
provided, they can improve the contrast of the image to some 
extent. The iterative implementation of the two standard 
deconvolution algorithms, namely RL and RVC, is given in 
Eq. [5] and Eq. [6] (33).

( ) ( ) ( ) ( )
( ) ( )1k k

k

f x
f x f x h x

h x f x+

 
= ⊗ ⊗    

[5]
 

( ) ( ) ( ) ( ) ( ) ( )1k k kf x f x h x f x h x f xα+  = + ⋅ ⊗ − ⊗ 
 

[6]

Here, α is the convergence rate parameter that defines 
the degree of change at each iteration. h(x) is a region’s 
estimated mean PET signal, while f(x) is the true PET 
signal in a voxel. fk(x) is the estimated PET signal after 
deconvolution in iteration k.
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Deep neural network implementation

A modified encoder-decoder U-Net architecture, 
illustrated in Figure 1, was employed to apply PVC to 
PET images. The modified U-Net is a fully convolutional 
neural network with deep concatenation connections 
between different stages, which is based on the encoder-
decoder structure (44). Convolution with 33 kernels 
and a rectified linear unit (ReLU) is used at each level. 
A 2×2 max-pooling is used for down-sampling and up-
sampling blocks across various stages. In U-Net, “con” 
means “convolutional layer”, while “conv” means 
“convolution operation”. Max-pooling is usually done 
after a convolutional operation, but sometimes, it’s 
better to apply dropout before max-pooling to prevent 
overfitting and improve generalization. MATLAB software 
and the Deep Learning toolbox were used to design and 
train the network, while an NVIDIA GPU was used 
for training. The U-Net training was stopped based on 
two criteria: maximum epochs and minimum validation 
RMSE loss. Each PVC method was given a maximum of  
15 epochs, with 340 iterations per epoch and a total of  
5,100 maximum iterations. The minimum validation 
RMSE loss was determined for each method and compared 
with the normal and standard values. Performance during 
training and validation was evaluated using PSNR, 
RMSE, and SSIM. The Adam optimizer was used with 

a learning rate of 0.003 to train the network. The input 
to the network was either 5% LD or FD PET images 
to predict PVC PET images. The goal was to train this 
network to perform the PVE correction on PET images 
based on the different aforementioned PVC approaches 
(independently). Considering the six PVC techniques, a 
total of 12 separate models (6 for LD and 6 for FD input 
data) were developed.

Performance evaluation

Five standard quantitative measures were performed to 
assess the quality of predicted PET images (FD + PVC) 
by different U-Net models. These metrics include PSNR  
(Eq. [7]), RMSE (Eq. [8]), SSIM (45) (Eq. [9]), voxel-wise 
mean relative bias (MRB) (Eq. [10]), and mean absolute 
relative bias (MARB) (Eq. [11]). 

( )2

10
max value

PSNR 10 log
MSE

 
 = ×
 
   

[7]

In Eq. [7], max value is the maximum possible pixel value 
in reference image, whereas MSE is the mean square error.
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[8]

In the given context, J represents the predicted images 
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Figure 1 Structure of the U-Net employed for the prediction of PVC FD PET images from LD PET images (as well as FD PET images). 
“con” stands for “convolutional layer”, while “conv” represents the “convolution operation”. ReLU, rectified linear unit; DC, depth 
concatenation; PVC, partial volume correction; FD, full-dose; PET, positron emission tomography; LD, low-dose.
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obtained from each PVC method (FD + PVC), whereas I 
represent the reference image that shows FD + PVC PET 
images generated through various PVC methods. M×N 
denotes the total number of pixels present in the image. 
Our U-Net network was trained using uncorrected LD 
and FD PET images as inputs and FD PET images with 
correction as outputs.

( ) ( )( )
( )( )

1 2
2 2 2 2

1 2

2 2
, x y xy

x y x y

c c
SSIM x y

c c

µ µ σ

µ µ σ σ

+ +
=

+ + + +
 

[9]

Here, μx, μy represent the average of x, y images and 2
xσ , 

2
yσ  represent their variance. xyσ  denotes the covariance of x 

and y images. c1=(k1L)2, c2=(k2L)2, k1=0.01 and k2=0.03 were 
selected by default to avoid division by very small numbers  
(L is the dynamic range of the pixel values).
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Here, MRB and MARB are metrics used to evaluate the 
accuracy of U-Net’s predictions in PVC in PET imaging. 
It calculates the average relative bias on a per-voxel basis 
between the predicted output and the reference standard 
image. In Eq. [10] and Eq. [11], N indicates the total 
number of voxels in the volume of interest, Mi represents 
the measured value obtained from the PET scanner, and Ti 
represents the true value obtained from a reference standard. 
FD + PVC images generated by different methods are 
considered reference standards. PVC models have their own 
reference points, which are baselines and not necessarily 
ground truth. Furthermore, compared to the PVC atlas, 
MRB is only calculated once for the PVC register to estimate 
the average systematic bias introduced by partial volume 
effects in the region of interest (ROI) or the entire image, 
and MARB also shows the overall network bias.

For different PVC methods with either FD or LD 
input data, PSNR, RMSE, SSIM and MRB metrics were 
calculated and compared to the FD + PVC images predicted 
by the U-Net. These metrics are instrumental in evaluating 
accuracy, image quality, and clinical relevance. They also 
facilitate comparison with other studies. Among these, 
RMSE is particularly significant as it represents absolute 
errors in image intensity. Additionally, to enhance the 
assessment of the performance of different PVC models, we 
determined the voxel-wise MRB. Furthermore, given the 
AAL atlas transferred/co-registered to the patient’s space (to 

define 71 anatomical brain areas), the region-wise RMSE 
was determined for the individual brain regions. The left 
and right regions were combined to reduce the number 
of brain areas to 34 for the evaluation of the models. The 
brainstem is a crucial structure that links the spinal cord to 
the rest of the brain. Unlike other brain regions, it doesn’t 
have left and right counterparts.

Results

Figure 2 displays LD and FD PET images (first row) 
along with ground truth FD + PVC (second row) and 
U-Net models’ predicted FD + PVC images for various 
PVC algorithms (third and fourth rows). In the visual 
comparison presented in Figure 2, the U-Net generated 
RVC-predicted images that displayed reduced noise and 
a smoother appearance compared to images produced by 
other PVC models. Following this, the RBV, IY, and MTC 
methods demonstrated superior quality with diminished 
noise levels. The GTM image, contingent on the algorithm 
used, showcases enhanced anatomical details. On the other 
hand, the RL image appears noisier. A visual assessment 
indicates that images predicted by the U-Net from both LD 
and FD PET images share similar structural and detailed 
characteristics with the reference FD + PVC images. Visual 
inspection revealed that images predicted by the U-Net 
from both LD and FD PET images bear similar structures/
details with respect to the reference FD + PVC images. 
The images in Figure 3 illustrate the contrast between 
the SUV maps for the FD and LD inputs for the first and 
second rows. After analyzing the difference SUV maps 
generated from various PVC images by the U-Net model, 
we identified similar systematic biases/trends in the models 
with LD and FD input PET images. 

Figure 3 highlights that regions with positive values 
point to an uptick in SUV, denoting heightened metabolic 
activity. This could be indicative of disease progression or 
a therapeutic response. Conversely, regions with negative 
values hint at a decline in SUV and metabolic activity, 
potentially signaling disease regression or a positive 
response to treatment. Analyzing the SUV map of the 
difference between LD and FD input, there seems to 
be no notable difference across PVC algorithms. In the 
perspective of a nuclear medicine specialist, the RVC 
method slightly edges out in performance over other 
methods. Yet, there’s no discernible difference among the 
PVC methods in terms of pinpointing disease locations or 
differentiating head cancer across the cortices.
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Tables 2,3 illustrate the results of the quantitative analysis 
of the predicted PET images in terms of PSNR, RMSE, 
SSIM, MRB and MARB metrics for the LD and FD input 
PET data, respectively. These tables compare quantitative 
image quality metrics [mean ± standard deviation (SD)] 
between FD + PVC predicted by the U-Net models and the 
ground truth FD + PVC PET images for the entire head 
region. It should be noted that network bias is absent when 
values are zero. Extreme positive or negative values indicate 
over or underestimation tendencies, respectively. Significant 
negative values suggest underestimation of activity. 

The PVC methods exhibited varying levels  of 
performance across different metrics. In terms of PSNR, 
RVC achieved 24.73 for LD and 29.23 for FD, whereas 
RL scored 10.31 for LD and 13.92 for FD. MTC recorded 
13.51 for LD and 15.45 for FD, and RBV showed 16.24 for 
LD and 17.18 for FD.

Similarly, when considering RMSE, RVC yielded 0.99 
for LD and 0.79 for FD, while RL resulted in 5 for LD and 
3.27 for FD. MTC’s figures were 2.71 for LD and 2.45 for 
FD, and RBV displayed 1.60 for LD and 1.48 for FD.

Regarding SSIM, RVC obtained 0.89 for LD and 0.94 
for FD, whereas RL achieved 0.30 for LD and 0.37 for FD. 
MTC recorded 0.64 for LD and 0.58 for FD, and RBV 
showed 0.57 for LD and 0.65 for FD.

Lastly, in terms of error, RVC had an MRB of −0.01 for 
LD and 1.42 for FD, while RL had −2.06 for LD and −2.06 
for FD. MTC showed 3.15 for LD and −1.55 for FD, and 
RBV displayed 1.89 for LD and 1.15 for FD. IY had an 
MRB of 0.67 for LD and 3.44 for FD, and GTM recorded 
0.96 for LD and −3.27 for FD.

The RVC model shows an improvement of 18.1% over 
the LD PET image in terms of PSNR and 20.2% in terms 
of RMSE. Our research findings indicate that the RVC 
model performed better than the LD input model, while 
the RL model performed the worst. The RVC model had 
a PSNR of 24.73 for LD and 29.23 for FD and an SSIM 
of 0.89 for LD and 0.94 for FD. On the other hand, the 
RL model had a PSNR of 10.31 for LD and 13.92 for FD, 
with an SSIM of 0.30 for LD and 0.37 for FD. Moreover, 
the RL model had the highest error rate among other PVC 
methods, with an RMSE parameter of 5 for LD and 3.27 
for FD.

For the MARB parameter, both the RVC and IY 
methods with the FD input outperformed their LD 
counterparts, registering values of 14.30 and 16.29, 
respectively. Consequently, the overall network error for 
these two PVC models is less than that of the LD input. 
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Additionally, the MARB values for the RVC model, 16.26 
for LD and 14.30 for FD, were lower than those of other 
PVC methods. This underscores the network’s diminished 
error rate and its preeminent performance compared to 

other methods. Conversely, the RL and GTM methods 
logged the highest MARB values for the FD input, at 32.02 
and 35.18, respectively.

Table 4 shows statistically significant differences between 

Table 3 Comparison of quantitative image quality metrics (mean ± standard deviation) calculated between FD + PVC predicted by the U-Net 
models and the baseline FD + PVC PET images for the entire head region when the input data were FD PET images. The study utilized 40 test 
samples to arrive at the findings 

Test dataset GTM IY RBV MTC RL RVC

PSNR 14.38±2.62 17.75±2.24 17.18±3.18 15.45±3.48 13.92 ±3.11 29.23±4.24

RMSE (SUV) 1.64±0.62 1.35±0.48 1.48±0.55 2.45±1.34 3.27±1.71 0.79±0.48

SSIM 0.65±0.05 0.67±0.06 0.65±0.05 0.58±0.05 0.37±0.04 0.94±0.05

MRB (%) −3.27±13.49 3.44±17.1 1.15±17.06 −1.55 ±24.48 −2.06±6.86 1.42±2.87

MARB (%) 35.18±1.99 16.29±1.94 21.52±2.29 20.77±3.46 32.02±4.84 14.30±1.70

FD, full-dose; PVC, partial volume correction; PET, positron emission tomography; GTM, geometric transfer matrix; IY, iterative Yang; RBV, 
region-based voxel-wise correction; MTC, multi-target correction; RL, Richardson-Lucy; RVC, reblurred Van-Cittert; PSNR, peak signal-to-
noise ratio; RMSE, root mean squared error; SUV, standardized uptake value; SSIM, structural similarity index; MRB, mean relative bias; 
MARB, mean absolute relative bias

Table 2 Comparison of quantitative image quality metrics (mean ± standard deviation) calculated between FD + PVC predicted by the U-Net 
models and the baseline FD + PVC PET images for the entire head region when the input data were LD PET images. The differences between 
LD and FD PET images are also presented. The study utilized 40 test samples to arrive at the findings

Test dataset LD vs. FD GTM IY RBV MTC RL RVC

PSNR 22.04±0.09 15.18±1.34 18.62±1.09 16.24±1.63 13.51±2.11 10.31±1.47 24.73±1.01

RMSE (SUV) 0.89±0.16 1.65±0.66 1.30±0.47 1.60±0.61 2.71±1.41 5.00±2.39 0.99±0.45

SSIM 0.54±0.09 0.63±0.05 0.63±0.06 0.57±0.06 0.64±0.05 0.30±0.07 0.89±0.05

MRB (%) 0.01±0.56 0.96±25.11 0.67±15.77 1.89±16.67 3.15±29.29 −2.06±6.77 −0.01±2.59

MARB (%) 0.04±0.03 30.78±2.00 19.55±2.29 20.73± 2.31 17.13±3.13 23.05±4.75 16.26±1.95

FD, full-dose; PVC, partial volume correction; PET, positron emission tomography; LD, low-dose; GTM, geometric transfer matrix; IY, 
iterative Yang; RBV, region-based voxel-wise correction; MTC, multi-target correction; RL, Richardson-Lucy; RVC, reblurred Van-Cittert; 
PSNR, peak signal-to-noise ratio; RMSE, root mean squared error; SUV, standardized uptake value; SSIM, structural similarity index; 
MRB, mean relative bias; MARB, mean absolute relative bias.

Table 4 A comparison is made between LD and FD inputs using P values for various quantitative image quality metrics to predict FD + PVC 
through U-Net models

Test dataset GTM IY RBV MTC RL RVC

RMSE (P value) 0.04 0.03 0.05 0.40 <0.001 0.05

SSIM (P value) <0.001 <0.001 <0.001 <0.001 <0.001 <0.001

PSNR (P value) 0.08 0.03 0.10 <0.001 <0.001 <0.001

MRB (P value) 0.05 0.05 0.04 0.03 1.00 0.02

MARB (P value) <0.001 <0.001 0.12 <0.001 <0.001 <0.001

LD, low-dose; FD, full-dose; PVC, partial volume correction; GTM, geometric transfer matrix; IY, iterative Yang; RBV, region-based voxel-
wise correction; MTC, multi-target correction; RL, Richardson-Lucy; RVC, reblurred Van-Cittert; RMSE, root mean squared error; SSIM, 
structural similarity index; PSNR, peak signal-to-noise ratio; MRB, mean relative bias; MARB, mean absolute relative bias.
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Figure 4 Bar plots of RMSEs calculated within 34 different brain regions between predicted and “ground-truth” FD + PVC images for 
6 different deep learning-based PVC models GTM, IY, MTC, RBV, RL, and RVC when the input data were LD PET images. GTM, 
geometric transfer matrix; IY, iterative Yang; MTC, multi-target correction; RBV, region-based voxel-wise correction; RL, Richardson-
Lucy; RVC, reblurred Van-Cittert; FD, full-dose; RMSE, root mean squared error; PVC, partial volume correction; LD, low-dose; PET, 
positron emission tomography.
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the FD + PVC predicted by the U-Net images by the 
LD and FD input models were analyzed using paired 
t-test analysis. A P value of less than 0.05 was considered 
statistically significant. The results of the paired t-test 
analysis showed that there were significant differences 
between the LD and FD input models. The study 
demonstrated several benefits of using deep neural networks 

for PVC on PET images.
Tables S1-S6 in the supplementary materials display 

mean values of PSNR, RMSE, and SSIM for LD and FD 
datasets for training, validation, and test datasets.

The summary of the region-wise (for the different brain 
regions) analysis of different deep learning-based PVC 
models is presented in Figures 4-7 for LD and FD PET 

https://cdn.amegroups.cn/static/public/QIMS-23-871-Supplementary.pdf
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Figure 5 Bar plots of RMSEs calculated within 34 different brain regions between predicted and “ground-truth” FD + PVC images for  
6 different deep learning-based PVC models GTM, IY, MTC, RBV, RL, and RVC when the input data were FD PET images. Comparison 
between LD and FD PET images is also presented. GTM, geometric transfer matrix; IY, iterative Yang; MTC, multi-target correction; 
RBV, region-based voxel-wise correction; RL, Richardson-Lucy; RVC, reblurred Van-Cittert; LD, low-dose; FD, full-dose; RMSE, root 
mean squared error; PVC, partial volume correction; PET, positron emission tomography.
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input data, respectively. For the models with LD input data, 
the RMSE values for predicted FD + GTM were higher 
in Heschl’s gyri, thalamus, pallidum, putamen, caudate 
nucleus, amygdala, and olfactory, compared to that in the 
LD PET images. For the predicted FD + IY, FD + RBV, 
and FD + MTC PET images, higher RMSEs were observed 
in Heschl’s gyri, thalamus, pallidum, putamen, and caudate 

nucleus brain regions, compared to LD PET images. For 
the RL model, higher RMSEs were observed in all brain 
regions. On the other hand, the results indicated that for 
PSNR values, FD is approximately 18.18% better than LD 
for RVC and 35.02% better than LD for the RL method. 
For RMSE values, FD is approximate −20.20% better than 
LD for RVC and −34.60% better than LD for the RL 
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Figure 6 Bar plots of MRB (%) calculated within 34 different brain regions between predicted and “ground-truth” FD + PVC images for  
6 different deep learning-based PVC models GTM, IY, MTC, RBV, RL, and RVC when the input data were FD PET images. Comparison 
between LD and FD PET images is also presented. GTM, geometric transfer matrix; IY, iterative Yang; MTC, multi-target correction; 
RBV, region-based voxel-wise correction; RL, Richardson-Lucy; RVC, reblurred Van-Cittert; LD, low-dose; FD, full-dose; MRB, mean 
relative bias; PVC, partial volume correction; PET, positron emission tomography.
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method. Overall, the predicted PVC PET images from 
either LD or FD PET data exhibited similar results in the 
entire brain regions. 

The study found that MRB values were higher in the 
amygdala region for predicted FD + GTM and in the 
amygdala and caudate nucleus regions for predicted FD + 
MTC PET images when compared to LD PET images. 

The RL model showed higher MRBs in all brain regions 
as compared to LD PET images. On the other hand, the 
RBV model showed similar MRB percentages in both 
modes, performing equally in both cases. In comparison, 
the RVC model produced better results in all brain regions 
when compared to LD PET, making it a better option for 
network learning.
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Figure 7 Bar plots of MRB (%) calculated within 34 different brain regions between predicted and “ground-truth” FD + PVC images for 
6 different deep learning-based PVC models GTM, IY, MTC, RBV, RL, and RVC when the input data were LD PET images. GTM, 
geometric transfer matrix; IY, iterative Yang; MTC, multi-target correction; RBV, region-based voxel-wise correction; RL, Richardson-
Lucy; RVC, reblurred Van-Cittert; FD, full-dose; MRB, mean relative bias; PVC, partial volume correction; LD, low-dose; PET, positron 
emission tomography.

#1 Precentral, #2 Rolandic-Oper, #3 Supp-Motor-Area, #4 Olfactory, #5 Frontal-Sup, #6 Frontal-Mid, #7 Frontal-Inf, #8 Rectus, #9 Insula,  
#10 Cingulum-Ant, #11 Cingulum-Mid, #12 Cingulum-Post, #13 Hippo-Parahippo, #14 Amygdala, #15 Calcarine, #16 Cuneus, #17 Lingual, 
#18 Occipital, #19 Fusiform, #20 Postcentral, #21 SupraMarginal, #22 Angular, #23 Precuneus, #24 Paracentral-Lobule, #25 CaudateNucl,  
#26 Putamen, #27 Pallidum, #28 Thalamus, #29 Heschl, #30 Parietal, #31 Temporal, #32 Vermis, #33 Cerebellum-Crus, #34 Cerebellum

MTC

GTM

U-Net vs. FD + GTM

U-Net vs. FD + MTC

U-Net vs. FD + IY

U-Net vs. FD + RBV

RBV

IY
#1 #2 #3 #4 #5 #6 #7 #8 #9 #1
0

#1
1

#1
2

#1
3

#1
4

#1
5

#1
6

#1
7

#1
8

#1
9

#2
0

#2
1

#2
2

#2
3

#2
4

#2
5

#2
6

#2
7

#2
8

#2
9

#3
0

#3
1

#3
2

#3
3

#3
4

#1 #2 #3 #4 #5 #6 #7 #8 #9 #1
0

#1
1

#1
2

#1
3

#1
4

#1
5

#1
6

#1
7

#1
8

#1
9

#2
0

#2
1

#2
2

#2
3

#2
4

#2
5

#2
6

#2
7

#2
8

#2
9

#3
0

#3
1

#3
2

#3
3

#3
4

#1 #2 #3 #4 #5 #6 #7 #8 #9 #1
0

#1
1

#1
2

#1
3

#1
4

#1
5

#1
6

#1
7

#1
8

#1
9

#2
0

#2
1

#2
2

#2
3

#2
4

#2
5

#2
6

#2
7

#2
8

#2
9

#3
0

#3
1

#3
2

#3
3

#3
4

#1 #2 #3 #4 #5 #6 #7 #8 #9 #1
0

#1
1

#1
2

#1
3

#1
4

#1
5

#1
6

#1
7

#1
8

#1
9

#2
0

#2
1

#2
2

#2
3

#2
4

#2
5

#2
6

#2
7

#2
8

#2
9

#3
0

#3
1

#3
2

#3
3

#3
4

70
60
50
40
30
20
10
0

−10
−20
−30

80

60

40

20

0

−20

−40

30

20

10

0

−10

−20

−30

60

40

20

0

−20

−40

RL

U-Net vs. FD + RL

#1 #2 #3 #4 #5 #6 #7 #8 #9 #1
0

#1
1

#1
2

#1
3

#1
4

#1
5

#1
6

#1
7

#1
8

#1
9

#2
0

#2
1

#2
2

#2
3

#2
4

#2
5

#2
6

#2
7

#2
8

#2
9

#3
0

#3
1

#3
2

#3
3

#3
4

10

5

0

−5

−10

U-Net vs. FD + RVC

RVC

#1 #2 #3 #4 #5 #6 #7 #8 #9 #1
0

#1
1

#1
2

#1
3

#1
4

#1
5

#1
6

#1
7

#1
8

#1
9

#2
0

#2
1

#2
2

#2
3

#2
4

#2
5

#2
6

#2
7

#2
8

#2
9

#3
0

#3
1

#3
2

#3
3

#3
4

7
6
5
4
3
2
1
0

−1
−2

Figures S1,S2 in supplementary materials show RMSE 
boxplots for the FD + PVC PET images predicted by different 
models from the LD and FD PET input data, respectively. 
The RMSE boxplots revealed that images predicted by the 
U-Net from LD and FD PET data contain similar levels of 
error, compared to the reference FD + PVC images.

Discussion

We set out to create a deep learning solution for the joint 
PVC and de-noising of LD PET data without using any 
anatomical images. The 2D networks are as effective as 3D 
networks for regression problems like PVC. This is because 

https://cdn.amegroups.cn/static/public/QIMS-23-871-Supplementary.pdf
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the size of the training dataset increases and the number 
of parameters is less, resulting in better optimization and 
less overfitting. Running PVC in two dimensions does not 
change the nature or physics of the underlying data (46). 
MR images must be segmented into specific brain regions 
for proper analysis. Registration using an atlas is crucial 
for accurate identification and closure of these regions. As 
an outcome, this framework could be used in PET/CT 
imaging applications where MRI images are not accessible 
for conventional PVC methods. To achieve this, we utilized 
FD and 5% LD PET data (as the input data) and FD PET 
images corrected for PVE using six frequently used PVC 
techniques to train a modified encoder-decoder U-Net 
network. To conduct PVC, the AAL brain atlas was used 
to delineate anatomical areas of the brain. The anticipated 
PVE corrected PET images from both LD and FD PET 
data revealed comparable image quality considering the 
visual assessment. The differences between LD and FD 
images (Table 2 and Figure 3) were significantly lower than 
those observed for PVC models since the errors due to the 
PVC did not exist in the comparison of the LD and FD 
images and it merely reflects the noise levels in the LD 
PET images. According to the P value table, the PVC PET 
images predicted by LD and FD PET input data showed 
comparable outcomes considering PSNR, SSIM, RMSE, 
and MRB throughout the brain regions. This suggests that 
these models can jointly reduce noise and perform PVC. 

Since the RVC PVC strategy depends purely on a simple 
convolution procedure, which would not be challenging 
for the deep learning model to predict, the RVC model 
performed marginally better than the other PVC models. 
On the other hand, PVC techniques that rely on the 
brain areas mask to correct PET images exhibited greater 
quantification errors. Defining the exact anatomical brain 
regions binary would be highly challenging for the deep 
learning model, particularly when the input data is LD PET 
images. In this regard, significant RMSEs were observed 
for the MTC and RL PVC approaches, which cannot be 
ignored. As a result, the current deep learning models are 
inefficient for these two approaches. This limitation hinders 
the study’s potential and the use of deep learning techniques 
for these two approaches.

The GTM approach is a region-based method that 
performs PVC concurrently on different brain regions 
provided by the AAL brain map. The GTM approach tends 
to estimate a mean value for each region, based on which 
the spill-in and spill-out across different regions are then 
calculated. Since this approach assumes a uniform activity 

uptake for each region, the accuracy of the PVC by the 
deep learning model solely depends on the identification 
of anatomical regions. However, the MTC approach is a 
hybrid PVC that relies on both region-based and voxel-level 
processing to correct the PVE. The MTC method, in the 
first step, creates an estimation of the corrected image based 
on which voxel-based processing is conducted to generate 
the final PVC image. This procedure is relatively more 
complicated, compared to the RVC approach, and thus, 
a larger RMSE was observed for this method. Similarly, 
the RBV PVC approach, which is a combination of Yang’s 
voxel-wise correction (43) and the GTM approach, is a 
hybrid method; therefore, a similar RMSE to that of the 
RBV approach was observed. The RBV approach differs 
from the MTC method in that all areas are corrected at the 
same time while the MTC method performs PVC region 
by region (32,47). In the IY technique, which is a variation 
of the Yang’s approach, the voxel-wise uptake values are 
taken directly from the input PET images, as opposed to 
the GTM method which relies on regional mean values. 
The IY is often faster than the RBV and GTM methods to 
execute since it requires k convolution operation, where k 
is usually less than 10. However, the RBV method involves 
computing n convolutions, where n is the number of brain 
regions. Visually, the results of these two methods are 
similar. The PVC approaches discussed above are all based 
on anatomical information provided by the AAL brain 
map to calculate inter-region spill-over. Voxel-based PVC 
methods would also consider the intra-region spill-over and 
signal correction; thus, larger RMSEs were observed for 
these approaches. 

Compared to the LD PET data, the predicted FD + 
GTM PET images in the Heschl’s gyri, thalamus, pallidum, 
putamen, caudate nucleus, amygdala, and olfactory regions 
showed an overestimation of activity. This observation 
could be due to fact that these regions have very close 
dimensions to the full width at half the maximum of the 
PSF of the system. In the predicted FD + IY, FD + RBV, 
and FD + MTC images, a larger over-estimation was 
observed in Heschl’s gyri, thalamus, pallidum, putamen, 
and caudate nucleus, in comparison with the input LD PET 
images. These regions are of small size with relatively high 
activity levels, wherein small boundary estimation errors 
by the deep learning models would lead to large errors in 
these areas. Similarly, a larger overestimation was observed 
in Heschl’s gyri, thalamus, pallidum, putamen, and caudate 
nucleus regions for IY, MTC, and RBV models, overall, 
the Heschl’s gyri, thalamus, pallidum, putamen, caudate 
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nucleus, amygdala, and olfactory have relatively high activity 
levels and small dimensions, which render them more 
susceptible to errors associated with PVC since anatomical 
boundary estimation is challenging. A small deviation from 
the true anatomical boundary would lead to large errors. 
In addition to the small size, high intensity contrast of the 
Heschl’s gyri region with respect to the surrounding regions 
would make it very sensitive to the small PVC errors. 

Since IY, RBV, and MTC techniques relied on a similar 
initial estimation generated by the GTM method, the 
models developed based on them exhibited comparable 
levels of error. For all brain regions, the RL model led 
to an overestimation of activity uptake, which might be 
attributable to the fact that this method does not rely on 
any initial PVC estimation. The RL technique assumes 
a Poisson noise model and performs PVC based on a 
multiplicative correction step. Noise amplification is 
observed in this algorithm when the number of iterations 
proceeds as there no regularization factor is applied. The 
PVE is the result of limited spatial resolution in PET 
imaging. In this light, the PSF should be set precisely 
to accurately model and compensate PVE in some PVC 
algorithms. Overall, the RVC model exhibited lower errors 
in the entire brain regions, compared to the LD PET image 
for either LD or FD PET input data since this method 
contains a simple deconvolution process which is not 
challenging for deep learning models to predict. The U-Net 
models were effective in recovering image information from 
LD PET images. Lower MRB values were observed with 
MTC and RL, suggesting they may be more effective for 
accurate image information recovery. 

Comparing the PSNR, RMSE, and SSIM parameters 
from Tables 2,3 with those in Tables S5,S6, we notice that 
applying PVC to both LD and FD images introduced 
significant errors, leading to reductions in SSIM and PSNR 
values. Nevertheless, the U-Net network demonstrated its 
capability to accurately predict PVC images. Additionally, 
all PVC methods yielded significant improvements across 
the three parameters under discussion. Consequently, using 
deep learning, which presents fewer errors, proves more 
effective in enhancing PVC images.

The U-NET model used in image analysis  can 
potentially cause overestimation due to two factors: small 
receptive field and boundary estimation errors. The 
receptive field determines the area of input data that affects 
the prediction at a given point. If the field is too small 
compared to the size of the structures being analyzed, it can 
result in incomplete information and inaccurate predictions. 

Boundary estimation errors can arise due to limitations 
in the training data or architectural choices made in the 
network design. Inaccurate boundary estimation can result 
in misclassification or misalignment of structures, leading 
to overestimation. These factors are especially important 
in the context of PET image analysis, where accurate 
boundary estimation is crucial for proper PVC.

Our study had certain limitations. Firstly, our dataset 
was relatively small, consisting of only 160 images. This 
constrained the number of images we could allocate for 
validation. Secondly, tumor evaluations were not conducted 
for the patients. Moreover, our research was not a multi-
center study, and it exclusively focused on a single cohort 
of patients with head and neck cancer. We aim to address 
some of these limitations in our future research, which will 
include comparisons of our deep learning method with 
others, as well as acquiring patient-specific anatomical MR 
data to complement PET data. However, the registration 
of the AAL brain template to the patients’ PET data were 
meticulously verified by our group visually to avoid any 
misalignment errors. While we employed an atlas/template 
for PVC and achieved accurate registration, it’s important 
to highlight that our study does not incorporate MRI 
data. Thus, although our findings align with those derived 
from PVC images using MRI, we can’t definitively state 
that they’re equivalent. Furthermore, simulation studies 
are essential for a comprehensive comparison of various 
PVC algorithms. The absence of a ground truth in clinical 
studies, compared to simulation studies, complicates the 
task of contrasting the effectiveness of different PVC 
methods. However, drawing from clinical data for such 
evaluations is challenging due to the lack of a universally 
accepted ground truth tailored for PVC. However, future 
studies could test phantom data to overcome this challenge. 
Some of these algorithms might have intrinsic limitations/
shortcomings which may adversely affect the performance 
of the deep learning models developed based on them. In 
this regard, some standard approaches, such as the unrolling  
technique (48) or deep ensemble methods (49) could be 
employed to develop a PVC deep learning model that 
is superior to each of the PVC algorithms alone. Both 
methods have shown promising results and are now 
standard techniques.

Conclusions

Based on several PVC methods as the reference, we 
demonstrated that deep neural networks could conduct 

https://cdn.amegroups.cn/static/public/QIMS-23-871-Supplementary.pdf
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PVC on PET scans without anatomical images. Regarding 
the complexity of PVC techniques, our observations show 
that the RVC, RL, and RBV methods exhibit comparable 
performance in terms of PSNR, RMSE, SSIM, and MRB 
parameters for LD and FD inputs. The deep learning-based 
PVC models exhibited similar performance for both FD 
and LD input PET data, which demonstrated that these 
models could perform joint PVC and noise reduction. Since 
these models do not require any anatomical images, such 
as MRI data, they could be used in dedicated brain PET, as 
well as PET/CT scanners. 

In the future, we would focus on PET/MR data to 
compare the PVC methods. We will also test the unrolling 
technique to find out whether this method will be able to do 
PVC independently (without CT and MR images).
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Table S1 Comparison of quantitative image quality metrics (mean ± standard deviation) calculated between partial volume corrected full-dose (FD 
+ PVC) predicted by the U-Net models and the ground truth FD + PVC positron emission tomography (PET) images for the entire head region 
when the input data were low-dose (LD) PET images 

Validation dataset GTM IY RBV MTC RL RVC

PSNR 15.06±2.23 17.50±2.40 17.10±2.53 12.34±3.21 11.21±2.24 22.61±2.20

RMSE (SUV) 1.62±0.70 1.48±1.12 1.54±0.67 2.53±1.68 3.89±2.73 0.90±0.35

SSIM 0.61±0.06 0.66±0.05 0.60±0.05 0.62±0.05 0.36±0.05 0.92±0.05

Table S2 The mean and standard deviation of quantitative metrics for image quality were compared between full-dose PET images with partial 
volume correction (FD + PVC) predicted by U-Net models and ground truth FD + PVC PET images for the entire head region, using FD PET 
images as input data 

Validation dataset GTM IY RBV MTC RL RVC

PSNR 15.22±2.11 18.05±2.10 17.41±2.53 14.34±2.73 12.67±3.42 27.63±4.58

RMSE (SUV) 1.60±0.71 1.42±0.53 1.50±0.50 2.40±1.45 3.10±1.20 0.86±0.05

SSIM 0.49±0.07 0.68±0.05 0.67±0.05 0.60±0.06 0.40±0.05 0.95±0.05

Table S3 Quantitative image quality metrics were compared between partial volume corrected full-dose (FD + PVC) predicted by the U-Net 
models and the ground truth FD + PVC positron emission tomography (PET) images for the entire head region. This comparison was performed 
when the input data were low-dose (LD) PET images. The results were reported in terms of mean and standard deviation values 

Training dataset GTM IY RBV MTC RL RVC

PSNR 17.34±2.14 18.92±2.32 17.54±1.82 14.12±3.05 11.22±1.81 26.34±1.72

RMSE (SUV) 1.80±0.82 1.72±0.73 1.67±0.60 2.96±1.93 5.46±2.84 1.12±0.88

SSIM 0.70±0.08 0.72±0.06 0.64±0.09 0.69±0.07 0.41±0.08 0.92±0.06

Table S4 A comparison was made for the entire head region between partial volume corrected full-dose (FD + PVC) predicted by the U-Net 
models and the ground truth FD + PVC positron emission tomography (PET) images. Mean ± standard deviation quantitative image quality 
metrics were calculated for this purpose. The input data used for the comparison was FD PET images

Training dataset GTM IY RBV MTC RL RVC

PSNR 17.15±2.75 18.62±2.50 17.85±1.71 15.89±3.41 14.61±3.74 30.27±4.07

RMSE (SUV) 1.76±0.71 1.70±0.76 1.58±0.87 2.51±1.83 3.00±1.90 0.90±0.81

SSIM 0.67±0.07 0.73±0.07 0.70±0.09 0.68±0.07 0.50±0.08 0.97± 0.06

Table S5 Comparison of quantitative image quality metrics (mean ± standard deviation) calculated between full-dose (FD) and partial volume 
correction (PVC) positron emission tomography (PET) images for the entire head region when the reference data were PVC PET images. The 
differences between low-dose (LD) and FD PET images are also presented

Test dataset LD vs. FD FD vs. GTM FD vs. IY FD vs. RBV FD vs. MTC FD vs. RL FD vs. RVC

PSNR 22.04±0.09 11.18±2.14 13.31±2.49 12.64±2.22 11.81±2.17 6.11±2.84 18.87±2.21

RMSE (SUV) 0.89±0.16 4.90±0.66 4.29±1.47 5.10±0.61 5.85±1.30 9.96±2.83 2.87±0.75

SSIM 0.54±0.09 0.35±0.05 0.36±0.05 0.33±0.06 0.30±0.05 0.28±0.06 0.43±0.05

Supplementary
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Table S6 Comparison of quantitative image quality metrics (mean ± standard deviation) calculated between low-dose (LD) and the partial volume 
correction (PVC) positron emission tomography (PET) images for the entire head region when the reference data were PVC PET images 

Test dataset LD vs. GTM LD vs. IY LD vs. RBV LD vs. MTC LD vs. RL LD vs. RVC

PSNR 11.23±2.10 12.82±2.44 11.58±2.37 10.19±3.08 13.92 ±3.11 17.13±2.37

RMSE (SUV) 4.92±0.64 4.79±1.30 5.37±0.60 5.92±1.32 10.19±2.41 2.93±0.70

SSIM 0.30±0.05 0.35±0.05 0.31±0.05 0.32±0.05 0.23±0.05 0.40±0.05
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Figure S1 Boxplots of root mean squared error (RMSEs) for different partial volume correction (PVC) methods predicted by the U-Net 
models from low-dose (LD) positron emission tomography (PET) input data. RMSEs between LD and full-dose (FD) PET images are also 
plotted.

Figure S2 Boxplots of root mean squared error (RMSEs) for different partial volume correction (PVC) methods predicted by the U-Net 
models from full-dose (FD) Positron Emission Tomography (PET) input data.


