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Background: The critical shoulder angle (CSA) has been reported to be highly associated with rotator 
cuff tears (RCTs) and an increased risk of RCT re-tears. However, the measurement of the CSA is greatly 
affected by the malpositioning of the shoulder. To address this issue, a two-step neural network-based 
guiding system was developed to obtain reliable CSA radiographs, and its feasibility and accuracy was 
evaluated.
Methods: A total of 1,754 shoulder anteroposterior (AP) radiographs were retrospectively acquired to train 
and validate a two-step neural network-based guiding system to obtain reliable CSA radiographs. The study 
included patients aged 18 years or older who underwent X-rays and/or computed tomography (CT) scans of 
the shoulder. Patients who had undergone shoulder surgery, had a confirmed fracture, or were diagnosed with 
a musculoskeletal tumor or glenoid defect were excluded from the study. The system consisted of a two-step  
neural network that in the first step, localized the region of interest of the shoulder, and in the second step, 
classified the radiography according to type [i.e., ‘forward’ when the non-overlapping coracoid process is 
above the glenoid rim, ‘backward’ when the non-overlapping coracoid process is below or aligned with the 
glenoid rim, a ratio of the transverse to longitudinal diameter of the glenoid projection (RTL) ≤0.25, or a 
RTL >0.25]. The performance of the model was assessed in an offline, prospective manner, focusing on the 
sensitivity and specificity for the forward, backward, RTL ≤0.25, or RTL >0.25 types (denoted as SensF, B, −, + 
and SpecF, B, −, +, respectively), and Cohen’s kappa was also reported.
Results: Of 273 cases in the offline prospective test, the SensF, SensB, Sens−, and Sens+ were 88.88% 
[95% confidence interval (CI): 50.67–99.41%], 94.11% (95% CI: 82.77–98.47%), 96.96% (95% CI: 
91.94–99.02%), and 95.06% (95% CI: 87.15–98.40%), respectively. The SpecF, SpecB, Spec−, and Spec+ were 
98.48% (95% CI: 95.90–99.51%), 99.55% (95% CI: 97.12–99.97%), 95.04% (95% CI: 89.65–97.81%), and 
97.39% (93.69–99.03%), respectively. A high classification rate (93.41%; 95% CI: 89.14–96.24%) and almost 
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Introduction

Rotator cuff tears (RCTs) are a prevalent condition linked to 
shoulder discomfort and impaired function (1,2). According 
to one study (3), 20.7% of patients had full-thickness RCTs. 
Further, it has been noted that the likelihood of developing 
this particular ailment tends to increase as age advances. 
Thus, the early and accurate diagnosis of RCTs is critical.

Various acromion morphological parameters, such as the 
critical shoulder angle (CSA), lateral acromial angle, and 
acromial index, have been widely reported to have great 
value in the etiological analysis of RCTs and in assessing 
patient prognosis (4). Among these parameters, higher CSA 
values have been reported to be the most closely associated 
with full-thickness RCTs and a high risk of rotator cuff re-
tears (5). However, the CSA measurement is significantly 
affected by the malpositioning of the shoulder, which has 
led to concerns about the reliability of measurements taken 
on non-standard anteroposterior (AP) radiographs (6). A 
previous study (6) reported that a ratio of the transverse to 
longitudinal diameter of the glenoid projection (RTL) ≤0.25 
is a reliable CSA measurement with excellent diagnostic 
efficacy in identifying adequate images for the accurate 
measurement of CSA.

However, it is not easy to acquire AP radiographs with 
RTLs ≤0.25 in real-world settings, as (I) it takes much 
time to manually adjust patients’ position in radiography, 
which increases the workloads of radiologists and is against 
ethical guidelines; and (II). it is challenging for radiologists 
to determine RTL values ≤0.25 or >0.25 with the naked 
eye in real-time. Thus, it would be beneficial to have an 
automated classification system that could assist radiologists 
to accurately recognize reliable CSA radiographs and guide 
patient position adjustments in a timely manner.

In the field of computer vision, research has shown that 
deep learning has the ability to classify images with high 
accuracy (7,8). Deep learning can capture the complex 

relationships between images and diagnostics by extracting 
features from the raw data (9,10). Several studies (11-13) 
have shown that the application of deep learning could 
minimize the effects of experience and other external 
factors in the decision-making processes of radiologists. 
Thus, we proposed a two-step neural network-based 
guiding system and evaluated its feasibility and accuracy 
in detecting and classifying reliable CSA radiographs. To 
the best of our knowledge, this study was the first to use 
a hierarchical deep-learning algorithm to classify reliable 
CSA radiographs. The model’s performance was assessed 
using an offline, prospective approach and compared with 
the diagnoses of a radiologist. We present this article in 
accordance with the STARD reporting checklist (available 
at https://qims.amegroups.com/article/view/10.21037/
qims-23-610/rc).

Methods

Source of data

A sequential series of patients who had undergone 
shoulder imaging, including X-ray radiographs and/or 
computed tomography (CT) scans, from September 2015 
to September 2018 were included in this single-center 
retrospective diagnostic study. The study was conducted in 
accordance with the guidelines set out in the Declaration 
of Helsinki (as revised in 2013). The study was granted 
approval by the Research Ethics Committee of Sun Yat-sen 
Memorial Hospital of Sun Yat-sen University (No. SYSEC-
ky-ks-2018-036). No informed consent was required for 
this retrospective study, and the data were anonymized.

The shoulder CT scans were performed at 120 kVp,  
275 mAs, and 1.25 mm slice thickness with a fourth-
generation scanner (GE Healthcare, Chicago, IL, USA). 
A standard digital radiography system (Ysio, Siemens 
Healthcare, Erlangen, Germany) was used to perform 

perfect agreement (Cohen’s kappa: 0.903, 95% CI: 0.86–0.95) were achieved.
Conclusions: The guiding system can rapidly and accurately classify the types of AP shoulder radiography, 
thereby guiding the adjustment of patient positioning. This will facilitate the rapid obtainment of reliable 
CSA radiography to measure the CSA on proper AP radiographs.
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the shoulder AP radiographs. As part of the routine 
examination, the acquisition settings were automatically 
modified based on each patient’s exposure. The primary 
authors (Y.A. and C.L.) reviewed each CT scan and X-ray 
radiograph before its inclusion in the study. The study 
included patients aged 18 years or older who underwent 
X-rays and/or CT scans of the shoulder. Patients who had 
undergone shoulder surgery, had a confirmed fracture, or 
were diagnosed with a musculoskeletal tumor or glenoid 
defect were excluded from the study (Figure 1).

Generate digitally reconstructed radiographs (DRRs)

Based on Suter’s classification system and other previous 
studies (14,15), shoulder AP radiographs can be classified 
into the following types: ‘forward’ when the non-
overlapping coracoid process is above the glenoid rim, 
‘backward’ when the non-overlapping coracoid process is 
below or aligned with the glenoid rim, RTL ≤0.25, and 
RTL >0.25 (Figure 2). As the distribution of these four types 
of radiographs was unbalanced in the real-world setting, 
simulations of the DRRs were used to augment the training 
data for the network (16). First, Suter’s classification 
method was used to produce 12 DRRs from each CT scan 
of each patient following a regular procedure (16). Next, 
the generated DRRs were used as extra input data to feed 

the network (Figure 3).

Two‑step hierarchical model

Once the data generation was completed, a one-step 
classification model was established. This model operates 
directly on the complete radiograph, without localization 
or cropping. To improve the classification efficacy and 
optimize the algorithms, we implemented a two-step 
hierarchical model. The two-step hierarchical approach 
has been effectively employed in previous studies related 
to medical imaging. For example, Pham et al. used a 
comparable technique to identify abnormalities in chest 
X-rays (17). Specially, Pham et al. used YOLOv5 (You Only 
Look Once model version 5) to swiftly localize anomalies 
across the entire image, and ResNet50 (50-layer deep 
Residual Network model) to classify the detected regions 
with more precision, thereby minimizing the false positives 
identified by YOLOv5. The hierarchical integration of the 
two models was better able to detect medical anomalies. 

In the present study, the first step was to generate a 
512×512 pixel crop from each AP radiograph. The second 
step was to classify the shoulder AP radiographs into the 
forward, backward, RTL ≤0.25, or RTL >0.25 groups based 
on downscaled 512×512 inputs from the first network. To 
reduce the risk of overfitting the model to the training data, 

Exclusion of CT (n=131) (scans)
•	 Previous surgery (n=71)
•	 Defect of glenoid (n=26)
•	 Fracture or tumor (n=34)

Patients received  X-ray (n=623 
images) or CT scan (n=251 scans) of 
shoulder from Sep 2015 to Sep 2018

Training and validation datasets to 
develop two-step hierarchical model

Patients visiting the shoulder clinic 
received shoulder X-rays from Oct 

2018 to Dec 2021, (n=273) (images)

The offline prospective test (images)
•	 Forward (n=9)
•	 Backward (n=51)
•	 RTL ≤0.25 (n=132)
•	 RTL >0.25 (n=81)

Testing datasets

Exclusion of X-rays (n=309) (images) 
•	 Previous surgery (n=183)
•	 Defect of glenoid (n=45)
•	 Fracture or tumor (n=81)

X-rays (n=314) (images)
•	 Forward (n=11)
•	 Backward (n=63)
•	 RTL ≤0.25 (n=157)
•	 RTL >0.25 (n=83)

Simulated DRRs from CT 
scans (n=1,440) (images)
•	 Forward (n=360)
•	 Backward (n=360)
•	 RTL ≤0.25 (n=360)
•	 RTL >0.25 (n=360)

Figure 1 A flowchart showing how the data sets used for training, internal validation, and the offline prospective test were obtained. The 
deep-learning models’ results were compared to those of two human radiologists. CT, computed tomography; RTL, ratio of the transverse 
to longitudinal diameter of the glenoid projection; DRRs, digitally reconstructed radiographs. 
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A B C D

Figure 2 Suter’s classification system was used to assess the viewing perspective of shoulder anteroposterior radiographs. (A) Forward: no 
intersection between the upper glenoid rim (indicated by the red dotted lines) and the coracoid process (indicated by the yellow dotted 
lines); the coracoid process is positioned either below the upper glenoid rim, or its superior edge is in alignment with the upper glenoid rim. (B) 
Backward: no overlap is observed between the upper glenoid rim and the coracoid process, indicating that the coracoid process is positioned 
superior to the upper glenoid rim. (C,D) The upper glenoid rim and the coracoid process overlap, or the coracoid process’s inferior edge 
is aligned with the upper glenoid rim. RTL = cd versus ab is more than 0.25 (C) or less than 0.25 (D). RTL, ratio of the transverse to 
longitudinal diameter of the glenoid projection; cd, the transverse diameter; ab, the longitudinal diameter of the glenoid projection. 

Figure 3 The framework of the two-step model hierarchical architecture. Both original and DDRs were input for training and validation. 
The first-step model localized and cropped the glenoid by producing a segmentation map. The red and yellow dotted lines indicate the 
contours of the glenoid rim and acromion, respectively. After localization by the first-step network, based on Suter’s classification system, 
the second-step network classified the images into the following types: forward, backward, RTL ≤0.25, or RTL >0.25. DDRs, digitally 
reconstructed radiographs; RTL, ratio of the transverse to longitudinal diameter of the glenoid projection. 

Original data First step model Second step model

X-rays of shoulder

Segmentation of glenoid

Prediction of Suter’s classification

Forward 

RTL ≤0.25

Backward

RTL >0.25

Localized & Cropped

Simulated DRRs of shoulder

five-fold cross-validation was used to select the optimal 
hyperparameter setting and estimate the expected accuracy 
for each model. All the networks were trained on an Intel 

Xeon Platinum (8260 M, 2.4 GHz) computer with a Nvidia 
Tesla P100-PCIE16GB GPU. The framework used included 
Python 3.7 based on Python, PyTorch 1.8, CUDA 11.1, 
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and cuDNN 8.0.4, which can be downloaded for free from 
https://pytorch.org/ and https://developer.nvidia.com/.

The first step: localization of the glenoid and acromion 
contours

First, the training data set was manually labeled to provide 
the training ground truth. The data set was divided into 
the two following different regions of interest (ROIs): 
the glenoid and the acromion contours. In the annotation 
labeling process, specialists used the VGG Image Annotator 
(version 2.0.1 download from https://www.robots.ox.ac.
uk/~vgg/software/via/) to label the shoulder radiographs 
by drawing polylines and/or polygons. The determination 
of the medial border of the acromion ROI included the 
creation of a line originating from the most prominent point 
and extending at a right angle to the lower boundary of the 
acromion contour. To ensure uniformity and correctness, 
we sought the assistance of five senior clinical specialists 
who had expertise in establishing criteria for the original 
shoulder and associated information in accordance with the 
annotation requirements. To ensure quality control, each 
assessment underwent a thorough review process by senior 
specialists.

Augmentation techniques, including horizontal flips, 
affine transformations, and contrast adjustments, were 
used to generate sufficient labeled data from the original 
data. To reduce the redundancy and inconsistency of the 
X-rays and DRRs, the intensity range of the X-rays and 
DRRs was normalized between 0 and 1. The Mask Region-
based Convolutional Neural Networks (Mask-RCNN) 
model using a ResNet-50 backbone and a Feature Pyramid 
Network, trained with a ‘1x’ learning schedule (Mask-
RCNN R50-FPN-1x) from the Detectron2 Model Zoo 
was chosen to initialize our recognition backbone because it 
improves accuracy and significantly decreases the number of 
network parameters (18). The dice similarity coefficient was 
used to evaluate segmentation accuracy in this process (19)  
by quantifying the spatial overlap between the predicted 
segmentation and the ground-truth segmentation. The 
coefficient ranged from 0 to 1, with a value of 0 indicating 
no overlap, and a value of 1 indicating perfect agreement 
between the segmentations. Typically, a dice coefficient 
above 0.7 is considered acceptable for medical image 
segmentation tasks (20). Once the segmentation was 
completed, the acromion and glenoid contours were 
automatically localized as the center of the images and 
cropped to 255×255 pixels for further classification.

The second step: classification of shoulder AP radiographs

To classify the radiographs based on Suter’s classification, 
EfficientNet was selected because of its superior recognition 
performance (21). The EfficientNet network has been well 
described previously by Tan et al. (19). In this study, the 
network was trained to classify the radiographs into four 
classes: forward, backward, RTL ≤0.25, and RTL >0.25. 
The selection of the pre-trained model EfficientNet-B3 was 
based on its performance with a shoulder radiography data 
set in a previous study (22). We trained the network using an 
Adam optimizer and saved the model that achieved the best 
accuracy in every 15 epochs. The batch size and the initial 
learning rate were set at 16 and 0.02, respectively. These 
values were selected based on our previous experience, 
taking into consideration their respective advantages and 
trade-offs. A batch size of 16 provides a good trade-off 
between speed and accuracy for this model, while an initial 
learning rate of 0.02 is a reasonable starting point for 
optimization. Higher batch sizes can be faster but prone to 
overfitting, while lower learning rates can be more stable 
but slower to converge. The last model was saved after  
200 epochs, and the network training stopped when there 
was no improvement in the validation. Finally, to segregate 
each input image into one of the classes, probabilities for 
each class were calculated by the classification layer of the 
network.

Offline prospective test data set

Patients with suspected RCTs who visited the hospital for 
shoulder AP radiographs between October 1, 2018, and 
December 30, 2021 were included in the offline prospective 
test data set. The inclusion and exclusion criteria were 
similar to those mentioned above. The two-step hierarchical 
model was employed to test all shoulder AP radiograph 
images in an offline setting (Figure 1). Radiological 
diagnoses of shoulder AP radiographs by two radiology 
experts were used as the ground truths.

Statistical analysis

The mean (standard deviation) is used to represent the 
continuous data, and the number is used to represent the 
categorical variables. The dice similarity coefficient was used 
to assess the performance of the network’s segmentation.

During the five-fold cross-validation, we used various 
metrics, such as the area under the receiver operating 

https://pytorch.org/ and https://developer.nvidia.com/
https://www.robots.ox.ac.uk/~vgg/software/via/
https://www.robots.ox.ac.uk/~vgg/software/via/
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characteristic curve (AUROC), sensitivity, specificity, 
positive predicted value (PPV), negative predicted value 
(NPV), and accuracy, to present comprehensive results for 
both the one-step and two-step approaches. To evaluate the 
functional performance of the two-step hierarchical model, 
we conducted an offline prospective test and represented 
the outcomes using a 4×4 confusion matrix. This matrix 
provided measurements of the sensitivity, specificity, PPV, 
NPV, and classification rate for each class. The following 
abbreviations were used for these metrics: SensF, B, −, + for 
sensitivity; SpecF, B, −, + for specificity; PPVF, B, −, + for the PPV; 
and NPVF, B, −, + for the NPV. The classification rate was 
determined by calculating the ratio of correctly classified 
patients in all categories to the total number of test patients. 
To assess the agreement between the two-step hierarchical 
model and radiologists, we employed Cohen’s kappa index. 
A two-sided P value <0.05 indicated a statistically significant 

difference, and we also calculated the 95% confidence 
interval (CI). All the statistical analyses were performed 
using IBM SPSS Statistics for Windows Version 21.0 (IBM 
Corp., Armonk, NY, USA) for Windows.

Results

Clinical characteristics of the training and  
validation data set

A total of 1,754 shoulder AP radiographs (314 X-rays and 
1,440 CT-based DRRs generated from 120 patients) were 
collected and used for the training and validation data sets 
(Table 1). The average age of the patients was 43±16 years 
for the X-rays and 45±13 years for the CT-based DRRs. 
The original training data set comprised 314 shoulder 
X-ray images, with an imbalanced distribution across the 
classes: forward (11 images), backward (63 images), RTL 
≤0.25 (157 images), and RTL >0.25 (83 images). To address 
the class imbalance and enhance model training, we used 
DRRs to generate additional synthetic images. Specifically, 
we produced 1,440 DRRs, with 360 DRRs created per 
class, distributed as follows: forward (360 DRRs), backward 
(360 DRRs), RTL ≤0.25 (360 DRRs), and RTL >0.25 
(360 DRRs). After augmenting the original 314 images 
with the 1,440 DRRs, our final training data set comprised 
1,754 images, with a more balanced distribution across the  
classes: forward (371 images, including 11 original and  
360 DRRs), backward (423 images, including 63 original 
and 360 DRRs), RTL ≤0.25 (517 images, including 157 original 
and 360 DRRs), and RTL >0.25 (443 images, including  
83 original and 360 DRRs) (Figure 1).

Five‑fold cross‑validation results

The one-step model
In the five-fold cross-validation, the accuracy of 90.48% 
(95% CI: 82.41–96.77%). The AUROC was 0.873 (95% 
CI: 0.844–0.902), sensitivity 80.95% (95% CI: 75.68–
85.33%), specificity 93.65% (95% CI: 91.70–95.17%), PPV 
80.95% (95% CI: 75.68–85.33%), and NPV 93.65% (95% 
CI: 91.70–95.17%) (Table 2).

The two-step model
In the five-fold cross-validation, the two-step model had an 
average dice score of 0.912, an accuracy of 96.88% (95% 
CI: 88.72–98.36%), an AUROC of 0.958 (95% CI: 0.941–
0.976), a sensitivity of 93.77% (95% CI: 90.03–96.21%), a 

Table 1 Population characteristics

Characteristic X-rays CT-based DRRs

Patients 314 120

Age (years), mean ± SD 43±16 45±13

Sex

Male 171 67

Female 143 53

Shoulder disease

Normal 127 43

Shoulder dislocation  
without bony Bankart

35 16

Rotator cuff tear 86 29

Frozen shoulder 39 15

Acromioclavicular arthritis 16 7

Impingement syndrome 6 6

Mild osteoarthritis 5 4

Radiographs 314 1,440

Forward 11 360

Backward 63 360

RTL ≤0.25 157 360

RTL >0.25 83 360

CT, computed tomography; DRRs, digitally reconstructed 
radiographs; SD, standard deviation; RTL, ratio of the transverse 
to longitudinal diameter of the glenoid projection. 



Alike et al. Neural system for reliable CSA radiography1412

© Quantitative Imaging in Medicine and Surgery. All rights reserved.   Quant Imaging Med Surg 2024;14(2):1406-1416 | https://dx.doi.org/10.21037/qims-23-610

specificity of 97.92% (95% CI: 96.62–98.74%), a PPV of 
93.77% (95% CI: 90.03–96.21%), and a NPV of 97.92% 
(95% CI: 96.62–98.74%) (Table 2).

Results of the offline prospective test

A total of 273 shoulder AP radiographs were acquired for 
the offline prospective test. including 9 imaging sets with 
forward, 51 imaging sets with backward, 132 imaging sets 
with an RTL ≤0.25, and 81 imaging sets with an RTL 

>0.25. Figure 4 shows the four-by-four confusion matrix 
displaying the results of the model’s predictions compared 
to the radiologists’ final diagnoses. The SensF, SensB, 
Sens−, and Sens+ were 88.88% (95% CI: 50.67–99.41%), 
94.11% (95% CI: 82.77–98.47%), 96.96% (95% CI: 
91.94–99.02%), and 95.06% (95% CI: 87.15–98.40%), 
respectively. The SpecF, SpecB, Spec−, and Spec+ were 
98.48% (95% CI: 95.90–99.51%), 99.55% (95% CI: 97.12–
99.97%), 95.04% (95% CI: 89.65–97.81%), and 97.39% 
(93.69–99.03%), respectively. The PPVF, PPVB, PPV−, and 
PPV+ were 66.67% (95% CI: 35.44–88.73%), 97.95% (95% 
CI: 87.63–99.89%), 94.81% (95% CI: 89.21–97.71%), and 
93.90% (95% CI: 85.72–97.73%), respectively. The NPVF, 
NPVB, NPV−, and NPV+ were 99.62% (95% CI: 97.55–
99.98%), 98.66% (95% CI: 95.81–99.65%), 97.10% (95% 
CI: 92.89–99.07%), and 97.90% (95% CI: 94.37–99.32%), 
respectively (Table 3). The classification rate was 93.41% 
(95% CI: 89.14–96.24%). The probability cut-off points 
for classifying the types of forward, backward, RTL ≤0.25, 
and RTL >0.25 films were 0.295, 0.289, 0.301, and 0.278, 
respectively. The Cohen’s kappa was 0.903 (95% CI: 0.86–
0.95; P<0.001), which revealed almost perfect agreement 
between the two-step hierarchical model and radiologists 
(Table 3).

Discussion

The measurement of CSA, which has great value in the 
prediction of RCTs, should be applied to reliable CSA 
radiographs (with an RTL ≤0.25). However, in clinical 
practice, obtaining satisfactory AP radiographs of the 
shoulder is time consuming and carries the risk of increasing 
a patient’s radiation exposure. In this study, our two-stage 
hierarchical approach effectively identified and categorized 

Table 2 The performance of the model using a five-fold cross-validation analysis

Five-fold cross-validation One-step model (95% CI) Two-step model (95% CI)

AUROC 0.873 (0.844–0.902) 0.958 (0.941–0.976)

Sensitivity, % 80.95 (75.68–85.33) 93.77 (90.03–96.21)

Specificity, % 93.65 (91.70–95.17) 97.92 (96.62–98.74)

PPV, % 80.95 (75.68–85.33) 93.77 (90.03–96.21)

NPV, % 93.65 (91.70–95.17) 97.92 (96.62–98.74)

Accuracy, % 90.48 (82.41–96.77) 96.88 (88.72–98.36)

CI, confidence interval; AUROC, area under the receiver operating characteristic curve; PPV, positive predicted value; NPV, negative 
predicted value. 
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Figure 4 The 4×4 confusion matrix displays the case numbers of 
the prediction and imaging diagnoses obtained from the offline 
prospective test using the two-step hierarchical architecture. The 
right y-axis gradient bar in the confusion matrix represents the 
number of predicted samples that belong to each class; the color 
intensity increases as the number of samples increases. RTL, ratio 
of the transverse to longitudinal diameter of the glenoid projection. 
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Table 3 The two-step hierarchical architecture’s performance based on the offline prospective test results

Image 
classification

Sensitivity, %  
(95% CI)

Specificity, %  
(95% CI)

PPV, %  
(95% CI)

NPV, %  
(95% CI)

Accuracy, %  
(95% CI)

Classification rate  
(95% CI)

Cohen’s kappa

Value (95% CI) P value

Forward  
(n=9)

88.88  
(50.67–99.41)

98.48  
(95.90–99.51)

66.67  
(35.44–88.73)

99.62  
(97.55–99.98)

66.67  
(63.13–68.45)

93.41  
(89.14–96.24)

0.903  
(0.86–0.95)

<0.001

Backward 
(n=51)

94.11  
(82.77–98.47)

99.55  
(97.12–99.97)

97.95  
(87.63–99.89)

98.66  
(95.81–99.65)

97.92  
(89.04–95.32)

RTL ≤0.25 
(n=132)

96.96  
(91.94–99.02)

95.04  
(89.65–97.81)

94.81  
(89.21–97.71)

97.10  
(92.89–99.07)

93.62  
(90.22–96.12)

RTL >0.25 
(n=81)

95.06  
(87.15–98.40)

97.39  
(93.69–99.03)

93.90  
(85.72–97.73)

97.90  
(94.37–99.32)

98.32  
(96.13–99.45)

CI, confidence interval; PPV, positive predicted value; NPV, negative predicted value; RTL, ratio of the transverse to longitudinal diameter of the 
glenoid projection. 

the important anatomic structure in the shoulder AP 
radiograph into four classes: forward, backward, RTL 
≤0.25, and RTL >0.25. In addition, the offline prospective 
test showed that our two-step hierarchical model had a 
high classification rate (93.41%). We were able to show 
that the two‑step neural network could be trained to 
automatically localize the glenoid structure on raw input 
AP radiographs and classify radiographs according to the 
Suter’s classification system. Our findings indicate that our 
two-step model for reliable CSA radiographs (i.e., those 
with an RTL ≤0.25) might provide precise and reliable 
acromion morphological parameter assessments due to its 
high sensitivity and specificity.

Most earlier studies used medical data sets that were not 
balanced in terms of the class labels, which resulted in low 
predictive accuracy for the minority class (23,24). In our 
study, the types of forward (3–5%) and backward (20–26%) 
shoulder AP radiographs were uncommon in our real-
world environment. Multiple data-augmentation techniques 
have been reported, including horizontal image flips, and 
contrast adjustments. However, the data augmented using 
these strategies were obtained from a limited number of 
individuals and were prone to overfitting (25). To address 
these issues, we used an advanced DRR technique that 
could generate additional radiographs as extra input features 
for the network training and validation, together with real 
X-rays. Our results showed that the two-step network 
developed from 1,754 mixed input radiographs had a 
classification accuracy of 93.41% (95% CI: 89.14–96.24%) 
in the offline prospective test.

Recently, several deep-learning methods have been 
used for shoulder X-ray classification (26-28). Unlike in 

our study, previous methods focused on the classification 
performances of various networks for shoulder fractures 
or implants. Chung et al. achieved a classification accuracy 
of 96% in 1,376 shoulder bone fracture cases with four 
different types (29). The highest classification accuracy 
(94.74%) was achieved using Yılmaz’s NASNet model 
that was based on 597 X-ray images of shoulders with four 
different types of implants (26). In the current study, the 
classification rate of our network (93.41%) was lower than 
those reported in the studies of Chung et al. and Yılmaz 
(26,29). This might be attributed to the significant overlap 
between the anterior and posterior edges of the glenoid 
structure, particularly in the RTL ≤0.25 type. In addition, 
we included two different types of input (DRRs and X-rays) 
for network training. Ying et al. noted that while DRRs are 
quite photo-realistic, there are still differences between 
real X-rays and DRRs that influence network training (30). 
However, our network achieved comparable performance 
to that of Sasidhar, who reported a classification accuracy of 
92.16% on three types of greater tuberosity fractures based 
on the Mutch classification (31).

The two-step model performed better than the one-
step model in terms of the AUROC, sensitivity, and 
specificity (Table 2). This suggests that different input 
strategies influence network performance. We opted to 
incorporate a localizer neural network as the initial step 
in the two-step model, specifically targeting the center 
of the glenoid structure, instead of using the full AP 
radiograph in the one-step model. This decision was 
based on two key factors. First, our experience has shown 
that the network can avoid unnecessary computations 
by disregarding extraneous features, such as the rib and 
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distal part of the humeral. By automatically detecting 
and cropping to the glenoid structure, we effectively 
minimized the effects of these irrelevant details on the 
model, allowing the neural network to concentrate on 
the essential aspects of glenoid texture and morphology. 
As expected, the performances of the two-step model 
were higher than those in the one-step model (accuracy: 
96.88% vs. 90.48%, respectively).

For the classification of the shoulder AP radiographs, 
the network had a classification rate of 93.41% (95% CI: 
89.14–96.24%) in the offline prospective test. However, we 
found that its accuracy in classifying the RTL ≤0.25 type 
was lower than that for the RTL >0.25 type (93.62% vs. 
98.32%, respectively). This may be due to the significant 
overlap between the anterior and posterior edges of 
the glenoid structure in the RTL ≤0.25 type, which can 
influence network recognition performance. Similarly, 
most radiologists cannot distinguish between the RTL 
≤0.25 and RTL >0.25 types in capturing shoulder AP 
radiographs in a clinical setting. Thus, the two-step model 
might provide a second option that complements the 
radiologist’s assessment. Further, the classification accuracy 
might be improved by training the model on a larger input 
matrix and using external data sets from different individual 
medical centers in the future. Nevertheless, the two-step 
model achieved an almost perfect agreement with the two 
radiology experts with a Cohen’s Kappa agreement score 
of 0.903 (95% CI: 0.86–0.95). Hence, the two-step model 
shows promise for potential application in future clinical 
settings.

It should be noted that our study had several limitations. 
First, as the included data sets were from one institute, the 
network performance might be influenced by the various 
technical differences and imaging protocols of different 
medical centers. Thus, the generalizability of the model 
needs to be validated using a separate external cohort in 
the future. Second, the sample size of the training data 
set was relatively small. In this study, we attempted to 
avoid overfitting by employing an advanced technique 
that merged the extra input features from DRRs and real 
X-rays. A more extensive data set comprising shoulder 
AP radiographs from multiple medical centers might 
increase the robustness of the network. Third, only the 
Mask-RCNN detection algorithm and EfficientNet neural 
network were used in this study. Other potential deep-
learning algorithms might result in higher classification 
performance. However, the purpose of this study was not to 
determine which algorithm works the best in classification 

but to demonstrate in principle that a deep-learning 
algorithm could be trained to assist radiologists to recognize 
that reliable CSA radiographs have a potential role in 
guiding patient position adjustment in radiology.

The importance of this work is twofold. First, the 
recognition of reliable CSA radiographs is crucial as an 
initial step in obtaining accurate radiographic images 
for measuring the CSA. Unfortunately, no automated 
approach for shoulder radiography currently exists. Our 
proposed two-step neural network could enhance the work 
of radiologists by identifying reliable CSA radiographs. 
It could serve as a reliable secondary tool that would be 
particularly beneficial for inexperienced readers. Second, 
the developed guiding system has potential applications in 
future integrated automatic radiology repositioning systems. 
It could play a critical role in transitioning from the manual 
to automatic adjustment of patient positioning to acquire 
desired radiographs. This would lead to a significant 
reduction in radiation exposure time.

Conclusions

Our results demonstrated that our two-step neural 
network-based guiding system could rapidly and accurately 
classify different types of shoulder radiographs. Our 
system could improve the recognition of reliable CSA 
radiographs and reduce the workload of radiologists. The 
results obtained from the two-step hierarchical model 
demonstrate that the neural network had a high level of 
sensitivity and specificity. This indicates that the neural 
network has the capacity to provide precise and dependable 
measurements of diverse acromion morphological features. 
However, additional external validation is necessary to 
evaluate the model’s generalizability beyond the current 
study.
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