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Background: Accurate determination of the types of lymphadenopathy is of great importance in disease 
diagnosis and treatment and is usually confirmed by pathological findings. Radiomics is a non-invasive tool 
that can extract quantitative information from medical images. Our study was designed to develop a non-
invasive radiomic approach based on multiphase contrast-enhanced ultrasound (CEUS) images for the 
classification of different types of lymphadenopathy. 
Methods: A total of 426 patients with superficial suspected lymph nodes (LNs) from three centres were 
grouped into a training cohort (n=190), an internal testing cohort (n=127), and an external testing cohort 
(n=109). The radiomic features were extracted from the prevascular phase, vascular phase, and postvascular 
phase of the CEUS images. Model 1 (the conventional feature model), model 2 (the multiphase radiomics 
model), and model 3 (the combined feature model) were established for lymphadenopathy classification. The 
area under the curve (AUC) and confusion matrix were used to evaluate the performance of the three models. 
The usefulness of the models was assessed in different threshold probabilities by decision curve analysis.
Results: There were 139 patients (32.6%) with benign LNs, 110 patients (25.8%) with lymphoma, and 177 
patients (41.5%) with metastatic LNs in our population. Finally, twenty features were selected to construct 
the radiomics models for these three types of lymphadenopathy. Model 2 integrating multiphase images of 
the CEUS yielded the AUCs of 0.838, 0.739, and 0.733 in the training cohort, internal testing cohort, and 
external testing cohort, respectively. After the combination of conventional features and radiomic features, 
the AUCs of model 3 improved to 0.943, 0.823 and 0.785 in the training cohort, internal testing cohort, and 
external testing cohort. Besides, model 3 had an accuracy of 81.05%, sensitivity of 80%, and specificity of 
90.43% in the training cohort. Model performance was further confirmed in the internal testing cohort and 
external testing cohort. 
Conclusions: We constructed a combined feature model using a series of CEUS images for the 
classification of the lymphadenopathies. For patients with superficial suspected LNs, this model can help 
clinicians make a decision on the LN type noninvasively and choose appropriate treatments.
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Introduction

Lymph nodes (LNs) are important peripheral immune 
organs and participate in the body’s immune responses. 
Benign LNs, lymphoma, and metastasis LNs are the three 
most commonly confused types of lymphadenopathy (1).  
Accurate determination of the LN properties is of great 
importance in disease diagnosis and treatment (2). 
Currently, the gold standard for the classification of LNs 
remains the pathological results obtained by biopsies or 
surgeries, but these procedures are invasive. The differential 
diagnosis of lymphadenopathy is challenging, especially 
when there is a lack of reliable medical histories and typical 
clinical symptoms (3).

Several imaging modalities can be used to monitor the 
superficial suspected LNs, such as ultrasound, computed 
tomography (CT), magnetic resonance imaging (MRI), and 
positron emission tomography (PET) (4). The role of CT is 
limited for the nodal staging (5). Although contrast-enhanced 
MRI can increase the diagnostic efficiency compared with 
standard MRI and CT, it requires additional scanning time 
and is relatively expensive (6). PET is useful in identifying 
metastatic nodal spread outside the primary sites, but it has 
low spatial resolution and lacks anatomic details (7,8). Among 
these imaging modalities, ultrasound is more convenient, 
economical, and radiation-free. Contrast-enhanced 
ultrasound (CEUS) may provide real-time visualization of 
blood flow within LNs, allowing for immediate assessment. 
It is non-nephrotoxic and is generally considered safe and 
well-tolerated. Besides, CEUS can be performed with most 
ultrasound facilities, making it widely available. Although 
ultrasound is operator dependent and has limited ability to 
assess tissue characteristics or morphology compared to CT 
and MRI, it is recommended as the preferred diagnostic 
method for LN evaluation (9). Notably, the accurate 
classification of superficial suspected lymphadenopathy 
by ultrasound remains challenging (3). A more accurate 
noninvasive imaging diagnostic strategy is needed. 

As a kind of artificial intelligence technology, radiomics 
can extract high-throughput quantitative information 
from medical images and help in the clinical diagnosis 

and treatment (10,11). To date, some studies have applied 
radiomics methods in the diagnosis of LN lesions. Zhu 
et al. reported that radiomics of dual‑modality ultrasound 
images can help the diagnosis of unexplained cervical 
lymphadenopathy (3). With the help of the hierarchical 
diagnostic model, the diagnostic accuracies of the 
radiologists are generally improved. Chen et al. derived 
intrinsic imaging phenotypes from the ultrasound images 
and analysed the role of imaging phenotypes in the LN 
discrimination (12). Additionally, Liu et al. conducted 
a multicentered study to explore the ultrasound-based 
radiomics for differentiating cervical lymphadenopathy (13). 
However, most of these studies extracted the radiomics 
features from traditional grayscale ultrasound images, 
with few studies focusing on the CEUS images, which 
contain more information about the blood perfusion of 
the lesion that can improve the diagnostic accuracy (14). 
The feasibility of radiomics tools to classify superficial 
lymphadenopathy based on CEUS remains to be verified. 

Therefore, the purpose of this study was to develop 
a noninvasive imaging method for the classification of 
lymphadenopathy as a possible alternative to the traditional 
pathological biopsy. Specifically, a noninvasive radiomic 
model based on multiphase CEUS images was applied for 
the classification of different types of lymphadenopathy in 
this study. We present this article in accordance with the 
TRIPOD reporting checklist (available at https://qims.
amegroups.com/article/view/10.21037/qims-23-1182/rc).

Methods

The study was conducted in accordance with the 
Declaration of Helsinki (as revised in 2013). Approval for 
this retrospective cohort study was granted by the Ethics 
Committee of Shaoxing People’s Hospital (No. 2022-097-
Y01). Informed written consent to participate was waived 
given the retrospective nature of the work.

Patient selection and demographic characteristics

From February 2019 to March 2023, the patients with 
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Patients who received conventional ultrasound 

examination of LNs between February 2019 

to March 2023 at hospital 1 (n=382)

Exclusion criteria:

1) LNs with ambiguous pathological 

results (n=25)

2) LNs with incomplete CEUS 

images (n=28)

3) LNs with poor imaging data (n=12)

A total of 317 LNs enrolled in the study 

(Including 105 benign LNs, 81 Lymphoma, 

and 131 Metastatic LNs)

Randomly split data Train: Test =6:4

Training cohort (n=190)

• Benign LNs =63 (33.2%)

• Lymphoma =49 (25.8%)

• Metastatic LNs =78 (41.1%)

Internal-testing cohort (n=127)

• Benign LNs =42 (33.1%)

• Lymphoma =32 (25.2%)

• Metastatic LNs =53 (41.7%)

External-testing cohort (n=109)

• Benign LNs =34 (31.2%)

• Lymphoma =29 (26.6%)

• Metastatic LNs =46 (42.2%)

Patients who received conventional ultrasound 

examination of LNs between February 2019 to 

March 2023 at hospitals 2 and 3 (n=131)

Exclusion criteria:

1) LNs with ambiguous 

pathological results (n=5)

2) LNs with incomplete CEUS 

images (n=13)

3) LNs with poor imaging data (n=4)

A total of 109 LNs enrolled in the study 

(Including 34 benign LNs, 29 Lymphoma, and 

46 Metastatic LNs)

Inclusion criteria:

1) The presence of superficial suspected LNs

2) LNs with CEUS images

3) LNs with pathological classification confirmed by surgery or biopsy

Figure 1 Patient selection flowchart. Hospital 1, Shaoxing People’s Hospital; hospital 2, Xiamen Hospital, Beijing University of Chinese 
Medicine; hospital 3, the First Affiliated Hospital of Ningbo University. LNs, lymph nodes; CEUS, contrast-enhanced ultrasound.

suspected superficial LNs who received conventional 
ultrasound examination were retrospectively analysed in 
this study. The suspected ultrasound characteristics of the 
LNs included long/short (L/S) diameter ratio <2, round 
shape, loss of the fatty hilum, presence of cystic content, 
presence of calcification, and peripheral vascularity (15). 
The inclusion criteria were as follows: (I) the presence of 
superficial suspected LNs; (II) LNs with complete CEUS 
images; and (III) LNs with pathological classification 
confirmed by biopsy or surgery. The exclusion criteria were 
as follows: (I) patients with ambiguous pathological results; 
(II) patients without complete clinical information; and (III) 

patients with poor imaging data. The data were randomly 
dichotomized into a training cohort (60%) and an internal 
testing cohort (40%). Briefly, all the participants in the 
study were assigned a unique identifier. A randomization 
table was used to generate a random sequence of numbers. 
Starting from the first participant, the random sequence of 
numbers was used to assign each participant to either the 
training cohort or the internal testing cohort based on the 
6:4 ratio. This process continued until all participants had 
been assigned to one of the two cohorts, ensuring that the 
desired ratio was met. Figure 1 presents the flowchart of the 
patient selection. 
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Pathological data

All the LNs analysed in our study had pathological results 
made by pathologist. The pathologist evaluates the 
histological findings and determines the diagnosis (16). 
The accurate pathologic classification of the lymphoma 
may require further immunohistochemistry and molecular 
testing (17). Details of the pathological results are presented 
in Table S1.

Conventional ultrasound evaluation

All ultrasound examinations were performed by trained and 
experienced sonographers using ultrasound instruments 
equipped with linear array transducers. Details of the 
ultrasound instruments used in the study are presented in 
Tables S2,S3. The morphology and size of the selected LNs 
were evaluated by grayscale ultrasound, while the blood 
flow of the LNs was evaluated by color Doppler imaging 
or superb microvascular imaging (SMI). The recorded 
ultrasound features included: the size, the longitudinal 
diameter (L), the short diameter (S), L/S ratio, boundary, 
hilum of LN, calcification (present or absent), liquefaction 
(present or absent), and peripheral vascularity (present 
or absent). After the collection of all the ultrasound 
examinations, two experienced radiologists (with 8 and 
10 years of experience respectively) independently reviewed 
the images blindly. Any discrepancies were resolved by 
consensus. 

CEUS evaluation

CEUS was performed immediately after conventional 
ultrasound evaluation. Dynamic CEUS videos of the LNs 
were taken simultaneously with the injection of SonoVue 
(Bracco, Italy) and lasted for at least 60 s (18). The videos 
were then digitally stored for offline analyses. The echoes 
of the LNs were compared with those of adjacent tissues 
after CEUS, and the perfusion and enhancement features 
of the selected LNs were described from the following 
aspects: enhancement intensity (hypo/isoenhancement, or 
hyperenhancement), enhancement pattern (centrifugal, 
centripetal, or overall), enhancement homogeneity 
(homogeneous or heterogeneous), ring enhancement 
(present or absent), and perfusion defect (present or 
absent). The wash-in time represented the time when the 
echo intensity of the contrast agent changes from arrival to 
peak, while the wash-out time represented the time when 

the echo intensity of the contrast agent changes from peak 
to baseline. The CEUS videos were independently and 
blindly reviewed by two experienced sonographers. Any 
discrepancies were resolved by consensus. The diagnostic 
performances of the radiologists were compared with the 
pathological findings.

Image segmentation and radiomics feature extraction

Each region of the LNs was manually segmented by two 
independent experienced radiologists who were blinded 
to the pathological results. First, the radiologists reviewed 
the CEUS videos to identify the boundaries of the LNs. 
Then, multiphase images of each LN were derived from 
the dynamic videos. Multiphase images included the 
images from the following three time points: the contrast 
agent arrived at the LN (prevascular phases, usually within 
10–20 s), the echo of contrast agent reached peak intensity 
(vascular phases, usually around 30–45 s), and the contrast 
agent washed out (postvascular phases, usually more than 
45 s after the injection). The time points in the multiphase 
images were identified by the sonographer by observing 
the enhancement pattern within the LNs after the 
administration of an ultrasound contrast agent according 
to the European Federation of Societies for Ultrasound 
in Medicine and Biology guidelines (19). Finally, all the 
images were converted to black and white and imported 
into ITK-SNAP software (www.itksnap.org) for region of 
interest (ROI) delineation. After segmentation, high/low-
pass wavelet filters and Laplacian-Gaussian filters were 
used to preprocess the original image. Besides, z score was 
applied to normalize the images and B-spline interpolation 
was applied to resample the images to the same resolution. 
The radiomics features were extracted with the PyRadiomic 
platform. There were 1,317 quantitative radiomics features, 
including first-order features, shape features, greyscale co-
occurrence matrix (GLCM), grey-level size zone matrix 
(GLSZM), grey-level run length matrix (GLRLM), grey-
level distance-zone matrix (GLDM), and neighbourhood 
grey-tone difference matrix (NGTDM). Intraobserver 
and interobserver consistency were confirmed by using 
intraclass and interclass correlation coefficients (ICCs) to 
ensure the reproducibility of image segmentations. Feature 
selection was based on the analysis of variance (ANOVA). 

Model establishment and evaluation

Since the dependent variables  in our study were 

https://cdn.amegroups.cn/static/public/QIMS-23-1182-Supplementary.pdf
https://cdn.amegroups.cn/static/public/QIMS-23-1182-Supplementary.pdf
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Figure 2 Schematic of contrast-enhanced ultrasound-based multiphase radiomics for the classification of superficial suspected lymph nodes. 
ROI, region of interest; GLCM, greyscale co-occurrence matrix; GLSZM, grey-level size zone matrix; GLRLM, grey-level run length 
matrix; GLDM, grey-level distance-zone matrix; NGTDM, neighbourhood grey-tone difference matrix; ANOVA, analysis of variance; LR, 
logistic regression; LNs, lymph nodes.

disordered multiclassification data (different types 
of  lymphadenopathy),  multiclassi f ication logist ic 
regression (LR) analysis was conducted to explore the 
relationship between the conventional features and 
the lymphadenopathies. The features associated with 
lymphadenopathies in uni- and multivariable analysis 
(P<0.05) were used to build model 1. 

Several types of classifiers, including decision tree 
(DT), adaptive boosting (AdaBoost), linear support vector 
classification (SVC), random forest (RF) and LR, were 
assessed. The classifier that balanced complexity and accuracy 
in both the training cohort and the internal testing cohort 
was applied to establish model 2. Finally, by integrating the 
output of model 1 and model 2 via uni- and multivariable 
LR, the combined model (model 3) was established. 

The receiver operating characteristic (ROC) curves of the 

three models were plotted to quantify the clinical utilities 
of the three models. The performances of the models were 
compared by the confusion matrix. The usefulness of the 
models was assessed in different threshold probabilities by 
decision curve analysis (DCA). The flowchart of the study is 
presented in Figure 2. 

Statistical analysis

Statistical analysis was performed with SPSS (version 
26.0), MedCalc (vision 19.5.6), and R software (version 
4.0.2). The Kolmogorov-Smirnov test was used to evaluate 
the normality of the data. Continuous variables that 
were nonnormally distributed were expressed as medians 
(interquartile ranges). Categorical variables were expressed 
as frequencies and percentages. Group differences among 
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the three categories were evaluated by the Kruskal-Wallis 
H test for continuous variables and by the Chi-squared test 
for categorical variables. To identify statistically significant 
features, both univariate and multivariable analyses were 
performed. The odds ratio (OR) of the included features 
were calculated. The DeLong test was applied to compare 
the areas under the curves (AUCs) of different models 
among the three lymphadenopathies. F1 score was used to 
quantify the accuracy of lymphadenopathy classification, 
calculated by the formulation: ScoreF1 = 2 × (precision 
× recall)/(precision + recall). Two-tailed P values ≤0.05 
represented that the difference was statistically significant. 

Results

Patient characteristics

A total of 426 patients with superficial suspected LNs were 
finally included in this study. Of these, 317 cases from 
hospital 1 (Shaoxing People’s Hospital) were assigned to 
the training cohort (n=190) and the internal testing cohort 
(n=127) using a random sampling method, and 109 cases 
from hospitals 2 (Xiamen Hospital, Beijing University of 
Chinese Medicine) and 3 (The First Affiliated Hospital of 
Ningbo University) were used as the external testing cohort. 
There were 139 patients (32.6%) with benign LNs, 110 
patients (25.8%) with lymphoma, and 177 patients (41.5%) 
with metastatic LNs in our population. In the training 
cohort and internal testing cohort, the age of the patients was 
slightly older than that in the external testing cohort [61.00 
(54.00–71.00) and 65.00 (57.00–75.00) vs. 50.00 (32.00–
65.00) years, P<0.01]. In the training cohort, there were 63 
patients (33.2%) with benign LNs, 49 patients (25.8%) with 
lymphoma, and 78 patients (41.1%) with metastatic LNs. 
Eighty patients (42.1%) were female, and 109 (57.4%) were 
in the left. In the internal testing cohort, there were 42 
patients (33.1%) with benign LNs, 32 patients (25.2%) with 
lymphoma, and 53 patients (41.7%) with metastatic LNs. 
Sixty-two patients (48.8%) were female, and 71 (55.9%) 
exhibited a left location of the suspected nodes. In the 
external testing cohort, there were 34 patients (31.2%) with 
benign LNs, 29 patients (26.6%) with lymphoma, and 46 
patients (42.2%) with metastatic LNs. Fifty-seven patients 
(52.3%) were female, and 53 (48.6%) had a left location of 
the suspected nodes. There were no significant differences 
in gender (P=0.201), location (P=0.326), or proportions of 
the three classifications (P=0.997) between the three groups 
(Table 1).

Conventional features: model 1 

The ultrasound features of different lymphadenopathies 
in our study are summarized in Table 2. The signs of 
unclear boundary and unclear hilum were more obvious 
in lymphoma and metastatic LNs than in benign LNs [14 
(12.7%) and 28 (15.8%) vs. 4 (2.9%) in unclear boundary; 
87 (79.1%) and 124 (70.1%) vs. 71 (51.1%) in unclear 
hilum, all P<0.01]. Additionally, the presence of peripheral 
vascularity was more commonly seen in lymphoma than 
in benign LNs and metastatic LNs [58 (52.7%) vs. 30 
(21.6%) and 80 (45.2%), P<0.01]. Concerning CEUS 
features, hyperechoic enhancement was more significant 
in lymphoma and metastatic LNs than in benign LNs 
[89 (80.9%) and 127 (71.8%) vs. 76 (54.7%), P<0.01]. 
More metastatic LNs were enhanced heterogeneously 
[134 (75.7%)], with the presence of ring enhancement [21 
(11.9%)] and perfusion defects [45 (25.4%)]. In addition, 
the contrast enhanced features of fast-in and slow-out could 
be found in metastatic LNs. The typical ultrasonographic 
performance of benign LNs, lymphoma, and metastatic 
LNs is presented in Figure 3. 

Multiclassification LR was performed by including the 
statistically significant variables (P<0.05) from the analysis. 
The results indicated that unclear hila, peripheral vascularity 
present, and hyperechoic enhancement intensity were 
independent features related to lymphoma for differentiating 
them from benign LNs [β=0.95, OR =2.585, 95% confidence 
interval (CI): 1.139–5.868, P=0.023; β=1.115, OR =3.050, 
95% CI: 1.456–6.388, P=0.003; and β=0.908, OR =2.478, 
95% CI: 1.154–5.322, P=0.020, respectively]. Additionally, 
age, calcification present, heterogeneous enhancement, 
faster wash-in, and slower wash-out were independent 
features related to metastatic LNs for differentiating them 
from benign LNs (β=0.041, OR =1.042, 95% CI: 1.014–
1.072, P=0.003; β=2.110, OR =8.246, 95% CI: 1.465–46.421, 
P=0.017; β=1.189, OR =3.284, 95% CI: 1.562–6.906, 
P=0.002; β=−0.072; OR =0.931, 95% CI: 0.888–0.976, 
P=0.003; and β=0.041, OR =1.042, 95% CI: 1.022–1.062, 
P<0.01, respectively) (Table 3). 

The constructed model 1 showed that in the training 
cohort, the mean AUC for differentiating lymphadenopathy 
was 0.818, the mean accuracy rate (ACC) was 64.74%, the 
mean sensitivity was 62.70%, and the mean specificity was 
82.23%. In the internal testing cohort, the mean AUC for 
differentiating the lymphadenopathy was 0.799, the mean 
ACC was 61.42%, the mean sensitivity was 58.05%, and the 
mean specificity was 79.97%. In the external testing cohort, 
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Table 1 Baseline clinical characteristics of the patients in different cohorts

Characteristic Training cohort (n=190) Internal testing cohort (n=127) External testing cohort (n=109) P value

Age (years) 61.00 (54.00–71.00) 65.00 (57.00–75.00) 50.00 (32.00–65.00) <0.01**

Gender 0.201

Female 80 (42.1) 62 (48.8) 57 (52.3)

Male 110 (57.9) 65 (51.2) 52 (47.7)

Location 0.326

Left 109 (57.4) 71 (55.9) 53 (48.6)

Right 81 (42.6) 56 (44.1) 56 (51.4)

Size (mm)

Long diameter 21.00 (15.00–32.00) 21.00 (15.00–29.50) 20.00 (14.00–26.00) 0.256

Short diameter 11.00 (8.00–17.75) 11.00 (8.00–17.00) 12.00 (8.00–15.00) 0.964

L/S 1.79 (1.50–2.22) 1.75 (1.44–2.26) 1.67 (1.50–2.00) 0.180

Histological type 0.997

Benign LNs 63 (33.2) 42 (33.1) 34 (31.2)

Lymphoma 49 (25.8) 32 (25.2) 29 (26.6)

Metastatic LNs 78 (41.1) 53 (41.7) 46 (42.2)

Non-normally distributed continuous variables are expressed as medians (interquartile ranges), using Kruskal-Wallis H test to observe 
inter-group difference. Categorical variables are expressed as frequencies (proportions), using chi-square test to observe inter-group 
difference. **, extremely significant difference (P<0.01). L/S, longitudinal diameter/short diameter; LNs, lymph nodes.

the mean AUC for differentiating the lymphadenopathy 
was 0.765, the mean ACC was 60.55%, the mean sensitivity 
was 60.42%, and the mean specificity was 80.26% (Table 4).

Multiphase radiomics features: model 2 

The primary aims of our study is to investigate the 
quantitative, algorithm-derived radiomic model, so ICCs 
were applied to confirm the intra/interobserver consistency 
of the multiphase radiomics features. Features with ICCs 
lower than 0.80 were deleted in the model construction. 
After applying the ANOVA F value algorithm in the 
training cohort, a total of twenty radiomics features were 
selected as candidates for the LN classification, including 
the values of the first three-order wavelet and the variations 
in texture features between the three phases of the CEUS 
images. The radiomics features included (I) the first-
order features: features that described the pixel intensity 
and distribution, such as first-order and first-order after 
wavelet decomposition; (II) the shape features: features 
that described the two-dimensional size and shape of the 
ROIs, such as original_shape _maximum; and (III) the 

texture features: features that described tiny differences in 
the images, such as GLRLM, GLSZM, GLDM and their 
features after wavelet decomposition, which can be seen in 
Table S4. 

After evaluating the performance of DT, AdaBoost, 
linear SVC, RF and LR, we identified LR as the most 
appropriate approach to build the radiomic model (model 2).  
As shown in Table S5, RF performed better in the training 
cohort but not as well in the testing cohort, which 
indicated overfitting. After comprehensively evaluating the 
performance of the classifiers by metrics like AUC, ACC, 
sensitivity, specificity, negative predictive value (NPV), 
positive predictive value (PPV), and F1-score, we identified 
LR as the most appropriate approach for differentially 
diagnosing lymphadenopathies. 

The diagnostic efficiency of multiphase radiomics 
features based on CEUS for different lymphadenopathies 
is compared in Table 5. The diagnostic efficiency of the 
combined phase was superior to that of the prevascular 
phase, vascular phase, and postvascular phase (AUC: 0.838, 
ACC: 70%, sensitivity: 67.39%, specificity: 84.58% in the 
training cohort; AUC: 0.739, ACC: 64.57%, sensitivity: 

https://cdn.amegroups.cn/static/public/QIMS-23-1182-Supplementary.pdf
https://cdn.amegroups.cn/static/public/QIMS-23-1182-Supplementary.pdf
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Table 2 Ultrasound image characteristics of different lymphadenopathy in our study

Characteristic Benign LNs (n=139) Lymphoma (n=110) Metastatic LNs (n=177) P value

US characteristics

Boundary <0.01**

Clear 135 (97.1) 96 (87.3) 149 (84.2)

Unclear 4 (2.9) 14 (12.7) 28 (15.8)

Hilum <0.01**

Clear 68 (48.9) 23 (20.9) 53 (29.9)

Unclear 71 (51.1) 87 (79.1) 124 (70.1)

Calcification 0.09

Absent 130 (93.5) 105 (95.5) 157 (88.7)

Present 9 (6.5) 5 (4.5) 20 (11.3)

Cystic content 0.432

Absent 130 (93.5) 106 (96.4) 164 (92.7)

Present 9 (6.5) 4 (3.6) 13 (7.3)

Peripheral vascularity <0.01**

Absent 109 (78.4) 52 (47.3) 97 (54.8)

Present 30 (21.6) 58 (52.7) 80 (45.2)

CEUS characteristics

Enhancement intensity <0.01**

Hypo/iso 63 (45.3) 21 (19.1) 50 (28.2)

Hyper 76 (54.7) 89 (80.9) 127 (71.8)

Enhancement pattern 0.319

Centrifugal 65 (46.8) 41 (37.3) 71 (40.1)

Centripetal 52 (37.4) 47 (42.7) 82 (46.3)

Overall 22 (15.8) 22 (20.0) 24 (13.6)

Homogeneity <0.01**

Homogeneous 74 (53.2) 62 (56.4) 43 (24.3)

Heterogeneous 65 (46.8) 48 (43.6) 134 (75.7)

Ring enhancement <0.01**

Absent 132 (95.0) 107 (97.3) 156 (88.1)

Present 7 (5.0) 3 (2.7) 21 (11.9)

Perfusion defect <0.01**

Absent 124 (89.2) 99 (90.0) 132 (74.6)

Present 15 (10.8) 11 (10.0) 45 (25.4)

Wash-in time (s) 13.00 (8.00–20.00) 12.00 (9.00–16.00) 8.00 (6.00–12.00) <0.01**

Wash-out time (s) 26.00 (18.00–36.50) 27.00 (20.00–36.75) 42.00 (29.00–64.00) <0.01**

Non-normally distributed continuous variables are expressed as medians (interquartile ranges), using Kruskal-Wallis H test to observe 
intergroup difference. Categorical variables are expressed as frequencies (proportions), using chi-square test to observe intergroup 
difference. **, extremely significant difference (P<0.01). LNs, lymph nodes; US, ultrasound; CEUS, contrast-enhanced ultrasound; Hypo, 
hypoechoic; iso, isoechoic; Hyper, hyperechoic.
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Figure 3 Typical ultrasonographic performance of benign LNs, lymphoma, and metastatic LNs. In the first column are the blood flows of 
the LNs that evaluated by SMI. In the second column is the prevascular phase of the contrast-enhance ultrasound images of the LNs. In the 
third column is the vascular phase of the contrast-enhance ultrasound images of the LNs. In the fourth column is the postvascular phase of 
the contrast-enhance ultrasound images of the LNs. In the fifth column are the histological findings of the LNs (hematoxylin-eosin staining, 
magnification 200×). LNs, lymph nodes; SMI, superb microvascular imaging.

Table 3 Multiclassification logistic regression analysis of clinical features related to lymphoma and metastatic lymph nodes, distinguishing from 
benign lymph nodes

Clinical features

Lymphadenopathy

Lymphoma Metastatic LNs

β OR 95% CI P β OR 95% CI P

Age 0.018 1.018 0.992–1.044 0.178 0.041 1.042 1.014–1.072 0.003**

Hilum (clear) 0.95 2.585 1.139–5.868 0.023* −0.335 0.715 0.336–1.523 0.385

Calcification (absent) 1.156 3.176 0.424–23.786 0.261 2.110 8.246 1.465–46.421 0.017*

Peripheral vascularity (absent) 1.115 3.050 1.456–6.388 0.003* 0.542 1.719 0.826–3.580 0.145

Enhancement intensity (hypo/iso) 0.908 2.478 1.154–5.322 0.020* 0.437 1.548 0.749–3.197 0.238

Homogeneity (homogeneous) −0.637 0.529 0.256–1.092 0.085 1.189 3.284 1.562–6.906 0.002**

Wash-in time 0.002 1.002 0.960–1.045 0.932 −0.072 0.931 0.888–0.976 0.003**

Wash-out time −0.024 0.976 0.953–1.000 0.051 0.041 1.042 1.022–1.062 <0.01**

*, significant difference (P<0.05); **, extremely significant difference (P<0.01). Dependent variable: lymphadenopathy. Reference level: 
benign lymph nodes. LNs, lymph nodes; OR, odds ratio; CI, confidence interval; hypo, hypoechoic; iso, isoechoic.
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Table 4 The performance comparison of the three models in all cohorts

Models Cohorts Label AUC 95% CI ACC (%) Sensitivity (%) Specificity (%) F1-score NPV PPV

Model 1 Training 
cohort

Benign LNs 0.801 0.737–0.864 73.68 63.49 78.74 0.615 0.813 0.597 

Lymphoma 0.796 0.727–0.864 76.32 48.98 85.82 0.516 0.829 0.546 

Metastatic LNs 0.847 0.788–0.907 79.47 75.64 82.14 0.752 0.829 0.747 

Mean 0.818 64.74 62.70 82.23 0.628 0.824 0.630 

Internal 
testing 
cohort

Benign LNs 0.786 0.701–0.871 70.08 52.38 78.82 0.537 0.770 0.550 

Lymphoma 0.769 0.676–0.863 77.17 40.62 89.47 0.473 0.817 0.565 

Metastatic LNs 0.830 0.761–0.900 75.59 81.13 71.62 0.735 0.841 0.672 

Mean 0.799 61.42 58.05 79.97 0.582 0.810 0.596 

External 
testing 
cohort

Benign LNs 0.780 0.690–0.854 73.39 76.47 72,00 0.642 0.871 0.553 

Lymphoma 0.753 0.661–0.830 76.15 48.28 86.25 0.519 0.821 0.560 

Metastatic LNs 0.741 0.649–0.820 71.56 56.52 82.54 0.627 0.722 0.703 

Mean 0.765 60.55 60.42 80.26 0.596 0.805 0.605 

Model 2 Training 
cohort

Benign LNs 0.896 0.843–0.935 83.16 85.71 81.89 0.771 0.920 0.701 

Lymphoma 0.777 0.711–0.834 78.42 40.82 91.49 0.494 0.817 0.625 

Metastatic LNs 0.830 0.769–0.880 78.42 75.64 80.36 0.742 0.826 0.728 

Mean 0.838 70.00 67.39 84.58 0.669 0.854 0.685 

Internal 
testing 
cohort

Benign LNs 0.848 0.773–0.905 82.68 69.05 89.41 0.725 0.854 0.763 

Lymphoma 0.616 0.526–0.701 72.44 46.88 81.05 0.462 0.819 0.455 

Metastatic LNs 0.733 0.647–0.808 74.02 71.70 75.68 0.697 0.789 0.679 

Mean 0.739 64.57 62.54 82.05 0.628 0.821 0.632 

External 
testing 
cohort

Benign LNs 0.688 0.592–0.773 74.31 44.44 89.04 0.533 0.765 0.667 

Lymphoma 0.722 0.628–0.803 70.64 55.17 76.25 0.500 0.824 0.457 

Metastatic LNs 0.770 0.680–0.845 72.48 72.73 72.31 0.681 0.797 0.640 

Mean 0.733 58.72 57.45 79.2 0.571 0.795 0.588 

Model 3 Training 
cohort

Benign LNs 0.945 0.912–0.979 87.89 79.37 92.13 0.813 0.900 0.833 

Lymphoma 0.927 0.888–0.966 86.32 73.47 90.78 0.735 0.908 0.735 

Metastatic LNs 0.949 0.920–0.978 87.89 87.18 88.39 0.855 0.908 0.840 

Mean 0.943 81.05 80.00 90.43 0.801 0.905 0.803 

Internal 
testing 
cohort

Benign LNs 0.853 0.771–0.934 83.46 71.43 89.41 0.741 0.864 0.769 

Lymphoma 0.759 0.663–0.855 76.38 43.75 87.37 0.483 0.822 0.539 

Metastatic LNs 0.838 0.768–0.908 74.02 77.36 71.62 0.713 0.815 0.661 

Mean 0.823 66.93 64.18 82.80 0.646 0.834 0.656 

External 
testing 
cohort

Benign LNs 0.696 0.601–0.781 75.23 47.06 88.00 0.542 0.786 0.640 

Lymphoma 0.805 0.718–0.874 77.06 72.41 78.75 0.627 0.887 0.553 

Metastatic LNs 0.834 0.751–0.898 77.98 73.91 80.95 0.739 0.810 0.739 

Mean 0.785  65.14 64.46 82.57 0.636 0.828 0.644 

Model 1, conventional feature model; model 2, multiphase radiomics model; model 3, combined model. AUC, area under curve; CI, 
confidence interval; ACC, accuracy; NPV, negative predictive value; PPV, positive predictive value; LNs, lymph nodes. 
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Table 5 The radiomics performance comparison of different sequences in all cohorts

Cohorts Sequence AUC ACC (%) Sensitivity (%) Specificity (%) F1-score NPV PPV

Training 
cohort

Prevascular phase 0.810 58.95 57.19 79.28 0.572 0.793 0.574 

Vascular phase 0.843 67.89 66.28 83.57 0.665 0.838 0.671 

Postvascular phase 0.827 63.68 63.27 81.34 0.634 0.815 0.641 

Combined 0.838 70.00 67.39 84.58 0.669 0.854 0.685 

Internal 
testing 
cohort

Prevascular phase 0.740 56.69 55.01 77.47 0.554 0.777 0.562 

Vascular phase 0.704 55.12 52.19 51.88 0.520 0.774 0.519 

Postvascular phase 0.731 56.69 57.33 78.10 0.568 0.780 0.566 

Combined 0.739 64.57 62.54 82.05 0.628 0.821 0.632 

External 
testing 
cohort

Prevascular phase 0.657 45.87 46.44 73.65 0.459 0.732 0.481 

Vascular phase 0.626 49.54 50.19 74.70 0.494 0.748 0.500 

Postvascular phase 0.658 44.95 48.10 72.79 0.450 0.736 0.452 

Combined 0.733 58.72 57.45 79.20 0.571 0.795 0.588 

AUC, area under curve; ACC, accuracy rate; NPV, negative predictive value; PPV, positive predictive value.

62.54%, specificity: 82.05% in the internal testing cohort; 
and AUC: 0.733, ACC: 58.72%, sensitivity: 57.45%, 
specificity: 79.20% in the external testing cohort). The 
performance comparison of different lymphadenopathies 
in multiphase radiomics features in the three cohorts is also 
provided in Table S6. 

Combined features: model 3

The formulas of model 3 that assess the risk probability of 
each type of lymphadenopathy are available in Appendix 1. 
Combined with both conventional features and multiphase 
radiomic features, the diagnostic efficiency of model 3 
was improved (AUC improved from 0.818 to 0.943 in 
the training cohort, from 0.799 to 0.823 in the internal 
testing cohort, and from 0.765 to 0.785 in the external 
testing cohort, respectively; ACC improved from 64.74% 
to 81.05% in the training cohort, from 61.42% to 66.93% 
in the internal testing cohort, and from 60.55% to 65.14% 
in the external testing cohort, respectively; sensitivity 
improved from 62.70% to 80% in the training cohort, 
from 58.05% to 64.18% in the internal testing cohort, and 
from 60.42% to 64.46% in the external testing cohort, 
respectively; and specificity improved from 82.23% to 
90.43% in the training cohort, from 79.97% to 82.80% in 
the internal testing cohort, and from 80.26% to 82.57% in 

the external testing cohort, respectively). The addition of 
conventional ultrasound features to the radiomic models 
could improve the performance. 

Performance of model classification

The ROC curves of models 1, 2, and 3 are shown in Figure 4.  
As presented in Table S7, in the training cohort, model 
3 outperformed model 1 and model 2 in diagnosing 
the three types of lymphadenopathy. In the internal 
testing cohorts, model 3 showcased enhanced efficacy 
in diagnosing lymphoma and metastatic LNs compared 
to model 1 and model 2, while there were no significant 
differences among the three models in diagnosing benign 
LNs. In the external testing cohort, model 3 demonstrated 
improved indicative efficacy in diagnosing metastatic LNs, 
while no significant differences were observed among the 
three models in diagnosing benign LNs and lymphomas. 
Confusion matrices of the three models, plotted by using 
R software, are presented in Figure 5. The false-positive 
and false-negative rates in model 3 were lower than those 
in model 1 and model 2 in the training cohort, internal 
testing cohort, and external testing cohort. DCA showed 
that model 3 had better performance than both model  
1 and model 2, as shown in Figure 6. These results indicated 
that the combined model was more valuable to doctors in  

https://cdn.amegroups.cn/static/public/QIMS-23-1182-Supplementary.pdf
https://cdn.amegroups.cn/static/public/QIMS-23-1182-Supplementary.pdf
https://cdn.amegroups.cn/static/public/QIMS-23-1182-Supplementary.pdf
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Figure 4 Classification performances of the different models in the training cohort, internal testing cohort, and external testing cohort. Plots 
show the receiver operating characteristic curves of model 1, model 2, and model 3, in benign LNs (A-C), lymphoma (D-F) and metastatic 
LNs (G-I) in the training cohort, internal testing cohort, and external testing cohort, respectively. Model 1, the conventional feature model; 
model 2, the multi-phase radiomics model; model 3, the combined feature model. LNs, lymph nodes; AUC, area under curve.

clinical practice.

Discussion

In our multicentered study, we used CEUS-based 
multiphase radiomics as a noninvasive imaging method 
for the classification of lymphadenopathy. We found 
that the diagnostic efficiency of the combined phase was 
superior to that of the prevascular phase, vascular phase, 
and postvascular phase, which implied that compared with 

single-phase images, multiphase images contained more 
information about intra LN heterogeneity. In additional, 
the combination of conventional features and radiomic 
features could classify lymphadenopathy well, and it 
performed better than conventional feature model and 
radiomic model alone. 

Accurate differential diagnosis of lymphadenopathy 
is pivotal for disease diagnosis and further treatment. 
Pathological biopsy is the gold standard but may be 
associated with some complications as it is invasive. For 
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Figure 5 Confusion matrices of different models. (A-C) Confusion matrices of model 1 in training cohort, internal testing cohort, and external 
testing cohort. (D-F) Confusion matrices of model 2 in training cohort, internal testing cohort, and external testing cohort. (G-I) Confusion 
matrices of model 3 in training cohort, internal testing cohort, and external testing cohort. The x-axes represent the predicted labels, and the 
y-axes represent the true labels. The false-positive and false-negative rates in model 3 were lower than model 1 in all the cohorts. Model 1, the 
conventional feature model; model 2, the multiphase radiomics model; model 3, the combined feature model; LNs, lymph nodes. 

LNs with a rich blood supply, the procedure of biopsy may 
be accompanied by a risk of hematoma. Besides, biopsy 
of metastatic LNs may induce the risk of needle tract 
metastases. Traditional visual assessment is sometimes 
confounded because there may be overlap in the imaging 
features among different types of lymphadenopathy (3). 
Benign LNs often maintain a well-defined, rounded or 
ovoid shape with smooth contours. The echogenicity of 
benign LNs are homogeneous and isoechoic or of slightly 
hypoechoic appearance compared to adjacent fatty tissue, 

reflecting the normal structure without infiltration or 
disruption. Correspondingly, suspicious ultrasound features 
of malignant LNs include irregular shape, indistinct 
margins, microcalcifications, cystic areas, or peripheral 
vascularity. CEUS is an imaging modality that provides 
qualitative and quantitative information about the blood 
flow perfusion of the organs (20,21). To better identify the 
independent factors used to differentiate lymphoma and 
metastatic LNs from benign LNs, a multiclassification LR 
model (model 1) that based on clinical information and 
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Figure 6 Decision curves analysis of different lymphadenopathies. (A-C) Decision curves of benign LNs in training cohort, internal testing 
cohort, and external testing cohort. (D-F) Decision curves analysis of lymphoma in training cohort, internal testing cohort, and external 
testing cohort. (G-I) Decision curves analysis of metastatic LNs in training cohort, internal testing cohort, and external testing cohort. The 
x-axes represent the threshold probability, and the y-axes represent the net benefit. Model 1, the conventional feature model; model 2, the 
multi-phase radiomics model; model 3, the combined feature model. LNs, lymph nodes.

conventional ultrasound features was established in our 
study. It was revealed that unclear hila, peripheral vascularity 
present, and hyperechoic enhancement were independent 
features related to lymphoma for differentiating them from 
benign LNs. Lymphoma described in the literature has the 
characteristics of lymphatic hila structure destruction, dense 
fibrous envelope, and peripheral blood vessels (22), which 
are consistent with our ultrasound features. In addition, the 
presence of many immature microvessels within lymphoma 
may induce blizzard-like enhancements in the CEUS 

images (23). Age, calcification present, heterogeneous 
enhancement, faster wash-in, and slower wash-out were 
found to be independent features related to metastatic LNs 
for differentiating them from benign LNs. As presented 
in our results, most metastatic LNs (75.7%) revealed a 
heterogeneous enhancement pattern on CEUS images, 
which may be because immature neovascularization and 
necrotic areas impede the distribution of the contrast agent 
and lead to perfusion defects. This was in concordance with 
previous findings (24,25). In addition, wash-in time and 
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wash-out time support quantitative evaluation of the time 
period during which the contrast agent fills the lesions and 
the time period during which the contrast agent fades. We 
found that the metastatic LNs showed a fast-in and slow-
out enhancement pattern, which could be explained by the 
fact that neovascularization spread within the metastatic 
LNs leads to rapid perfusion and poor drainage (26). 

Although there were some typical characteristic imaging 
findings within different types of lymphadenopathy, no 
sonographic feature was sensitive enough for the accurate 
classification (26). The combination with the clinical 
information and multimodal ultrasound features at the same 
time may help in the classification of lymphadenopathy (27). 
Nevertheless, comprehensive analysis of clinical information 
and multimodal image features poses a challenge to 
clinicians (28).

Different from the limitations of the conventional 
features in the classification, radiomics and machine learning 
may offer the potential for the noninvasive classification of 
lymphadenopathy (29,30). Our study had several strengths 
compared with previous studies. First, our study developed 
a CEUS-based radiomics model to classify different types of 
lymphadenopathy, which contained not only conventional 
ultrasound features, but also blood flow perfusion 
information of the LNs provided by CEUS (2,12,13,31). 
Second, we integrated phase information from longitudinal 
ultrasound images, which showed superior performance 
in the classification compared with single-phase images 
(32,33). Although researchers in previous studies reported 
that morphological features were associated with the disease 
progression (34), only shape features were associated 
with LN classification in our study. Images that relied 
on anatomy were inadequate to demonstrate the internal 
characteristics of LNs, the incorporated shape features could 
enable better decision-making for the classification (35). 
We also found that texture features and wavelet features 
gained by decomposing the original CEUS images could 
reflect the tiny differences presented in the images (10,36). 
The performance of the combined phase was superior to 
that of the single-phase (with AUCs of 0.838, 0.739, and 
0.733; ACCs of 70%, 64.57%, and 58.72%; sensitivities 
of 67.39%, 62.54%, and 57.45%; specificities of 84.58%, 
82.05%, and 79.20% in the training cohort, internal 
testing cohort, and external testing cohort respectively), 
which implied that multiphase images may contain 
more information about intra LN heterogeneity (33).  
Third, compared with conventional ultrasound images, the 
contrast-enhanced agent makes the LNs more distinct from 

the surrounding tissue, which makes the delineation of ROIs 
and image segmentation more accurate. As presented in our 
study, model 3 of the aggregated approach presents better 
performance than model 1 and model 2. This improvement 
can be attributed to the integration of advanced machine 
learning algorithms and novel imaging techniques, which 
enhance the robustness and reliability of the classification 
results (37). In addition, the aggregation approach has 
better generalization performance in diagnosing metastatic 
LNs, which could help in distinguishing metastatic LNs 
from benign or lymphomas in the real world. Confusion 
matrices revealed that the false-positive and false-negative 
rates in model 3 were lower than those in model 1 and 
model 2 in the training cohort, internal testing cohort, 
and external testing cohort. These phenomena indicated 
that more dramatic changes in the LNs were reflected on 
multiphase ultrasound images, which enabled LNs to be 
powerfully classified by the combined radiomics model. 

Based on the purpose and content of our research, 
we used holdout validation rather than K-fold cross-
validation. Although K-fold validation can improve the 
robustness of the models, but during the procedure of 
cross validation, the clinical parameters will be regrouped 
and redistributed, resulting in difficulties in combining the 
radiomic model with the clinical model. Meanwhile, with 
regard to data split, the reason to the choice of train/test 
split as 60/40 is for the provision of sufficient training data 
and adequate internal testing data. In our study, the LNs 
in both the training cohort and the testing cohort needed 
to be made up by three kinds of lymphadenopathy (benign 
LNs, lymphoma, and metastasis LNs). If the split of 80/20 
is applied, the number of each lymphadenopathy in the 
internal testing cohort may be insufficient. Using a larger 
testing set (40% in this study) could lead to more reliable 
performance evaluation metrics (13). What’s more, to 
ensure that the distribution of classes was maintained across 
the splits, a stratified sampling approach was used to create 
the splits. 

In our study, ANOVA was used for the feature selection. 
The reason to use ANOVA for the feature selection is 
that ANOVA is useful when dealing with categorical or 
group-based data. It allows for comparisons between 
multiple groups simultaneously, assessing whether there are 
significant differences in the means of the outcome variable 
across these groups. About the establishment of model 3, 
combining clinical model and radiomic model to create a 
combined model is a common approach in medical research 
and can often lead to improved predictive performance. 
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The combined model can leverage the complementary 
information from both clinical variables and imaging data 
(38-40). In our study, clinical and radiomic models were 
trained separately, and then their outputs were combined by 
LR. As shown in our result, this integration allows for a more 
comprehensive and accurate prediction of the outcomes.

Moreover, we considered that the instrument differences 
in ultrasonography might influence the model performance, 
so we collected ultrasound images acquired with different 
ultrasound instruments in both the training and testing 
cohorts. As shown in Tables S2,S3, although data collected 
by the different instruments were not represented equally 
in our study, the data of misclassified LNs were indeed not 
collected more often with particular instruments, which 
imply that the methods may be system-independent. 
Besides, validation of the models on external datasets 
acquired from different scanners was performed to assess 
their generalizability and performance in real-world 
scenarios. After preprocessing and postprocessing the 
images, radiomics features were extracted and put into the 
models. The combined model presented good classification 
performance in the external testing cohort, with AUCs 
of 0.696, 0.805 and 0.834 in benign LNs, lymphoma and 
metastatic LNs, respectively. It was also found that the 
combined phase was much better for the external testing 
cohort compared to the other three phases whereas all four 
phases were similar for the training and internal testing 
cohorts. The reason may be explained by the fact that the 
external testing cohort has a greater variability compared 
to the training and internal testing cohorts, which can 
provide a more comprehensive representation of the 
target population and allow the combined phase to capture 
additional informative features that were not as prominent 
or discernible in the less diverse training and internal 
testing cohorts. Good specificities [88.00% (benign LNs), 
78.75% (lymphoma) and 80.95% (metastatic LNs)] were 
observed in the external testing cohort.

There are some limitations in our study. First, the 
radiomics model was established using retrospective data. 
Prospective data would provide better evidence for clinical 
application. Second, imbalanced ratios of different types 
of lymphadenopathy may influence the clinical utility of 
the radiomics model, especially given the relatively small 
proportion of lymphoma and the lack of tuberculosis 
patients in our study population. Third, the radiomics 
features were only extracted from images in which contrast 
agent arrived at the LN, reached peak intensity and washed 
out. The feature analysis from the CEUS videos may supply 

more complete LN blood flow perfusion information.

Conclusions
 

To conclude, combined feature model was constructed 
with CEUS images, enabling data from the prevascular 
phase, vascular phase, and postvascular phase of CEUS to 
be used to classify different types of lymphadenopathy. For 
patients with superficial suspected LNs, this model can help 
clinicians to make a decision on the LN type noninvasively 
and choose appropriate treatments. Studies with external 
validation could provide better clinical evidence for our 
diagnostic models and help determine its clinical application 
value in wider populations.
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Appendix 1 The formulas of model 3 that assess the risk probability of each type of lymphadenopathy

Logit (Risk Benign LNs) = - 0.9540 × Vascular phase_original_shape_Maximum2DDiameterRow - 0.7413 × Vascular phase_
original_shape_Elongation + 0.1429 × Vascular phase_wavelet- HLH_glszm_ZonePercentage + 1.3295 × Post-vascular 
phase_original_shape_Maximum2DDiameterRow - 0.0996 × Pre-vascular phase_original_shape_Maximum2DDiameterRow 
+ 0.6128 × Vascular phase_logarithm_glszm_SizeZoneNonUniformity + 0.6049 × Post-vascular phase_wavelet- HHL_
glszm_ZonePercentage + 0.3094 × Vascular phase_wavelet- HHL_glszm_ZonePercentage - 0.3993 × Post-vascular phase_
original_shape_Sphericity + 0.2815 × Vascular phase_wavelet- HLH_glszm_SizeZoneNonUniformity - 0.1745 × Pre-
vascular phase_original_shape_Elongation - 0.6080 × Vascular phase_original_glszm_GrayLevelNonUniformity - 0.6071 × 
Vascular phase_wavelet- HHL_glszm_SmallAreaHighGrayLevelEmphasis + 0.3259 × Vascular phase_wavelet- HHH_glszm_
ZonePercentage + 0.8633 × Vascular phase_wavelet- HHL_glszm_SizeZoneNonUniformity - 0.3535 × Vascular phase_
wavelet- HHH_glszm_GrayLevelNonUniformity - 0.4241 × Vascular phase_original_glrlm_GrayLevelNonUniformity - 
0.4294 × Pre-vascular phase_original_shape_Sphericity - 0.4365 × logarithm_glszm_SizeZoneNonUniformity + 0.5269 × 
Vascular phase_wavelet- HLL_glrlm_RunEntropy + 0.3895 × Vascular phase_gradient_firstorder_90Percentile + 0.5599 
× Pre-vascular phase_logarithm_glrlm_GrayLevelNonUniformity + 0.9145 × Pre-vascular phase_lbp- 3D- k_glrlm_
RunEntropy - 1.1000 × wavelet-HLH_glszm_LargeAreaHighGrayLevelEmphasis - 0.4989 × Vascular phase_lbp- 3D- k_
glszm_LargeAreaHighGrayLevelEmphasis - 0.5232 × Post-vascular phase_original_firstorder_10Percentile + 0.2427 × 
exponential_glrlm_ShortRunEmphasis + 0.2616 × Vascular phase_wavelet- HLL_gldm_SmallDependenceLowGrayLevelEm
phasis - 0.0483 × Pre-vascular phase_wavelet- HLH_glszm_LargeAreaHighGrayLevelEmphasis + 0.1554 × Vascular phase_
wavelet- HLL_glszm_ZonePercentage + 0.1236 × Pre-vascular phase_wavelet- HLL_firstorder_10Percentile - 0.1263 × 
Vascular phase_exponential_firstorder_10Percentile - 0.3415 × Vascular phase_wavelet- HHH_gldm_SmallDependenceHig
hGrayLevelEmphasis - 0.4451 × Post-vascular phase_wavelet- HHL_glszm_ZoneEntropy - 0.4780 × Peripheral vascularity 
(0/1) - 0.2570 × Hyper- enhancement intensity (0/1) - 0.2091 × Vascular phase_wavelet- LHH_firstorder_10Percentile - 
0.0054 × Heterogeneous (0/1) + 0.5083 × Wash- in time - 0.8102 × Wash- out time - 1.4332

Logit (Risk Lymphoma) = 0.8283 × Vascular phase_original_shape_Maximum2DDiameterRow - 0.1331 × Vascular phase_original_
shape_Elongation - 0.0241 × Vascular phase_wavelet- HLH_glszm_ZonePercentage - 0.6400 × Post-vascular phase_
original_shape_Maximum2DDiameterRow + 0.6757 × Pre-vascular phase_original_shape_Maximum2DDiameterRow - 
1.2019 × Vascular phase_logarithm_glszm_SizeZoneNonUniformity - 0.2820 × Post-vascular phase_wavelet- HHL_glszm_
ZonePercentage - 0.7261 × Vascular phase_wavelet- HHL_glszm_ZonePercentage + 0.2734 × Post-vascular phase_original_
shape_Sphericity + 0.7029 × Vascular phase_wavelet- HLH_glszm_SizeZoneNonUniformity - 0.0484 × Pre-vascular phase_
original_shape_Elongation + 0.2210 × Vascular phase_original_glszm_GrayLevelNonUniformity - 0.0493 × Vascular phase_
wavelet- HHL_glszm_SmallAreaHighGrayLevelEmphasis - 0.1947 × Vascular phase_wavelet- HHH_glszm_ZonePercentage 
- 0.1504 × Vascular phase_wavelet- HHL_glszm_SizeZoneNonUniformity + 0.1324 × Vascular phase_wavelet- HHH_
glszm_GrayLevelNonUniformity + 0.2217 × Vascular phase_original_glrlm_GrayLevelNonUniformity - 0.0374 × Pre-
vascular phase_original_shape_Sphericity + 0.2510 × Post-vascular phase_logarithm_glszm_SizeZoneNonUniformity - 
0.5363 × Vascular phase_wavelet- HLL_glrlm_RunEntropy + 0.0989 × Vascular phase_gradient_firstorder_90Percentile - 
0.3356 × Pre-vascular phase_logarithm_glrlm_GrayLevelNonUniformity - 1.0237 × Pre-vascular phase_lbp- 3D- k_glrlm_
RunEntropy + 0.3178 × wavelet- HLH_glszm_LargeAreaHighGrayLevelEmphasis + 0.3946 × Vascular phase_lbp- 3D- k_
glszm_LargeAreaHighGrayLevelEmphasis + 0.1896 × Post-vascular phase_original_firstorder_10Percentile + 0.0252 × 
exponential_glrlm_ShortRunEmphasis + 0.0957 × Vascular phase_wavelet- HLL_gldm_SmallDependenceLowGrayLevelEm
phasis - 0.2257 × Pre-vascular phase_wavelet- HLH_glszm_LargeAreaHighGrayLevelEmphasis - 0.0106 × Vascular phase_
wavelet- HLL_glszm_ZonePercentage - 0.3228 × Pre-vascular phase_wavelet- HLL_firstorder_10Percentile + 0.5659 × 
Vascular phase_exponential_firstorder_10Percentile + 0.3858 × Vascular phase_wavelet- HHH_gldm_SmallDependenceHigh
GrayLevelEmphasis - 0.2004 × Post-vascular phase_wavelet- HHL_glszm_ZoneEntropy + 0.7031 × Vascular phase_wavelet- 
LHH_firstorder_10Percentile + 0.7979 × Peripheral vascularity (0/1) + 0.3343 × Hyper- enhancement intensity (0/1) - 0.7494 
× Heterogeneous (0/1) + 0.1994 × Wash- in time - 1.2093 × Wash- out time - 1.5111

Supplementary
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Logit (Risk Metastatic LNs) = 0.2992 × Vascular phase_original_shape_Maximum2DDiameterRow + 0.6938 × Vascular phase_
original_shape_Elongation + 0.0275 × Vascular phase_wavelet- HLH_glszm_ZonePercentage - 0.4212 × Post-vascular phase_
original_shape_Maximum2DDiameterRow - 0.2677 × Pre-vascular phase_original_shape_Maximum2DDiameterRow + 
0.2327 × Vascular phase_logarithm_glszm_SizeZoneNonUniformity - 0.7026 × Post-vascular phase_wavelet- HHL_glszm_
ZonePercentage + 0.3367 × Vascular phase_wavelet- HHL_glszm_ZonePercentage + 0.1491 × Post-vascular phase_original_
shape_Sphericity - 0.7319 × Vascular phase_wavelet- HLH_glszm_SizeZoneNonUniformity + 0.0065 × Pre-vascular phase_
original_shape_Elongation + 0.7202 × Vascular phase_original_glszm_GrayLevelNonUniformity + 0.6626 × Vascular phase_
wavelet- HHL_glszm_SmallAreaHighGrayLevelEmphasis + 0.0258 × Vascular phase_wavelet- HHH_glszm_ZonePercentage 
- 0.6453 × Vascular phase_wavelet- HHL_glszm_SizeZoneNonUniformity + 1.1852 × Vascular phase_wavelet- HHH_glszm_
GrayLevelNonUniformity + 0.0858 × Vascular phase_original_glrlm_GrayLevelNonUniformity + 0.6171 × Pre-vascular 
phase_original_shape_Sphericity + 0.1607 × Post-vascular phase_logarithm_glszm_SizeZoneNonUniformity + 0.0001 × 
Vascular phase_wavelet- HLL_glrlm_RunEntropy - 0.2736 × Vascular phase_gradient_firstorder_90Percentile - 0.4636 × Pre-
vascular phase_logarithm_glrlm_GrayLevelNonUniformity + 0.1422 × Pre-vascular phase_lbp- 3D- k_glrlm_RunEntropy 
+ 0.3294 × Post-vascular phase_wavelet- HLH_glszm_LargeAreaHighGrayLevelEmphasis - 0.0235 × Vascular phase_lbp- 
3D- k_glszm_LargeAreaHighGrayLevelEmphasis + 0.2995 × Post-vascular phase_original_firstorder_10Percentile - 0.4860 
× exponential_glrlm_ShortRunEmphasis - 0.0415 × Vascular phase_wavelet- HLL_gldm_SmallDependenceLowGrayLevelE
mphasis - 0.1842 × Pre-vascular phase_wavelet- HLH_glszm_LargeAreaHighGrayLevelEmphasis - 0.2567 × Vascular phase_
wavelet- HLL_glszm_ZonePercentage + 0.1518 × Pre-vascular phase_wavelet- HLL_firstorder_10Percentile - 0.2980 × 
Vascular phase_exponential_firstorder_10Percentile - 0.2344 × Vascular phase_wavelet- HHH_gldm_SmallDependenceHigh
GrayLevelEmphasis + 0.5594 × Post-vascular phase_wavelet- HHL_glszm_ZoneEntropy - 0.5856 × Vascular phase_wavelet- 
LHH_firstorder_10Percentile - 0.1364 × Peripheral vascularity (0/1) + 0.8200 × Heterogeneous (0/1) - 0.0185 × Hyper- 
enhancement intensity (0/1) - 0.7832 × Wash- in time + 1.7151 × Wash-out time - 0.7193
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Table S1 Classification of the lymph nodes and the numbers included in each category

Classification of the LNs
Number that included in training 

cohort (%)
Number that included in internal 

testing cohort (%)
Number that included in external 

testing cohort (%)

Benign LNs 63 (33.2) 42 (33.1) 34 (31.2)

Reactive hyperplasia 53 (27.9) 38 (29.9) 18 (16.5)

Lymphatic tuberculosis 12 (6.3) 2 (1.6) 13 (11.9)

Lymphadenitis 1 (0.5) 1 (0.8) 3 (2.8)

Others 1 (0.5) 1 (0.8) 0 (0.0)

Lymphoma 49 (25.8) 32 (25.2) 29 (26.6)

Hodgkin’s 6 (3.2) 7 (5.5) 4 (3.7)

B cell non-Hodgkin’s 25 (13.2) 15 (11.8) 19 (17.4)

T cell non-Hodgkin’s 12 (6.3) 5 (3.9) 3 (2.8)

Others 4 (2.1) 3 (2.4) 3 (2.8)

Metastatic LNs 78 (41.1) 53 (41.7) 46 (42.2)

Lung carcinoma 36 (18.9) 24 (18.9) 2 (1.8)

Breast carcinoma 3 (1.6) 4 (3.1) 22 (20.2)

Thyroid carcinoma 13 (6.8) 8 (6.3) 4 (3.7)

Esophageal carcinoma 6 (3.2) 4 (3.1) 3 (2.8)

Nasopharyngeal carcinoma 5 (2.6) 4 (3.1) 5 (4.6)

Laryngeal carcinoma 5 (2.6) 4 (3.1) 0 (0.0)

Intestinal malignancy 3 (1.6) 0 (0.0) 4 (3.7)

Salivary gland cancer 2 (1.1) 1 (0.8) 2 (1.8)

Pelvic malignancy 1 (0.5) 3 (2.4) 3 (2.8)

Pancreatico‐biliary malignancy 1 (0.5) 1 (0.8) 0 (0.0)

Melanoma 1 (0.5) 2 (1.6) 1 (0.9)

Total 190 127 109
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Table S2 Details of the ultrasound instruments used in the study

Cohort
Ultrasound instrument information

Manufacturer Model Site

Training cohort 
(n=190)

Cannon (n=119) Aplio i800 Canon Medical Systems, Tokyo, Japan

Toshiba (n=6) Aplio 500 Toshiba Medical Systems, Tokyo, Japan

Esaote (n=60) MyLab Twice Esaote Group, Italy

General Electric (n=5) Logiq E9 GE Healthcare, Milwaukee, WI, USA

Internal testing 
cohort (n=127)

Cannon (n=76) Aplio i800 Canon Medical Systems, Tokyo, Japan

Toshiba (n=4) Aplio 500 Toshiba Medical Systems, Tokyo, Japan

Esaote (n=46) MyLab Twice Esaote Group, Italy

General Electric (n=1) Logiq E9 GE Healthcare, Milwaukee, WI, USA

External testing 
cohort (n=109)

Esaote (n=46) MyLab Twice Esaote Group, Italy

General Electric (n=20) Logiq E9 GE Healthcare, Milwaukee, WI, USA

Cannon (n=12) Aplio i800 Cannon Medical Systems, Tokyo, Japan

Mindray (n=13) Resona 9T Mindray, Shenzhen, China

Siemens (n=7) ACUSON Sequoia Sliver Siemens AG, Erlangen, Germany

Philips (n=11) IE33 Philips Healthcare, Andover, MA, USA

Table S3 Numbers of the lymph nodes collected by different instruments in internal data

Cohort Numbers of the collected LNs (%) Numbers of the Misclassified LNs (%)

Training cohort (n=190) (n=57)

Cannon Aplio i800 119 (62.63) 37 (64.91)

Toshiba Aplio 500 6 (3.16) 1 (1.75)

Esaote MyLab Twice 60 (31.58) 18 (31.58)

General Electric Logiq E9 5 (2.63) 1 (1.75)

Internal testing cohort (n=127) (n=45)

Cannon Aplio i800 76 (59.84) 26 (57.78)

Toshiba Aplio 500 4 (3.15) 1 (2.22)

Esaote MyLab Twice 46 (36.22) 17 (37.78)

General Electric Logiq E9 1 (0.79) 1 (2.22)
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Table S4 The most effective radiomics features that were selected for the lymph node classification 

Radiomics features based on multi-temporal CEUS Coefficients Relative to max

Benign LNs

Post-vascular phase_original_shape_Maximum2DDiameterRow 1.082 1

Pre-vascular phase_lbp-3D-k_glrlm_RunEntropy 0.835 0.7717

Vascular phase_wavelet-HLL_glrlm_RunEntropy 0.7608 0.7032

Post-vascular phase_wavelet-HHL_glszm_ZonePercentage 0.6749 0.6238

Vascular phase_wavelet-HLL_gldm_SmallDependenceLowGrayLevelEmphasis 0.6368 0.5886

Vascular phase_wavelet-HHL_glszm_ZonePercentage 0.5552 0.5131

Pre-vascular phase_original_glrlm_GrayLevelNonUniformity 0.4365 0.4034

Post-vascular phase_exponential_glrlm_ShortRunEmphasis 0.3219 0.2975

Vascular phase_squareroot_glszm_SizeZoneNonUniformity 0.3118 0.2881

Vascular phase_gradient_firstorder_90Percentile 0.2604 0.2407

Vascular phase_exponential_firstorder_10Percentile 0.2549 0.2356

Vascular phase_wavelet-HLH_glszm_ZonePercentage 0.249 0.2301

Vascular phase_wavelet-HLH_glszm_SizeZoneNonUniformity 0.2097 0.1939

Vascular phase_wavelet-HHH_glszm_ZonePercentage 0.1913 0.1768

Pre-vascular phase_wavelet-HLH_glszm_LargeAreaHighGrayLevelEmphasis −0.0261 −0.0241

Pre-vascular phase_original_shape_Maximum2DDiameterRow −0.0274 −0.0253

Vascular phase_squareroot_glrlm_GrayLevelNonUniformity −0.0723 −0.0668

Pre-vascular phase_original_shape_Elongation −0.2103 −0.1944

Pre-vascular phase_original_shape_Sphericity −0.3236 −0.2991

Post-vascular phase_original_firstorder_10Percentile −0.3689 −0.341

Lymphoma

Vascular phase_wavelet-HLH_glszm_SizeZoneNonUniformity 0.5605 0.566

Post-vascular phase_original_shape_Sphericity 0.4818 0.4865

Vascular phase_original_shape_Maximum2DDiameterRow 0.3708 0.3744

Prevascular phase_original_shape_Maximum2DDiameterRow 0.3348 0.3381

Vascular phase_squareroot_glszm_GrayLevelNonUniformity 0.3149 0.318

Vascular phase_lbp-3D-k_glszm_LargeAreaHighGrayLevelEmphasis 0.2768 0.2795

Post-vascular phase_wavelet-HLH_glszm_LargeAreaHighGrayLevelEmphasis 0.2402 0.2426

Vascular phase_wavelet-HHH_glszm_ZonePercentage 0.1065 0.1076

Vascular phase_squareroot_glrlm_GrayLevelNonUniformity 0.0524 0.0529

Vascular phase_original_shape_Elongation 0.0487 0.0492

Post-vascular phase_original_firstorder_10Percentile 0.0113 0.0114

Vascular phase_gradient_firstorder_90Percentile −0.0452 −0.0457

Post-vascular phase_logarithm_glszm_SizeZoneNonUniformity −0.0725 −0.0732

Table S4 (continued)
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Table S4 (continued)

Radiomics features based on multi-temporal CEUS Coefficients Relative to max

Vascular phase_wavelet-HHL_glszm_SmallAreaHighGrayLevelEmphasis −0.0977 −0.0986

Post-vascular phase_wavelet-HHL_glszm_ZoneEntropy −0.1279 −0.1292

Prevascular phase_original_glrlm_GrayLevelNonUniformity −0.1363 −0.1376

Post-vascular phase_original_shape_Maximum2DDiameterRow −0.1821 −0.1839

Post-vascular phase_exponential_glrlm_ShortRunEmphasis −0.2115 −0.2136

Post-vascular phase_wavelet-HHL_glszm_ZonePercentage −0.2151 −0.2172

Vascular phase_wavelet-HHH_glszm_GrayLevelNonUniformity −0.2633 −0.2659

Vascular phase_wavelet-HLH_glszm_SizeZoneNonUniformity 0.5605 0.566

Metastatic LNs

Vascular phase_wavelet-HHH_glszm_GrayLevelNonUniformity 0.9637 1

Prevascular phase_original_shape_Sphericity 0.6389 0.663

Vascular phase_original_shape_Elongation 0.4594 0.4767

Prevascular phase_original_shape_Elongation 0.4554 0.4726

Post-vascular phase_wavelet-HHL_glszm_ZoneEntropy 0.4299 0.4461

Prevascular phase_lbp-3D-k_glrlm_RunEntropy 0.3857 0.4002

Vascular phase_wavelet-HHL_glszm_SmallAreaHighGrayLevelEmphasis 0.3635 0.3772

Post-vascular phase_logarithm_glszm_SizeZoneNonUniformity 0.3094 0.3211

Post-vascular phase_original_firstorder_10Percentile 0.2437 0.2529

Vascular phase_squareroot_glszm_SizeZoneNonUniformity 0.2164 0.2245

Vascular phase_wavelet-HLL_gldm_SmallDependenceLowGrayLevelEmphasis 0.2064 0.2142

Vascular phase_wavelet-HHL_glszm_ZonePercentage 0.1756 0.1822

Vascular phase_original_shape_Maximum2DDiameterRow 0.1729 0.1794

Post-vascular phase_wavelet-HLH_glszm_LargeAreaHighGrayLevelEmphasis 0.137 0.1421

Vascular phase_wavelet-HLH_glszm_ZonePercentage 0.1056 0.1096

Prevascular phase_wavelet-HLH_glszm_LargeAreaHighGrayLevelEmphasis 0.0948 0.0984

Vascular phase_wavelet-HLL_glrlm_RunEntropy 0.0709 0.0736

Vascular phase_squareroot_glrlm_GrayLevelNonUniformity 0.0638 0.0662

Vascular phase_squareroot_glszm_GrayLevelNonUniformity 0.0578 0.06

Prevascular phase_original_glrlm_GrayLevelNonUniformity 0.0424 0.044
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Table S5 The performance of different classifiers for diagnosing lymphadenopathies

Classifier AUC ACC (%) Sensitivity (%) Specificity (%) F1-score NPV PPV

Training cohort

DT 0.7594 54.21 57.33 79.01 0.5442 0.797 0.679

AdaBoost 0.8172 67.89 62.75 83.05 0.5927 0.856 0.692

Linear SVC 0.8271 73.16 71.42 86.20 0.7125 0.868 0.725

RF 0.9993 98.95 99.15 99.50 0.9897 0.994 0.988

LR 0.8381 70.00 67.39 84.58 0.6691 0.854 0.685

Internal testing cohort

DT 0.5738 33.07 35.00 68.87 0.3260 0.667 0.427

AdaBoost 0.6723 59.84 54.55 78.96 0.4907 0.814 0.539

Linear SVC 0.7144 57.48 56.30 78.57 0.5636 0.784 0.566

RF 0.7063 57.48 54.16 78.36 0.5343 0.788 0.532

LR 0.7388 64.57 62.54 82.05 0.6279 0.821 0.632
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Table S6 The radiomics performance comparison of different lymphadenopathy in different sequences in all cohorts

Cohorts Sequence Label AUC 95% CI ACC (%) Sensitivity (%) Specificity (%)

Training cohort Prevascular 
phase

Benign LNs 0.802 0.739–0.857 70.00 58.73 75.59

Lymphoma 0.780 0.714–0.837 73.68 44.90 83.69

Metastatic LNs 0.837 0.776–0.886 74.21 67.95 78.57

Vascular phase Benign LNs 0.863 0.806–0.908 78.42 71.43 81.89

Lymphoma 0.807 0.744–0.861 80.00 53.06 89.36

Metastatic LNs 0.847 0.788–0.895 77.37 74.36 79.46

Postvascular 
phase

Benign LNs 0.842 0.782–0.891 74.74 69.84 77.17

Lymphoma 0.834 0.774–0.884 81.58 57.14 90.07

Metastatic LNs 0.797 0.733–0.852 71.05 62.82 76.79

Combined Benign LNs 0.896 0.843–0.935 83.16 85.71 81.89

Lymphoma 0.777 0.711–0.834 78.42 40.82 91.49

Metastatic LNs 0.830 0.769–0.880 78.42 75.64 80.36

Prevascular 
phase

Benign LNs 0.766 0.682–0.836 71.65 57.14 78.82

Lymphoma 0.737 0.652–0.811 76.38 43.75 87.37

Metastatic LNs 0.699 0.612–0.778 65.35 64.15 66.22

Vascular phase Benign LNs 0.795 0.716–0.863 75.59 64.29 62.79

Internal testing 
cohort

Lymphoma 0.538 0.447–0.626 66.14 28.12 31.03

Metastatic LNs 0.760 0.676–0.831 68.50 64.15 61.82

Postvascular 
phase

Benign LNs 0.719 0.632–0.795 67.72 54.76 74.12

Lymphoma 0.777 0.694–0.846 77.95 62.50 83.16

Metastatic LNs 0.676 0.587–0.756 67.72 54.72 77.03

Combined Benign LNs 0.848 0.773–0.905 82.68 69.05 89.41

Lymphoma 0.616 0.526–0.701 72.44 46.88 81.05

Metastatic LNs 0.733 0.647–0.808 74.02 71.70 75.68

External testing 
cohort

Prevascular 
phase

Benign LNs 0.734 0.641–0.814 68.81 44.12 80.00

Lymphoma 0.546 0.448–0.641 57.80 51.72 60.00

Metastatic LNs 0.669 0.573–0.757 65.14 43.48 80.95

Vascular phase Benign LNs 0.638 0.541–0.728 64.22 58.82 66.67

Lymphoma 0.649 0.551–0.738 72.48 48.28 81.25

Metastatic LNs 0.573 0.474–0.667 62.39 43.48 76.19

Postvascular 
phase

Benign LNs 0.682 0.585–0.768 66.06 47.06 74.67

Lymphoma 0.769 0.678–0.844 67.89 68.97 67.50

Metastatic LNs 0.505 0.407–0.602 55.96 28.26 76.19

Combined Benign LNs 0.732 0.592–0.773 74.31 44.44 89.04

Lymphoma 0.722 0.628–0.803 70.64 55.17 76.25

Metastatic LNs 0.770 0.680–0.845 72.48 72.73 72.31
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Table S7 DeLong tests to compare the AUCs of the three models for different types of lymphadenopathies

Comparison
Training cohort Internal testing cohort External testing cohort

AUC P value AUC P value AUC P value

Benign LNs Model 2 vs. Model 1 0.896 0.017* 0.848 0.239 0.688 0.432

0.801 0.786 0.780

Model 2 vs. Model 3 0.896 0.014* 0.848 0.774 0.688 0.527

0.945 0.853 0.696

Model 1 vs. Model 3 0.801 <0.001** 0.786 0.139 0.780 0.201

0.945 0.853 0.696

Lymphoma Model 2 vs. Model 1 0.777 0.734 0.616 0.062 0.722 0.731

0.796 0.769 0.753

Model 2 vs. Model 3 0.777 <0.001** 0.616 0.026* 0.722 0.193

0.927 0.759 0.805

Model 1 vs. Model 3 0.796 <0.001** 0.769 0.818 0.753 0.274

0.927 0.759 0.805

Metastatic LNs Model 2 vs. Model 1 0.830 0.681 0.733 0.043* 0.770 0.815

0.847 0.830 0.741

Model 2 vs. Model 3 0.830 <0.001** 0.733 0.01* 0.770 0.141

0.949 0.838 0.834

Model 1 vs. Model 3 0.847 <0.001** 0.830 0.802 0.741 0.044*

0.949 0.838 0.834

*, significant difference (P<0.05); **, extremely significant difference (P<0.01).


