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Introduction

Optical coherence tomography (OCT) (1,2)/Optical 
coherence tomography angiography (OCTA) (3) has recently 
drawn increasing attention in the field of biomedical imaging 
due to its rapid clinical translation to ophthalmic imaging 
within 1 year or so. With a goal to contrast blood flow 
within microcirculatory tissue beds, there are a number of 
data processing methods available that can achieve OCTA. 
Most published methods use the magnitude of the OCT 
signal, such as speckle variance (4), correlation mapping (5), 
and split-spectrum amplitude decorrelation angiography (6).  
Some other methods use the phase information, such 
as phase variance OCT (7). Leveraging the complete 
information available in the OCT system, the complex OCT 
signal is explored, such as optical microangiography (OMAG) 
(8,9), complex differential variance (CDV) (10), and eigen-

decomposition (ED) based OMAG (11). Among them, ED 
approach is a statistical analysis method that utilizes the 
statistical properties of time varying complex OCT signals 
to achieve the purpose of contrasting blood flow within 
tissue. ED analysis belongs to adaptive filtering category 
in statistical signal processing discipline (12,13), which has 
been widely used in magnetic resonance imaging (14) and 
ultrasonic imaging (15) where it serves to analyze dynamic 
signals from the measured signals in patients. 

When an OCT probe scans a blood perfused tissue, the 
measured signal is contributed by the depth-resolved field 
speckle signals due to static tissue components and moving 
blood cells as well as additive system noise (Figure 1A).  
Assuming the speckle signal due to tissue components 
and that due to moving particles are not correlated, the 
multivariate statistics (12) can be applied to express the 
measured signals in multi-dimensional spaces in terms 
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of their spatial and temporal frequency components  
(Figure 1B). Since the bio-tissue is heterogeneous, its 
OCT signal contains band-limited frequency components 
(typically Gaussian distribution) centered at zero 
frequency (3,16). In this case, a high-pass filtering should 
be amendable to separate the OCT signal due to moving 
blood cells from the static tissue components (Figure 1C), 
examples of which include differentiation OMAG (9) and 
feature space OMAG (17). However, the bulk tissue motion 
due to, e.g., heartbeat and breathing is inevitable for in vivo 
imaging, which causes the central frequency of the tissue 
components slightly drifting away from the zero frequency. 
Under this situation, the adaptive nature of ED filtering fits 
perfectly well to separate the moving signals from the tissue 
signals (Figure 1D), leading to a better mapping of vascular 
networks, as experimentally demonstrated by ED-OMAG 
on the basis of pixel by pixel or voxel by voxel computation 
in (11). While statistically sound, voxel based analysis has 
serious drawbacks to implement ED-OMAG for real time 
imaging because (I) it requires expensive computational 
power (typically >1 h to generate a 3D optical angiogram 
for a typical OCT dataset of 1,024×240×240 voxels); and (II) 
it may fail to work when the probing voxel/pixel is totally 

located within moving blood, due to the fact that under 
this circumstance, the moving speckle, rather than tissue 
signal dominates the measured OCT signals, which does 
not satisfy ED filtering requirement to remove static tissue 
components (13). 

Methods

To overcome these drawbacks of the voxel-based eigen-
decomposition (vED), here we propose a new ED approach 
by conducting statistical ED analysis on the entire B-scans, 
which we call B-scans eigen-decomposition (bED) for ease 
of discussion below. Because the entire B-scan is treated as a 
‘voxel’ for the ED analysis, this “voxel” must be dominated 
by the tissue components because blood volume fraction 
within living tissue is <7%, which rules out the 2nd drawback 
in vED. Such approach is also equally applicable to the ED-
analysis based on A-scans eigen-decomposition (aED). For 
simplicity, below we present the proposed approach based 
on bED.

As discussed above, the complex OCT signal within a 
single voxel is a result of the field superposition of static 
scattering component, dynamic scattering component 
and additive noise (10). This property of the OCT signal 
makeup offers an opportunity to visualize blood flow in 
vivo by suppressing the tissue signal with proper high pass 
filtering (HPF). In the OMAG scanning protocol (9), it 
requires to acquire repeated B-scans at one location in 
order to build a time series of complex B-scans for OCTA  
(Figure 2A). Assuming there is N repeated B-scans at one 

Figure 1 Illustration of OCT signals is presented in the 
dimensional space of frequency components. (A) The OCT signal 
along a depth containing static scatters, dynamic scatters, and 
additive noise; (B) frequency components of tissue signal, dynamic 
moving signal and additive noise; (C) separating moving signal 
from tissue signal with non-adaptive HPF; and (D) that with 
adaptive HPF. OCT, optical coherence tomography; HPF, high 
pass filtering.

Figure 2 A scheme for bED OMAG. (A) Scanning protocol of 
bED approach with N repetitions of B-scans at one location in 
the slow scan direction; (B) corresponding flow image contrasted 
by bED. bED, B-scans eigen-decomposition; OMAG, optical 
microangiography.
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location, these B-scan signals can then be collectively 
expressed as a 2-D vector form Eq. [1]:

(1) ( ) ( )  B B BX = X , ..., X i , ..., X N [1]

where X(i) is the ith complex B-scan OCT signal, and X 
is the B-scan ensemble, which consists of static tissue 
components Xt, moving components Xm and additive noise 
Xn Eq. [2]:

t m nX = X + X + X [2]

Now the problem for OCTA is to find Xm from X by the 
use of ED of X. Since the tissue signal Xt dominates X, it can 
be obtained through the eigenvector decomposition of the 
signal correlation matrix ˆ

XC , which can be estimated by Eq. [3],

1ˆ = H
XC XX

N
[3]

where H is the Hermitian transpose operation. The 
correlation matrix is in general Hermitian symmetric and 
positive semidefinite. Thus, a complete (full rank) set of 
eigenvectors and orthonormal eigenvalues can be estimated 
through Eq. [4], 

( ) ( ) ( )ˆ = ∑NH H
X B B Bi=1

C EΛE = λ i e i e i [4]

where E=[eB(1),eB(2),…,eB (N)]  is the N×N unitary matrix of 
eigenvectors, Λ=[λB(1),λB(2),…,λB(N)]  is the N×N diagonal 
matrix of eigenvalues. Note that eigenvalues {λB(1),λB(2),…, 
λB(N)}are sorted in descending order. Because the static 
tissue components dominate X, they only contribute to 
the first Kth eigenvectors. Hence, the dynamic signals due 
to moving blood can be isolated from the tissue signals by 
designing eigen regression filter as follows Eq. [5]:

( ) ( )- 
 ∑K H

m B Bi=1
X = I e i e i X [5]

where Xm is the moving signals on the B-scan after removing 
the static tissue signal. Note that K is determined by the 
sample and the repetition number N in the experiment. The 
frequency fi of each eigenvector can be estimated from the 
lag-one autocorrelation formula Ri(1) Eq. [6] (13): 

1

arg (1)

1(1) ( ) ( 1)
1

-

-


   



 ∑

i

N
i Bi Bim=1

FPSf = Ri
2π

R = e m * e m +
N

[6]

where FPS is the frame rate of the OCT system. arg returns 
the phase angle of the lag-one autocorrelation. From Eq. 
[6], it is trivial to appreciate that when the dominant eigen 

components of the first Kth eigenvectors (i.e., static tissue 
components) drifts away from zero frequency due to bulk 
tissue motion shown in Figure 1D, the blood flow signal 
can still be precisely retrieved by removing the first eigen 
components using Eq. [5]. This makes this ED approach 
adaptive, thus superior to other non-adaptive HPF 
approaches.

Results

To demonstrate the performance delivered by the proposed 
bED and aED, we conducted the imaging of cerebral 
blood flow in mice by the use of a spectral domain OCT 
system with an imaging speed of 92-kHz. The operating 
wavelength was 1,310 nm that had a spectral bandwidth 
of ~80 nm. The volumetric dataset was captured with a 
scanning protocol covering 2.0 mm × 2.0 mm area on the 
mouse cortex. For this scanning protocol (referring to 
Figure 2), each B-scan consisted of 240 A-scans (x-axis) 
with 1,024 pixels (z-axis) in each A-scan. In the slow scan 
(y-axis), there were 240 positions. At each position, the 
number of repeated B-scans (N=16) were collected, upon 
which the proposed ED-approach was applied to separate 
the moving signals due to flow from the tissue signals, upon 
which a single B-scan angiographic image was formed at 
this position. Hence, each volumetric dataset was composed 
of 1,024 by 240 by 240 (z-x-y) voxels. For cerebral blood 
flow imaging, the mouse was prepared with cranial 
window preparation for ease access to the brain cortex. 
All the animal procedures for the terminal experiment 
were approved by the Institute of Animal care and Use 
Committee of the University of Washington. 

In the evaluation, the ensemble size of the signal vector 
is N=8 (we only utilize the first 8 of 16 frames in a position 
to contrast blood flow) for all the algorithms. For vED 
(ED based on voxels/pixels), 3 by 3 pixels were considered 
as a voxel. This treatment is appropriate because adjacent 
sample volumes within an imaging view of B-scan are more 
likely to share similar statistics, leading to a smoothing 
effect for final results. Figure 3A shows typical structural 
cross sectional image (averaged from an ensemble of 8 
B-scans). Figure 3B-D show corresponding blood flow 
images generated by vED, aED and bED, respectively. It 
is clear that all the algorithms can contrast flow signal, but 
with different clarity, e.g., contrast. Among them, bED and 
aED give better contrast. Some tiny capillaries identified 
by bED and aED, as pointed by arrows in Figure 3, can 
hardly be resolved by vED. This is largely attributed to the 
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use of 3 by 3 pixels as one voxel for the ED analysis in vED 
method, resulting in reduced spatial resolution. 

To further investigate, we generated 2D enface 
angiograms by projecting the 3D ED-OMAG values along 
the depth of 0.5 mm from the cortical surface. The 0.5 mm 
depth was selected because the OCT signal attenuation is 
not significant at this range. The results are given in Figure 4  
by the use of vED, aED and bED, respectively, where 
the images in the top row were resulted by the use of 
the maximum intensity projection. Visually, it is difficult 
to judge which algorithm delivers better performance 
because all the three methods examined provide more or 
less similar vascular networks for the mouse cortical layer. 
To investigate further, we quantitatively evaluated the 
angiograms shown in Figure 4A-C by using three metrics, 
i.e., SNR, image contrast, and vessel connectivity. To 
evaluate these metrics, however, a ground-truth angiogram 
is needed, which unfortunately is not available for in vivo 
studies. Here, we adopted an alternative way described 
in (3) to solve this problem, where we created an image 
by averaging all the three angiograms with equal weight 
(Figure 4D). This created image is taken as a surrogate for 
the ground truth, from which a binary vascular mask is 
generated (Figure 4E) by using a binary operation through 
adaptive Hessian filter (18). Finally, the SNR, image contrast 
and vessel connectivity were calculated according to the 
definitions described in (3). Note that for the metric of 
vessel connectivity, the lower value indicates a better vessel 
connection that an algorithm can deliver to an angiogram.

The quantitative results are tabulated in Table 1. 

Compared to vED, the proposed approaches of aED and 
bED have larger values in SNR and contrast, indicating 
they have better performance on SNR and contrast. 
The lower values of vessel connectivity in aED and bED 
mean the better performance in vasculature connectivity. 
The proposed methods have better performance is 
reasonable, because rather than the use of single pixel in 
vED, the pixels within entire B-scan or A-scan are now 
involved in eigen decomposition analysis, resulting in 
better statistical classification between the moving and 
tissue signals. Therefore, it is not surprising that the bEd 
approach delivers the best performance, as indicated by the 
quantification values in Table 1. 

Finally, we assessed the most salient feature offered by 
bED and aEd approaches, which is the ‘computational cost’ 
saving. Here we compared the computation time needed 
for producing a cross sectional OCTA flow image (i.e., B 
scan) by applying each algorithm on a range of N from 2 
to 16. ED algorithms are coded in MATLAB processing 
language running on a Windows 7 Pro computer using 
an Intel Xeon E5345 (2.33 GHz) processor with 16 GB 
of random access memory (RAM). In the evaluation, 
we extracted the blood flow signals from the measured 
complex OCT signals by taking the 1st eigen component as 
the static tissue signal. Average and standard deviation of 
computational times are reported for 240 randomly selected 
B-scans. The resulting computational costs with error bars 
are plotted in Figure 5 as a function of repetition numbers 
of B-scan needed to produce the blood flow B-scan for 
vED, aED, and bED algorithms, respectively. It can be 

Figure 3 B-scan comparison. (A) B-scan structural image, and resulting blood flow images using (B) vED, (C) aED and (D) bED, 
respectively. vED, voxel-based eigen-decomposition; aED, A-scans eigen-decomposition; bED, B-scans eigen-decomposition.
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seen that the vED algorithm takes roughly a constant time 
around 15 sec to generate a cross sectional flow image for 
all N. However, the computational times for aED and bED 
algorithms increase with the increase of B-scan repetitions. 
For a specific repetition of N=8, vED requires ~15 sec to 
produce the final B-scan blood flow image, while aED 
and bED only take ~0.06 sec and ~0.02 sec, respectively. 
The importance of bED approach is clear because it only 
requires about 1/3 computational cost of aED, and 1/750 
of vED, demonstrating a drastic computational cost saving 

to perform OCTA. This is technically significant because 
such implementation would be very much practical for real 
time implementation of statistical eigen decomposition of 
the measured OCT signals for OCT based angiography. 
Note that, although computational cost of each algorithm 
could dramatically reduce by using high performance 
computer with graphic processing units. The comparisons 
of computational cost in this manuscript can still provide a 
good reference.

Conclusions

In summary, we have proposed a highly efficient and 
practical statistically based bED approach to contrast 
functional blood vessel networks within microcirculatory 
tissue beds in vivo for use in OCT based angiography. By 
applying ED on a set of repeated complex OCT B-scan 
datasets, the computational time to produce an angiogram is 
dramatically reduced even with better imaging performance 
in terms of SNR, image contrast, and vessel connectivity, 

Figure 4 Comparisons of angiograms (A-C), are maximum intensity enface projection OCTA using vED, aED, and bED, respectively; 
(D) is an averaged image of the above (A-C) angiograms; (E) is a binary vascular mask from the averaged image; (F) is a skeletonized 
vascular mask to define a ground truth. vED, voxel-based eigen-decomposition; aED, A-scans eigen-decomposition; bED, B-scans eigen-
decomposition; OCTA, optical coherence tomography angiography.
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Table 1 Metrics comparisons

Metric vED aED bED

SNR 2.08 2.09 2.20

Contrast 2.63 3.03 3.24

Connectivity 65.04 60.91 55.11

vED, voxel-based eigen-decomposition; aED, A-scans eigen-
decomposition; bED, B-scans eigen-decomposition.
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demonstrating its practicality for real time implementations 
in hardware. To the best of our knowledge, this is the first 
time that the ED based approach is applied onto the B-scan 
OCT complex signals for the purpose of extracting blood 
flow signal from the measured optical signals. Though we 
have demonstrated its feasibility of bED and aED OMAG, it 
would be straightforward to apply the same concept onto the 
repeated OCT volumetric dataset, as recently demonstrated 
in (19) by the use of MHz swept source OCT systems. 
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