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Background: It has been suggested that biomechanical factors may influence plaque development. 
However, key determinants for assessing plaque vulnerability remain speculative.
Methods: In this study, a two-dimensional (2D) structural mechanical analysis and a three-dimensional 
(3D) fluid-structure interaction (FSI) analysis were conducted based on intravascular optical coherence 
tomography (IV-OCT) and digital subtraction angiography (DSA) data sets. In the 2D study, 103 IV-OCT 
slices were analyzed. An in-depth morpho-mechanic analysis and a weighted least absolute shrinkage and 
selection operator (LASSO) regression analysis were conducted to identify the crucial features related to 
plaque vulnerability via the tuning parameter (λ). In the 3D study, the coronary model was reconstructed by 
fusing the IV-OCT and DSA data, and a FSI analysis was subsequently performed. The relationship between 
vulnerable plaque and wall shear stress (WSS) was investigated.
Results: The influential factors were selected using the minimum criteria (λ-min) and one-standard 
error criteria (λ-1se). In addition to the common vulnerable factor of the minimum fibrous cap thickness 
(FCTmin), four biomechanical factors were selected by λ-min, including the average/maximal displacements 
and average/maximal stress, and two biomechanical factors were selected by λ-1se, including the average/
maximal displacements. Additionally, the positions of the vulnerable plaques were consistent with the sites of 
high WSS.
Conclusions: Functional indices are crucial for plaque status assessment. An evaluation based on 
biomechanical simulations might provide insights into risk identification and guide therapeutic decisions.

Keywords: Biomechanical analysis; intravascular optical coherence tomography (IV-OCT); vulnerable plaque; 

finite-element analysis (FEA); fluid-structure interaction (FSI)

Submitted Aug 01, 2023. Accepted for publication Nov 28, 2023. Published online Jan 15, 2024.

doi: 10.21037/qims-23-1094

View this article at: https://dx.doi.org/10.21037/qims-23-1094

1492

https://crossmark.crossref.org/dialog/?doi=10.21037/qims-23-1094


Zhang et al. Biomechanical assessment of plaque vulnerability1478

© Quantitative Imaging in Medicine and Surgery. All rights reserved.   Quant Imaging Med Surg 2024;14(2):1477-1492 | https://dx.doi.org/10.21037/qims-23-1094

Introduction

Cardiovascular diseases (CVDs) are the number one 
cause of mortality, and are projected to remain the single 
leading cause of death globally until 2030 (1,2). CVDs have 
been shown to be caused by silent atherosclerotic plaque 
progression, leading to sudden plaque rupture, occlusive 
thrombosis, and acute coronary syndrome (3). Therefore, 
the early identification and treatment of plaque prone to 
catastrophic rupture is an essential approach to decreasing 
cardiovascular morbidity and mortality.

Pathology-based studies (4-6) and multi-modality imaging 
(7,8) have been used to explore the potential features related 
to plaque vulnerability. Morphological characteristics, such as 
the fibrous cap thickness (FCT) and the extent of the necrotic 
lipid core, have been identified as the main determinants 
predisposing plaque to rupture (9-11). In vivo intravascular 
studies have shown that the thin fibrous cap is the most 
common predisposing lesion (12,13). This is reasonable, as 
the fibrous cap is the last barrier to resist the stress exerted 
on the atheroma and thus prevent plaque rupture. However, 
over a 3-year follow-up period, intravascular imaging 
histology only identified <10% of CVDs associated with 
the thin fibrous cap (12,13). In addition, there is still no 
consensus as to the exact cut-off value of the thin fibrous 
cap that can be used to identify vulnerable plaque (4,14,15). 
In one study of 72 patients with acute coronary syndrome, 
only 67% of patients with ruptured plaques were identified 
as having a thin fibrous cap (15). Thus, the FCT should not 
be the only determinant for predicting plaque rupture, which 
occurs due to the difference between the protection exerted 
by the fibrous cap and its disrupting forces.

Plaques develop at specific areas of coronary arteries 
where flow is disturbed, and plaque rupture occurs when 
the intraplaque stress exceeds the material strength of the 
overlying fibrous cap. Thus, biomechanical factors may be 
used to assess plaque status. The coupling of morphological 
and functional metrics could also provide novel insights 
into the detection of vulnerable plaques in advance, and 
thus prevent major adverse cardiovascular events. However, 
accurate biomechanical computation greatly depends on the 
precise reconstruction of vessels and plaque geometry.

Intravascular optical coherence tomography (IV-OCT) 
is a high-resolution imaging technology (up to 10–20 μm) 
based on near-infrared interferometry that could provide 
the best estimation for plaque configurations. In this study, a 
finite-element analysis (FEA) was conducted based on two-
dimensional (2D) slice models, including plaque component 

and vessel wall reconstruction, to explore the mechanical 
fields. However, it is preferable to create three-dimensional 
(3D) vessel and plaque configurations via the fusion of IV-
OCT and biplane angiography or coronary computed 
tomography angiography to guarantee the true tortuosity 
of the reconstructed models. Hence, hemodynamics, 
such as wall shear stress (WSS), which plays a key role in 
atherosclerotic disease development, can be calculated 
accurately (16).

This study aimed to develop a framework to fully 
evaluate the rationality of using biomechanical features to 
assess plaque stability based on both 2D FEA and 3D fluid-
structure interaction (FSI) simulations. Our findings might 
provide a viable foundation for high-risk plaque prediction 
and thus prevent major adverse cardiovascular events. In 
this study:

(I)	 An IV-OCT-based morpho-mechanic analysis was 
performed to assess the vulnerability of coronary 
plaque;

(II)	 IV-OCT and digital subtraction angiography (DSA) 
images were fused to achieve accurate 3D model 
reconstruction;

(III)	 3D FSI computation was performed to investigate 
the role of both the structural and hemodynamic 
parameters in assessing plaque stability.

Figure 1 summarizes the approach of this study.

Methods

Data acquisition

A 54-year-old male with a history of hypertension and a 
diagnosis of acute coronary syndrome was enrolled in this 
study. A set of right coronary artery imaging data, including 
coronary IV-OCT and DSA imaging data, were acquired 
from the Catheterization Laboratory of the Anzhen 
Hospital. The study was conducted in accordance with the 
Declaration of Helsinki (as revised in 2013). This study 
was approved by the Institutional Review Board of Beijing 
Anzhen Hospital (No. ks2020002), and written informed 
consent was obtained from the patient before the study.

2D geometry reconstruction and morphometric analysis

Image segmentation was conducted on each frame of every 
IV-OCT pullback to obtain a patient-specific coronary 
plaque model. Plaque composition was analyzed according 
to the Consensus Standards (17). The vessel lumen was 



Quantitative Imaging in Medicine and Surgery, Vol 14, No 2 February 2024 1479

© Quantitative Imaging in Medicine and Surgery. All rights reserved.   Quant Imaging Med Surg 2024;14(2):1477-1492 | https://dx.doi.org/10.21037/qims-23-1094

Medical Image Data
2D slice model reconstruction

2D mechanical simulation

DSA centerline 
extraction

3D centerline 
reconstruction 

by epipolar 
matching

3D IV-OCT-based 
reconstructed model

Registration

3D coronary model 3D mechanical simulation

OCT
image

2D FEA

3D FSI

Plaque 
vulnerability 
assessment

Stress [kPa]

WSS [Pa]

80
70
60
50
40
30
20
10
0

15

12

9

6

3

0

Registration

IV OCT

DSA

Stress [kPa]
100

80

60

40

20

0

Figure 1 The flowchart of the biomechanical assessment of coronary plaque vulnerability based on multimodal image data. IV-OCT, 
intravascular optical coherence tomography; DSA, digital subtraction angiography; 2D, two-dimensional; FEA, finite-element analysis; 3D, 
three-dimensional; FSI, fluid-structure interaction.

first segmented via the automatic IV-OCT processing 
module, which is further described in Appendix 1. Next, 
the boundaries of different plaque compositions, including 
the fibrous cap, necrotic lipid pool, and calcification, were 
identified and manually segmented. The external border of 
the coronary outer wall was also traced and shaped from the 
IV-OCT image. In relation to any borders that could not be 
detected due to artifacts or the limited penetration of light, 
an estimation based on the visible characteristics near the 
non-detectable regions was made. Figure 2A,2B show the 
IV-OCT image and contour extraction, respectively. All the 
segmentations were conducted using the 3D slicer (v4.13.0) 
by an expert with extensive experience in reading IV-
OCT images. Two experienced cardiologists were engaged 
to review and correct the segmentation results. Both the 
segmentation expert and cardiologist were blinded to the 
patient’s demographic and clinical characteristics. The 2D 
structures were finally formed (Figure 2C). In this study, 
250 slices were reconstructed, and slices that contained 
lipid plaque were selected for the parameter calculation and 
analysis. Five lipid plaques were identified, resulting in 103 
slices in total. Subsequently, two experienced cardiologists 

conducted the plaque identification. Both the cardiologists 
identified plaque-1 and plaque-4 as vulnerable plaques in 
32 slices, and classified plaque-2, plaque-3, and plaque-5 as 
stable plaques in 71 slices.

The morphological parameters were computed for 
each slice on the basis of the 2D-reconstructed geometry. 
The area of the vessel lumen was then calculated. The 
geometric features of the outer wall were quantified, 
including the area, the maximal wall thickness (MWT), 
and the normalized wall index (NWI), which was defined 
as the ratio between the area of the wall and the overall 
area of the vessel. The structural characteristics of the 
plaque, including the area, angle, maximal plaque thickness 
(MPT), minimum FCT (FCTmin), and average FCT 
(FCTave), were computed. Figure 2D shows the details of 
the geometric features.

3D model reconstruction

3D model reconstruction was performed for the FSI 
simulation. The contours of the vessel lumen, outer wall 
boundary, and plaque component for each slice were 

https://cdn.amegroups.cn/static/public/QIMS-23-1094-Supplementary.pdf
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Figure 2 The reconstruction of the 2D geometry and morphometric analysis. (A) The IV-OCT image. (B) The contour extraction. (C) 
The plaque geometry reconstruction from the contours. (D) The calculation of the geometric features. 2D, two-dimensional; IV-OCT, 
intravascular optical coherence tomography.

the same as those for the 2D geometry reconstruction  
(Figure 3A). As the IV-OCT is a catheter-based imaging 
modality, each slice had to be stacked and aligned with the 
catheter path-line to form a 3D coronary model. This 3D 
path-line was generated from the DSA data. Specifically, 
two angiographic images with projections ≥25° apart, 
and with minimum vessel overlap and foreshortening 
were first selected. Among which, at least one DSA image 
with a visible IV-OCT catheter was chosen to guarantee 
the coherence of the starting and ending points between 
the DSA and IV-OCT images. The 2D centerline of the 
coronary artery in each DSA image was extracted using the 
Medical Imaging Interaction Toolkit (MITK) Workbench. 
The 3D centerline was subsequently reconstructed via 
epipolar geometry and the stereo matching algorithm and 
exported as discrete points as shown in Figure 3B.

To ensure more accurate 3D model reconstruction, the 
interpolation was first used to increase the number of slices 
using the Visualization Toolkit (VTK) package in Python 
3.93 (https://vtk.org). The number of discrete points of the 
3D angiographic centerline was determined by the final 
slice number. The registration process between the IV-
OCT slices and 3D angiographic centerline comprised 
several sub-steps. First, the scale was converted into 
millimeter units for the points from the IV-OCT and the 
DSA to eliminate the resolution difference between the 

two image modalities. Second, the large side branches in 
both the DSA and IV-OCT images were identified as the 
key landmarks. Those landmarks were used to determine 
the coordinate axis direction. Third, the centroid of each 
IV-OCT slice was obtained and defined as the midpoint 
on the perpendicular bisector of the longest line segment 
between the two points on the lumen contour. The 2D IV-
OCT slice was then moved to their position to the space of 
3D angiographic centerline by applying the translation and 
rotation operations. Next, the IV-OCT slices orthogonal 
to the 3D angiographic centerline were generated as shown 
in Figure 3C. The transferred model was finally exported in 
triangulation mesh in STereoLithography (STL) format to 
facilitate the computational analysis (Figure 3D). The details 
of the co-registration process between the IV-OCT and 3D 
angiographic centerline are provided in Appendix 2.

2D FEA

The FEA was performed with ABAQUS (version 2020, 
Dassault Systemes Simulia Corp., Providence, RI, USA). 
The model was meshed with three-node and four-
node linear, hybrid elements. In this study, the element 
sizes for the vessel wall and plaque were set at 0.02 and  
0.01 mm, respectively. Ultimately, the models contained 
about 50k–60k elements. The material properties used for 

https://vtk.org
https://cdn.amegroups.cn/static/public/QIMS-23-1094-Supplementary.pdf
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Figure 3 3D patient-specific coronary model reconstruction. (A) The sequence of the segmented IV-OCT contours. (B) The reconstruction 
of the 3D centerline based on biplane angiographic imaging. (C) The registration process of IV-OCT and the 3D angiographic centerline. (D) 
The 3D geometry of the patient-specific coronary, including the structure of vessel wall, lumen, and lipid plaque, and calcification plaque. 
IV-OCT, intravascular optical coherence tomography; 3D, three-dimensional.

the vessel wall and the different components of the plaque 
are set out in Table 1. A pulsatile waveform of pressure with 
the peak value of 130 mmHg was applied to the luminal 
side as the external load as detailed in Appendix 3. A four-
point constraint was employed in the outer vessel wall to 
suppress rigid translation and rotation. Further, the self-
contact interaction was set for the intraluminal surface of 
the vessel lumen, and the bonded contact was given at the 
contact region between the vessel wall and the plaque. The 
constraint and contact settings for the 2D FEA computation 
are detailed in Appendix 4. The temporal discretization of 
the computational models was assigned as 100 steps with the 
time step of 0.01 seconds. Grid and temporal independency 
analyses were conducted (Appendix 5) to prove that the base 

mesh resolution and time step settings were adequate in this 
study. The maximal and average values of displacement and 
stress for each slice were analyzed after the simulation.

FSI simulation

The FSI simulation was performed on the Ansys Workbench 
platform (ANSYS Inc., Canonsburg, PA, USA). The outer 
face of the vessel lumen was selected as the fluid-solid 
interface for the data transfer in the simulation. The fluid 
domain was meshed with the tetrahedral elements in the 
core region and prismatic cells (five layers) in the boundary 
layer near the vessel wall, resulting in 683,035 elements. A 
velocity boundary condition was imposed at the inlet with 
a value of 0.43 m/s, and a pressure value of 130 mmHg was 
given to the outlet as the pressure boundary condition. The 
blood was assumed to be incompressible with a density of 
1,050 kg/m3 and a dynamic viscosity of 0.00365 kg·m−1·s−1. 
The Newtonian and laminar model was applied in this 
study. No-slip condition was assumed at the fluid-solid 
interface. The structural analysis of this model was made of  
517,987 elements. The mesh independent test was performed 

Table 1 Material properties used for the vessel and plaque tissue

Material Young’s modulus Poisson’s ratio

Vessel wall 0.6 MPa 0.48

Lipid plaque 0.02 MPa 0.48

Calcification plaque 10 GPa 0.3

https://cdn.amegroups.cn/static/public/QIMS-23-1094-Supplementary.pdf
https://cdn.amegroups.cn/static/public/QIMS-23-1094-Supplementary.pdf
https://cdn.amegroups.cn/static/public/QIMS-23-1094-Supplementary.pdf
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Table 2 Morphological and mechanical characteristics of vulnerable and stable plaque

Variables Vulnerable (n=32) Stable (n=71) P value

Lumen data

Lumen area (mm2)† 6.08±2.85 5.68±2.04 <0.05

Outer wall data

Wall area (mm2) 11.47±5.27 9.93±3.47 0.083

NWI† 0.66±0.24 0.68±0.14 <0.05

MWT (mm) 1.19±0.54 1.33±0.51 0.103

Plaque data

Plaque area (mm2)† 2.19±1.86 1.63±1.21 <0.05

MPT (mm)† 0.74±0.52 0.60±0.38 <0.05

Plaque angle (°) 137.00±34.00 100.00±78.00 0.064

Fibrous cap data

FCTmin (mm)† 0.10±0.05 0.28±0.14 <0.05

FCTave (mm)† 0.19±0.04 0.39±0.16 <0.05

Mechanical data

Average stress (kPa)† 13.96±13.82 12.78±7.50 <0.05

Maximal stress (kPa)† 151.38±39.75 72.91±26.90 <0.05

Average displacement (mm)† 0.18±0.07 0.08±0.03 <0.05

Maximal displacement (mm)† 0.37±0.07 0.16±0.05 <0.05

Continuous and normal data are presented as the mean ± standard deviation; continuous and non-normal data are presented as the 
median ± interquartile range. †, the variables showing a significant difference (with a P value <0.05) between the vulnerable and stable 
groups. NWI, normalized wall index; MWT, maximal wall thickness; MPT, maximal plaque thickness; FCTmin, minimum fibrous cap 
thickness; FCTave, average fibrous cap thickness.

for both the fluid and solid domains as detailed in Appendix 6  
to show that the base mesh resolution was sufficient for this 
study. Table 1 shows the material properties of the coronary 
vessel and plaques. Two small surfaces at the coronary wall 
ends were fixed to suppress rigid displacement and rotation. 
The self-contact interaction was set for the intraluminal 
surface of the vessel lumen, and the bonded contact was given 
at the contact region between the vessel wall and the plaque. 
No extra load was applied to the structural participant, and 
the wall only received the pressure transferred from the fluid 
participant.

Statistical analysis

The statistical analyses were conducted with Python 
3.93 and R software (v4.1.3). The Shapiro-Wilk test was 
used to test the normality of the continuous variables. 
The differences between the variables in the two groups 
were analyzed using the Student t-test for the normally 

distributed data and the Wilcoxon rank-sum test for the 
non-normally distributed data. The reported statistical 
importance levels were all two-sided, and a P value <0.05 
was considered statistically significant. The correlation 
test was performed using the Pearson method for the 
normally distributed data or the Spearman method for the 
non-normally distributed data. The R value indicated the 
strength of the linear relationship between the variables. 
The weighted least absolute shrinkage and selection 
operator (LASSO) method was used to identify significant 
features related to plaque vulnerability (18) with penalty 
parameter tuning adjusted by 10-time cross-validation.

Results

Morphological and mechanical analyses

The morphological and mechanical analyses of the 103 lipid 
plaque slices revealed 13 candidate factors for vulnerable 
plaque assessment (Table 2). The geometric features, 

https://cdn.amegroups.cn/static/public/QIMS-23-1094-Supplementary.pdf


Quantitative Imaging in Medicine and Surgery, Vol 14, No 2 February 2024 1483

© Quantitative Imaging in Medicine and Surgery. All rights reserved.   Quant Imaging Med Surg 2024;14(2):1477-1492 | https://dx.doi.org/10.21037/qims-23-1094

0.5

0.4

0.3

0.2

0.1

300

200

100

25

20

15

10

5

0.30

0.25

0.20

0.15

0.10

0.05

Vulnerable Stable

Vulnerable Stable

Vulnerable Stable

Vulnerable Stable

M
ax

im
al

 d
is

pl
ac

em
en

t, 
m

m
M

ax
im

al
 s

tr
es

s,
 k

P
a

A
ve

ra
ge

 s
tr

es
s,

 k
P

a
A

ve
ra

ge
 d

is
pl

ac
em

en
t, 

m
m

D

E

D

E

[k
Pa

]
[m

m
]

M
ax

im
al

 S
tr

es
s [

kP
a]

M
ax

im
al

 D
is

pl
ac

em
en

t [
m

m
]

130.9 kPa

0.44 mm

Vulnerable plaque

120
110 
100
90
80
70
60
50
40
30
20
10
0

0.5
0.4
0.3
0.2
0.1
0.0

Stress, kPa

Displacement, mm

D

E

[k
Pa

]
[m

m
]

M
ax

im
al

 S
tr

es
s [

kP
a]

M
ax

im
al

 D
is

pl
ac

em
en

t [
m

m
]

61.1 kPa

0.09 mm

Stable plaque

0.20
0.15
0.10
0.05
0.00

80
70
60
50
40
30
20
10
0

Displacement, mm

Stress, kPa

C

B

A

Figure 4 Comparison of the mechanical parameters between the vulnerable and stable groups. (A) The model reconstruction for the 
vulnerable and stable plaques. (B,C) The distribution of stress and displacement in the representative slice model, respectively. The red 
arrows indicate positions with the peak values. (D,E) The box-plots of the average and maximal stress and displacement for the vulnerable 
and stable plaque groups.

including the lumen area, NWI, plaque area, MPT, 
FCTmin, and FCTave, differed significantly between the 
vulnerable and stable groups. Further, all the mechanical 
parameters differed significantly between the two groups. 
As Figure 4 shows, the slices with vulnerable plaque had 
higher stress and displacement than those with stable 
plaque. The box-plots also depict higher concentrations of 
both stress and displacement in the vulnerable plaque group 
(Figure 4D,4E).

Correlation between the geometric features and FEA-
derived parameters

The correlation between four FEA-derived parameters 
(average and maximal value of stress and displacement) and 
nine morphological features were investigated (Table 3).  
The univariate linear regression analysis showed that four 
geometric parameters, including the lumen area, wall 
area, NWI, and MWT, were significantly correlated with 
the average stress (with R values >0.70) (Figure 5A-5D). 
Further, the average stress was positively related to the 
lumen area, but negatively correlated with the wall area, 
NWI, and MWT. As Figure 5E,5F show, the maximal 

stress in all the analyzed slices decreased as the FCTmin 
and FCTave increased. The displacement was negatively 
correlated with the FCTmin (with maximal displacement) 
and FCTave (with both average and maximal displacement) 
(Figure 5G-5I).

Influential parameter selection for vulnerable plaque

The intercorrelations among the candidate factors were 
examined (Figure S7, Appendix 7). A weighted LASSO 
regression analysis was subsequently employed to identify 
the most influential plaque parameters from the nine 
morphological parameters and four mechanical parameters 
(13 parameters in total) using the tuning parameter (λ), 
which was determined using a 10-fold cross-validation 
based on the mean-squared prediction error. The optimized 
lambda values (λ) were commonly determined using the 
criteria that minimizes the mean-squared prediction error, 
indicated as λ-min, while the tuning parameter (λ), λ-1se, 
was selected using the one-standard error rule (18,19).  
Figure 6A,6B display the plots of the mean-square error 
versus log(λ) and the LASSO coefficient paths, respectively. 
Five factors were selected by λ-min with the value of 0.00114 

https://cdn.amegroups.cn/static/public/QIMS-23-1094-Supplementary.pdf
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Table 3 The correlations between the morphologic features and FEA-derived parameters

Variables Value
Average stress Maximal stress Average displacement Maximal displacement

R P value R P value R P value R P value

Lumen area (mm2) 5.72±1.92 0.868† <0.05 0.289 0.003 0.688 <0.05 0.482 <0.05

Wall area (mm2) 9.96±3.51 −0.71† <0.05 0.028 0.781 −0.25 0.011 0.036 0.722

NWI 0.67±0.14 −0.95† <0.05 −0.25 0.012 −0.61 <0.05 −0.35 <0.05

MWT (mm) 1.30±0.50 −0.87† <0.05 −0.08 0.422 −0.44 <0.05 −0.17 0.088

Plaque area (mm2) 1.78±1.45 −0.66 <0.05 0.434 <0.05 0.235 0.017 0.407 <0.05

MPT (mm) 0.63±0.39 −0.62 <0.05 0.484 <0.05 0.131 0.188 0.353 <0.05

Plaque angle (°) 120.00±58.00 −0.28 0.004 0.112 0.26 0.171 0.083 0.1 0.317

FCTmin (mm) 0.24±0.19 −0.04 0.662 −0.91† <0.05 −0.66 <0.05 −0.73† <0.05

FCTave (mm) 0.35±0.22 −0.21 0.034 −0.81† <0.05 −0.79† <0.05 −0.82† <0.05

Continuous and normal data are presented as the mean ± standard deviation; continuous and non-normal data are presented as the 
median ± interquartile range. †, the correlation coefficient of morphological and FEA-derived parameters is >0.7. FEA, finite-element 
analysis; NWI, normalized wall index; MWT, maximal wall thickness; MPT, maximal plaque thickness; FCTmin, minimum fibrous cap 
thickness; FCTave, average fibrous cap thickness.

[log(λ-min) =−6.77688], which included the FCTmin, 
average displacement, maximal displacement, average stress, 
and maximal stress. Their coefficients were −41.852, 34.748, 
38.5, 429.878, and 3.791, respectively. Three core features 
were identified by λ-1se with the value of 0.02958 [log(λ-1se) 
=−3.52070], including the FCTmin, average displacement, 
and maximal displacement. Their coefficients were −7.709, 
33.361, and 6.708, respectively (Table 4).

WSS analysis based on FSI simulation

The identification of high WSS over vulnerable atheroma 
might improve the detection of plaques prone to rupture. 
Figure 7A shows the spatial distribution of WSS in the 
vessel lumen. To further explore the localization of the 
WSS patterns, slices orthogonal to the 3D angiographic 
centerline were extracted and the WSS distribution of 
each slice was also displayed. One representative slice for 
each lipid plaque was randomly selected (Figure 7B-7F). 
Plaque-1 and plaque-4, which were identified as vulnerable 
plaques, had more elevated WSS than the other plaques 
(Figure 7B,7E).

Discussion

This study verified that biomechanical features play a crucial 
role in evaluation of plaque stability based on 2D FEA and 
3D FSI simulations using IV-OCT and DSA data sets. A 

total of 103 IV-OCT slices containing lipid plaque were 
used for the 2D geometry reconstruction and structural 
analysis. Experienced cardiologists classified plaque status 
by combining the FCT, the features of the plaque, including 
the area, angle, and thickness, and the features of the 
vessel wall, as no consistent criteria had been established 
for vulnerable plaque identification in previous studies 
(4,14,15,20). IV-OCT is excellent for penetrating vessel 
walls to identify vulnerable plaques with high resolution (21). 
However, it might be insufficient to confirm the plaque 
status relying solely on IV-OCT images. Histopathological 
studies should be conducted in the future to enable more 
accurate grouping. In addition, the model was reconstructed 
in a semi-automatic way due to the imprecise segmentations 
of the current automatic frameworks for coronary plaque 
(22-26) as summarized in Appendix 8. The boundaries 
of different plaque compositions were identified and 
manually segmented to achieve accurate geometry creation. 
However, the limited ranging depth of the IV-OCT images 
(1–2.5 mm) might introduce bias into the reconstruction 
of the outer wall especially in poor lipid-rich tissue (27). 
The co-registration with more image modalities, such 
as intravascular ultrasound images and near-infrared 
spectroscopy (13,28-35), or advanced computational 
techniques (36) should be employed to achieve more 
accurate model reconstruction.

In this study, 2D FEA computation was conducted with 
the assignment of linear material properties for the vessel 
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Figure 5 Significant correlations between the morphologic features and FEA-derived parameters with R value >0.7. (A-D) Correlations 
between average stress and lumen area, wall area, NWI, and MWT, respectively. (E,F) Correlations between maximal stress and FCTmin 
and FCTave, respectively. (G) Correlations between average displacement and FCTave. (H,I) Correlations between maximal displacement 
and FCTave and FCTmin, respectively. NWI, normalized wall index; MWT, maximal wall thickness; FCTmin, minimum fibrous cap 
thickness; FCTave, average fibrous cap thickness; FEA, finite-element analysis.

wall and plaques. The average displacement for each slice at 
the early, peak, and late systole was calculated. All the slices 
displayed a “small enough” displacement of approximately 
0.2 mm, 5% of the original dimensions of the considered 
vessel (4 mm), confirming the rationality of employing 
the linear equation to depict the behavior of the material 
(Appendix 9). The hyperelastic behavior of certain plaque 
components have been described in previous studies (37,38). 
However, the settings of hyperelastic behaviors might be 

suitable for circumstances with large displacements (>20–
30% of the initial dimensions) (37,39,40), which was greatly 
over the average displacements reported in our study. In 
addition, with a single central processing unit (CPU) time 
of 3 minutes, which is much faster than simulations based 
on 3D models, 2D FEA is time-saving. The analysis based 
on the 2D slice models could also contribute to the accurate 
tracking of critical lesion sites (Figure 8). Therefore, this 
approach has the potential to serve as a clinical tool for 
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the comprehensive biomechanical profiling of coronary 
plaques due to its accuracy and time efficacy (41). We also 
compared the 2D and 3D computation results and found 
that the 2D FEA had a larger maximal stress value than the 
3D FSI. The average absolute difference between the two 
simulation methods was 35.6% (as detailed in Appendix 10).  
Our results showed that the 2D and 3D computation 
results displayed a similar trend, even if the 2D FEA tends 
to overestimate the stresses (42,43). It is evident that both 
2D and 3D simulations can provide additive information to 
assist in plaque vulnerability assessment.

Detailed morpho-mechanic analyses were subsequently 

conducted based on the 2D FEA computation. The thin 
fibrous cap is the most commonly assessed predisposing 
lesion in vivo intravascular studies (12,13); however, to 
date no consensus as to an exact cut-off value has been 
reached. We conducted a correlation analysis to examine 
the relationship between the mechanical parameters and 
morphological features and found that maximal stress 
and maximal displacement were significantly correlated 
to the FCTmin and FCTave, which is consistent with the 
findings of previous studies (44-46). The results indicated 
that the biomechanical features are closely related to the 
clinical event. The LASSO method was used to select 
factors to optimize the prediction accuracy. FEA-derived 
parameters were included either via the λ-min or λ-1se 
criteria, which also highlighted the necessity of including 
the biomechanical factors. Previous studies have shown that 
plaque vulnerability is not a static process; stable plaques 
may process towards morphologically more vulnerable 
plaques in a proportion of patients (10,47), and up to three-
quarters of vulnerable plaques can lose vulnerability features 
over time with appropriate optimal medical therapy (48). 
Therefore, adding information reflecting the mechanical 
response could enable more accurate evaluation.

3D model reconstruction based on the fusion of the 
IV-OCT and DSA images was conducted for the FSI 
simulation. Plaque-1 and plaque-4, which were identified 
as vulnerable plaques, displayed higher WSS. A strong 
correlation between the focal elevation in WSS and the 
site of the plaque rupture has been reported in previous 
studies (49-51). Therefore, this patient needs to be 
closely monitored and careful attention needs to be paid 
to the regions with high WSS. Moreover, plaque-3, which 
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Table 4 Parameter selection using LASSO regression

Criteria Variable LASSO coefficient

λ-min Intercept −10.144

FCTmin −41.852

Average displacement 34.748

Maximal displacement 38.5

Average stress 429.878

Maximal stress 3.791

λ-1se Intercept −4.678

FCTmin −7.709

Average displacement 33.361

Maximal displacement 6.708

LASSO, least absolute shrinkage and selection operator; λ-min, 
minimum criteria; FCTmin, minimum fibrous cap thickness; 
λ-1se, one-standard error criteria.
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Figure 7 The distributions of WSS. (A) The WSS patterns of the vessel lumen. (B-F) The representative IV-OCT image cross-sections of 
five plaques with WSS distributions. The labels highlighted in red indicate the vulnerable plaques, including plaque-1 and plaque-4. WSS, 
wall shear stress; IV-OCT, intravascular optical coherence tomography.

was one of the stable plaques, also showed elevated WSS. 
This might have been induced by the luminal narrowing 
near plaque-3. This plaque also requires frequent 
monitoring. A FSI simulation was employed in a previous 
study of coronary diseases (7), and its accuracy was also 
evaluated. In this study, a structural-only simulation was 
performed and compared with the FSI computation to 
facilitate the necessity of FSI simulations (as detailed in 
Appendix 11). However, the FSI simulation took around 
6 hours to obtain the functional parameters in this study, 
and thus is time-consuming and not suitable for real-time 
analysis. Automatic frameworks should be applied in the 
future to enable the integration of plaque stress analysis 
in the clinic (52,53).

Despite the excellent resolution of IV-OCT images near 
the field, limited light penetration to the deeper vessel wall 
might introduce imprecisions into model reconstructions. 
Other imaging modalities, such as intravascular ultrasound, 
should be co-registered to overcome this limitation. In 
this study, manual segmentation was used for the geometry 
creation; however, it is time-consuming. A precise automatic 
segmentation framework should be established to relieve 
human experts of having to engage in repetitive tasks and 
enable real-time analysis.

The small deformation of the vessel wall confirmed the 
rationality of using the linear material property; however, 
a uniaxial test is needed to obtain more precise material 
properties for the simulation. A computational modeling 
of residual stress for in vivo-based models should be 
implemented in future research to provide more accurate 
stress distributions. The current study modeled a single 
component; however, multi-material interaction effects 
should be further investigated (54).

3D model reconstruction was achieved by fusing the IV-
OCT and DSA images using a rigid registration method 
and based on an assumption of a constant speed of pullback. 
Interpolation operations and key landmarks were used 
in this study to reduce imprecisions; however, non-rigid 
registration should be adopted (55,56). The one-way steady 
FSI simulation failed to consider the influence of the pulse 
pressure wave and the deformation of the vessel wall, 
which might have led to mis-estimates of the functional 
parameters. Two-way transient FSI simulation should be 
performed to provide more information on detailed and 
accurate functional indicators in the future to serve plaque 
vulnerability assessment.

Weighted LASSO was performed in the current study 
for the multicollinear and imbalanced scenarios to identify 
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crucial features that could improve predictive accuracy. 
However, the prediction model was not established in the 
current study, as the data sets of only one patient were 
used. Analyses based on large cohorts of patients with 
more follow-up data should be conducted in the future to 
enable more reliable conclusions to be drawn. Further, the 
employment of advanced computational strategies, such 
as machine learning, might provide efficient evaluations. 
A prediction tool that integrates the morphological and 
functional metrics should be established, thus providing 
better guidance for clinical practice.

Conclusions

In this study, both 2D FEA and 3D FSI simulations 
were conducted to examine the use of biomechanical 
assessments of plaque status. The results showed that stress, 
displacement, and WSS were crucial features that were 
closely related to plaque vulnerability. In vivo biomechanical 
simulation might be a powerful tool to provide key 
information for plaque risk assessment, and thus might 
contribute to CVD therapy in the future.
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Appendix 1 Workflow of automatic segmentation of vessel lumen

The algorithm for the automatic segmentation of the vessel lumen comprised the following six steps:
(I) Coordinate transformation: each image was transformed from the cartesian coordinate space to the polar coordinate 

space using Eq. [1] as shown in Figure S1A.
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(II) Guide wire removal: the threshold method was used to remove the guide wire and catheter artifacts after coordinate 
transformation. Given that the guide wire was located at the upper edge of the image, it could be removed by setting the gray 
values to zero according to the corresponding region size as shown in Figure S1B.

(III) Catheter artifacts removal: the average gray value of each column was calculated and is displayed in Figure S1C. The 
dark shadow was followed due to the coverage of the catheter artifacts and thus had a low gray value. As Figure S1D shows, 
the minimum of the gray value was obtained, which was 7.5 in this study. The gray value of any column that was smaller than 
7.5 was settled to zero. This enabled the catheter artifacts to be removed (Figure S1E).

(IV) Morphological operations: after the removal of the guide wire and catheter artifacts, the image was converted into 
a binary image. The morphological opening method, which was an erosion followed by a dilation, was then applied. The 
image after the opening operation was reconverted into a grayscale image. Figure S1F shows the result of the morphological 
operations.

(V) Linear interpolation: an obvious feature of the guide wire was that it had a bright reflection, immediately followed 
by a dark shadow, resulting in the discontinuity of the structures in the segmented image. In the cartesian coordinate space, 
the contour shape of the vessel was approximately circular. The loop around the center of the transformation was a linear 
segment after polar coordinate conversion. Therefore, the linear interpolation was applied to make the vessel wall continuous 
in the current study (Figure S1G).

(VI) Coordinate inverse transformation: when the boundary of the region with the guide wire removed was segmented, the 
complete contour was computed (Figure S1H). Then, inverse transformation from the polar coordinate space to the cartesian 
coordinate space was performed to the segmented contour and the input image was segmented as shown in Figure S1I.

Figure 1 The workflow of the automatic segmentation algorithm of the vessel lumen (A-I). The red dashed line indicates the positions 
with gray values of zero. The red line and red circle indicate the boundary of the segmented vessel lumen in the polar coordinate space and 
cartesian coordinate space, respectively.

Supplementary
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Appendix 2 Co-registration between IV-OCT and 3D angiographic centerline

The 3D centerline was reconstructed via epipolar geometry and the stereo matching algorithm based on 2D angiography. 
In the current study, at least one DSA image with a visible IV-OCT catheter was chosen to guarantee the coherence of the 
starting and ending points between DSA and IV-OCT images. It was assumed that the pullback process occurred at a constant 
speed in this study. The 3D centerline computed from DSA images was exported as discrete points. The segmentations were 
conducted on IV-OCT images for the region of interest. To ensure more accurate 3D model reconstruction, the interpolation 
was used to increase the number of slices using the VTK package in Python 3.93 (https://vtk.org). The number of discrete 
points of the 3D angiographic centerline was determined by the final number of slices.

The registration process between the IV-OCT slices and 3D angiographic centerline comprised several sub-steps. First, 
the scale was converted into millimeter units for the points from the IV-OCT and the angiography to eliminate the resolution 
difference between the two image modalities. Second, the large side branches in both the DSA and IV-OCT images were 
identified as the key landmarks. Third, the centroid of each IV-OCT slice was obtained and defined as the midpoint on the 
perpendicular bisector of the longest line segment between the two points on the lumen contour.

Two coordinate systems were specified: xyz for the IV-OCT image, and x'y'z' for the 3D angiographic centerline. The 
origin of the xyz coordinate was set as the centroid point of each contour of the IV-OCT slice. Further, the normal vector of 
the corresponding IV-OCT slice was assigned as z (0,0,1). The x-axis was assigned according to the landmarks in the IV-OCT 
images. It should be noted that the original x direction was only determined in the slices with key landmarks. In relation to 
those without identifiable features, the x direction was assigned depending on the projection of the x direction decided by the 
landmarks.

For the space of the 3D angiographic centerline, the local tangent vector of the 3D angiographic centerline was set as 
the z'-direction. The key landmarks corresponding to the IV-OCT images were subsequently reconstructed into 3D points 
in the DSA spatial space via epipolar geometry and the stereo matching algorithm. The reconstructed 3D landmark points 
were used to determine the original x' direction. Similar to the IV-OCT coordinate system, the original x' direction was only 
determined in the slices with landmarks. In relation to those without identifiable features, the x' direction was determined 
depending on the projection of the x' direction decided by the landmarks. The y-axis and y'-axis were accordingly determined 
after the establishment of the two other axes.

Subsequently, the centroid point of each contour of the corresponding 2D IV-OCT slice corresponded to the points of the 
3D angiographic centerline in a one-to-one manner, resulting in the derivation of a translational vector. Two rotations were 
employed to achieve the transformation from xyz to x'y'z'. Specifically, the angle of α was used to indicate the slope angle 
between the x-axis and x'-axis. The first rotation matrix is shown as Eq. [2]. In fact, the in-plane rotation of each slice was 
naturally correct when matching each pair of the x-axis and x'-axis.
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Second, the angle of β indicates the slope angle between the z-axis after the first rotation and the z'-axis. The second 
rotation matrix is shown as Eq. [3].
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Appendix 3 Boundary condition for 2D FEA (Figure S3)

Figure S2 The registration process between IV-OCT and 3D angiographic centerline. IV-OCT, intravascular optical 
coherence tomography; 3D, three-dimensional.

Figure S3 Pulsatile waveform of pressure for 2D FEA. 2D, two-dimensional; FEA, finite-element analysis.

The IV-OCT slices orthogonal to the 3D angiographic centerline were generated after the translation and rotation. The 
model was finally exported in triangulation mesh in STL format to facilitate the computational analysis. Figure S2 shows the 
co-registration process between IV-OCT and the 3D angiographic centerline.
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Figure S4 The constraint and contact settings for the 2D FEA. (A) The four-point constraint. (B) The contact interaction 
setup. The modification was set to five for enhanced clarity. 2D, two-dimensional; FEA, finite-element analysis.

Appendix 4 Settings of constraint and contact

In this study, a four-point constraint was employed for the 2D FEA computation. The four points were determined using 
the interaction points between the outer vessel wall and the x-axis and y-axis as shown in Figure S4A. Specifically, the zero-
displacement and the zero-rotation in the x direction were set for two points locating in the y-direction; while zero-displacement 
and the zero-rotation in the y-direction were set for two points locating in the x-direction. Therefore, these four points only had 
radial displacement without any tangential displacement. The constraint can guarantee the expansion of the vessel lumen but 
suppress the rigid translation and rotation. Further, the self-contact interaction was set for the intraluminal surface of the vessel 
lumen, and the bonded contact was given at the contact region between the vessel wall and the plaque as shown in Figure S4B.
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Appendix 5 Grid and temporal independence study

To confirm the computational sensitivity to the spatial and temporal resolutions, a grid independence analysis and time-step 
sensitivity test were conducted on a representative slice. The base grid was 59,714 and the base time step was 0.01 seconds. 
A finer grid with 105,955 elements and a finer temporal resolution with 0.005 seconds was tested. To quantify the difference, 
a test point was selected at the thin fibrous cap to investigate the stress difference as shown in Figure S5. The average 
discrepancy of the stress magnitude over one cardiac cycle between the base grid and the finer grid model was 0.63%, while 
the average difference between the base resolution and the finer resolution was 0.047%. Therefore, the base resolutions with 
the base time step were considered adequate in the current study.

Figure S5 The grid and temporal independence test with stress. (A) The point on the slice model. (B) The time-variant stress 
for the base and finer grid model. (C) The time-variant stress for the base and finer resolution model.
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Appendix 6 Mesh independence test for FSI simulation

Before conducting the actual computations, a mesh independent test was performed for both the fluid and solid domains. 
The base grid for the fluid domain comprised 683,035 elements, while the finer grid comprised 1,522,304 elements. To 
assess the flow differences, we focused on quantifying the variations in the narrow coronary position, which represented the 
areas of physiological interest. As Figure S6A shows, the WSS exhibited identical variation patterns between the base and 
fine grid models, with average discrepancies of 0.59%. In relation the solid domain, the number of base grids was 517,987, 
while the number of finer grids was 1,055,371. The structural stress of the slice in which the plaque was located was extracted 
and compared between the base grid and finer grid, with mean variations of 4.83% as shown in Figure S6B. Therefore, we 
believed that the base grid resolution was sufficient for this study.

Figure S6 Mesh independent test. (A) The comparison results of WSS. (B) The comparison results of structural stress. WSS, 
wall shear stress.

Figure S7 Correlation matrix of candidate factors. NWI, normalized wall index; MWT, maximal wall thickness; MPT, 
maximal plaque thickness; FCTmin, minimum fibrous cap thickness; FCTave, average fibrous cap thickness.

Appendix 7 Multicollinearity test

A correlation matrix was used to assess the multicollinearity between the 13 candidate factors to choose a regression method 
to select the key factors. It showed that the degree of correlation between the variables was very high. Thus, the weighted 
LASSO method was applied for further feature selection as shown in Figure S7.
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Table S1 Methods and accuracy for coronary plaque segmentation

Authors Year Method Accuracy

Athanasiou et al. (26) 2014 Image-based method Calcium: 0.81

Lipid tissue: 0.71

Fibrous tissue: 0.87

Mixed tissue: 0.81

Rico-Jimenez et al. (25) 2016 Linear combination of depth profiles and alternating least square 
optimization strategy

Overall: 0.85

Kolluru et al. (24) 2018 Convolutional neural network Calcium: 0.77

Lipid tissue: 0.86

Other: 0.85

Gharaibeh et al. (23) 2019 SegNet Calcium: 0.76

Lee et al. (22) 2019 Deep learning-based method Calcium: 0.897

Lipid tissue: 0.827

Appendix 8 Automatic segmentation frameworks for coronary plaque (Table S1)
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Appendix 9 Comparison between 2D FEA and 3D FSI simulations

Figure S8A-S8C show the displacement distributions of one representative vulnerable plaque slice at the early, peak, and late 
systole, respectively. Further, the average displacement at the early, peak, and late systole of each slice was also computed as 
shown in Figure S8D-S8F. The average displacement was generally <0.2 mm, approximately 5% of the original dimensions 
of the considered vessel (4 mm) in the current study. Further, the percentage of nodes with displacement >0.8 mm was also 
computed at the early, peak, and late systole for each slice. The percentage results were 0, indicating the displacement of all 
nodes was <20%. The results showed the feasibility of employing the linear elasticity material to the vessel wall.

Figure S8 The displacement patterns at different cardiac moments. (A-C) The displacement distributions at the early, early, 
peak, and late systole, respectively. (D-F) The average displacement of each slice at the early, early, peak, and late systole, 
respectively, where 10% and 20% of the initial dimensions are indicated by the gray lines.



© Quantitative Imaging in Medicine and Surgery. All rights reserved.  https://dx.doi.org/10.21037/qims-23-1094

Appendix 10 Comparison between 2D FEA and 3D FSI simulation

The slices were extracted from the FSI simulation results using the IV-OCT slice thickness as the interval to guarantee a 
good coherence with the 2D FEA results. The maximal stress was subsequently computed and compared for both the FSI 
slice results and corresponding 2D slices as shown in Figure S9A. The 2D finite-element results were generally larger than 
the 3D FSI results. The difference ratio was computed using Eq. [4], where S indicates the maximal stress. Figure S9B shows 
the difference ratio result, with an average absolute difference of 35.6%.
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Figure S9 The comparison of the 2D FEA and 3D FSI simulation results. (A) The difference of maximal stress between the 
2D FEA and 3D FSI simulations for each slice. (B) The difference ratio of maximal stress of the 2D FEA results and 3D 
FSI results for each slice. 2D, two-dimensional; FEA, finite-element analysis; 3D, three-dimensional; FSI, fluid-structure 
interaction.
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Figure S10 Comparison of the FSI and structural-only simulation. (A,B) The slice extraction. (C,D) The change of average 
stress and displacement along the model, respectively. (E,F) Bland-Altman plots for the simulation agreement analysis via 
stress and displacement, respectively. FSI, fluid-structure interaction.

Appendix 11 Comparison between 3D structural computation and FSI simulation

We performed the structural-only simulation and compared the results of the FSI and structural-only computation. The 
structural-only computation was performed using the same geometry as that of the FSI simulation, and the settings were also 
the same as those used in the structural analysis of the FSI simulation. For the structural-only results and the FSI results, 
series slices perpendicular to the 3D angiographic centerline using the IV-OCT slice thickness as the interval were extracted 
as shown in Figure S10A,S10B. Next, the average stress and displacement of each slice were computed and the difference 
between the structural-only simulation and FSI simulation were also quantified. Figure S10C,S10D show the changes in 
average stress and displacement for each slice. The difference for average stress and displacement was 16.32% and 8.02% 
between the two methods, respectively. The Bland-Altman plot showed good agreement between the FSI simulation and 
structural-only simulation for both the average stress and displacement (Figure S10E,S10F). Further, the results also showed 
that the FSI simulation results were generally larger than the structural results.


