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Background: Non-small cell lung cancer (NSCLC) patients with epidermal growth factor receptor-
sensitizing (EGFR-sensitizing) mutations exhibit a positive response to tyrosine kinase inhibitors (TKIs). 
Given the limitations of current clinical predictive methods, it is critical to explore radiomics-based 
approaches. In this study, we leveraged deep-learning technology with multimodal radiomics data to more 
accurately predict EGFR-sensitizing mutations.
Methods: A total of 202 patients who underwent both flourine-18 fluorodeoxyglucose positron emission 
tomography/computed tomography (18F-FDG PET/CT) scans and EGFR sequencing prior to treatment 
were included in this study. Deep and shallow features were extracted by a residual neural network and the 
Python package PyRadiomics, respectively. We used least absolute shrinkage and selection operator (LASSO) 
regression to select predictive features and applied a support vector machine (SVM) to classify the EGFR-
sensitive patients. Moreover, we compared predictive performance across different deep models and imaging 
modalities.
Results: In the classification of EGFR-sensitive mutations, the areas under the curve (AUCs) of ResNet-
based deep-shallow features and only shallow features from different multidata were as follows: RES_TRAD, 
PET/CT vs. CT-only vs. PET-only: 0.94 vs. 0.89 vs. 0.92; and ONLY_TRAD, PET/CT vs. CT-only vs. 
PET-only: 0.68 vs. 0.50 vs. 0.38. Additionally, the receiver operating characteristic (ROC) curves of the 
model using both deep and shallow features were significantly different from those of the model built using 
only shallow features (P<0.05).
Conclusions: Our findings suggest that deep features significantly enhance the detection of EGFR-
sensitizing mutations, especially those extracted with ResNet. Moreover, PET/CT images are more effective 
than CT-only and PET-only images in producing EGFR-sensitizing mutation-related signatures.

13



Yao et al. Fused shallow-deep features for predicting EGFR mutations2

© Quantitative Imaging in Medicine and Surgery. All rights reserved.   Quant Imaging Med Surg 2024 | https://dx.doi.org/10.21037/qims-23-1028

Introduction

Lung cancer is the second most common cancer and the 
leading cause of death in China (1). Non-small cell lung 
cancer (NSCLC) accounts for 85% of all cases of lung 
cancer (2,3). In the Asian population, approximately 60% 
of NSCLC patients exhibit epidermal growth factor 
receptor (EGFR) mutations, including EGFR-sensitizing 
and EGFR-resistance mutations (4,5). EGFR-tyrosine 
kinase inhibitors (EGFR-TKIs) (6) are typically only effective 
in treating NSCLC patients harboring EGFR-sensitizing 
mutations. Thus, it is particularly important to predict and 
identify EGFR-sensitizing mutations accurately and efficiently 
to enable physicians to make informed clinical decisions.

Traditional detection approaches, such as biopsies and 
computed tomography (CT) screenings, are not suitable 
for elderly or physically compromised individuals and have 
limited specificity (7). However, the integration of artificial 
intelligence (AI) and radiomics techniques has effectively 
addressed these limitations, and these novel techniques 
are now being used to identify patients at risk for various 
diseases. Recent studies have demonstrated that certain 
methods have a high level of sensitivity and specificity 
in detecting and classifying lung tumors and mutations 
(7-11). For example, Trivizakis et al. demonstrated that 
machine-learning multi-omics analysis methods based on 
deep features showed superior performance and improved 
classification metrics compare to traditional detection 
methods (12). Over the last decade, traditional radiomics 
techniques using machine-learning methods to extract 
shallow tumor features have reached a highly mature stage 
of research (13-15). These shallow features have been 
applied to characterize tumor heterogeneity (16); however, 
they are thought to be limited in their ability to fully 
capture the non-linear information embedded in higher-
dimensional tumor images. Recently, with the development 
of deep-learning algorithms in medicine (17-25), some 
deep-learning models have been introduced to identify 
and predict tumors, including those harboring EGFR 

mutations. Deep-learning models have demonstrated 
superior performance compared to the traditional radiomics 
techniques in predicting EGFR mutations; however, it 
is worth noting that shallow features still provide useful 
information. To date, few studies have attempted to fuse 
shallow features with deep features to predict EGFR-
sensitizing mutations in NSCLC patients.

Flourine-18 fluorodeoxyglucose (18F-FDG) is a 
radioactive tracer that plays a pivotal role in positron 
emission tomography (PET)/CT imaging, offering 
comprehensive data on metabolism, localization, and 
pathology (26). Thus, 18F-FDG PET/CT images are widely 
employed in oncology (15). Despite the widespread use of 
PET/CT in cancer imaging, existing studies have typically 
focused on using only CT images for EGFR mutation 
prediction, and thus do not fully leverage the information 
available from PET/CT scans (27,28). Recent research 
has increasingly focused on the use of multimodal cancer 
images, and success has been achieved in various tasks, such 
as identifying EGFR mutation subtypes (11), predicting 
progression-free survival (29), and distinguishing different 
mutations (10). Few studies have focused on predicting 
EGFR-sensitizing mutations, which could guide physicians 
in prescribing appropriate medications. Moreover, only 
a limited number of studies have investigated the fusion 
of features from deep-learning networks with shallow 
radiomics features to predict EGFR-sensitizing mutations.

Given the above observations, this study aimed to 
leverage deep-learning technology with multimodal imaging 
data that allows the extraction of both intra- and peri-
tumoral radiomics signatures to predict EGFR-sensitizing 
mutations in NSCLC patients prior to EGFR-TKI 
treatment. Additionally, multimodal radiomics signatures 
based on 18F-FDG PET/CT images, especially the fused 
ResNet-based deep and shallow features, were examined to 
demonstrate the predictive performance on EGFR-sensitizing 
mutations. We present this article in accordance with the 
TRIPOD reporting checklist (available at https://qims.
amegroups.com/article/view/10.21037/qims-23-1028/rc).
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Methods

Study data 

Starting in January 2016, 239 NSCLC patients from the 
Yunnan Cancer Hospital with thin-slice chest PET/CT 
images and mask data were included in this study. It should 
be noted that the Hospital was responsible for applying 
the inclusion and exclusion criteria for patient selection 
prior to providing the patient PET/CT images (Table 1). 
Subsequently, we examined the images of these 239 patients 
(Figure 1). Ultimately, the images of 202 patients (117 male 
and 85 female; median age: 64 years; range, 37–93 years)  
were eligible for inclusion in this study that used the 
radiomics-based method to predict EGFR-sensitive 
mutations. Of these 202 patients, 141 had wild-type EGFR 

and 61 had EGFR-sensitizing mutations.
Concurrently, the clinical information from all 239 

initial patients was collected by the Hospital. The 
clinical information included sex, age, weight, stage, 
carcinoembryonic antigen levels, smoking history, 
cytokeratin 19 fragment antigen 21 levels, squamous cell 
carcinoma antigen levels, and neuron-specific enolase levels 
(Figure 1). Due to the difficulty in obtaining clinical data, 
only 147 of the 202 patients were included in the statistical 
analysis of the clinical information to explore the potential 
association between clinical data and EGFR prediction.

This study was conducted in accordance with the 
Declaration of Helsinki (as revised in 2013). The study 
was approved by the Ethics Committee of Yunnan Cancer 
Hospital (No. SLKYCS2022217), and written informed 

Table 1 Inclusion and exclusion criteria of the study

Inclusion criteria Exclusion criteria

No history of other malignancies Anti-tumor therapy before PET/CT examination

Patients with lung tumors only Patients with lung and other tumors

Pathological confirmation of NSCLC pGGN without FDG metabolism

PET/CT, positron emission tomography/computed tomography; NSCLC, non-small cell lung cancer; pGGN, pure ground-glass nodule; 
FDG, fluorodeoxyglucose.

Figure 1 The workflow for NSCLC patients with PET/CT images and clinical data. NSCLC, non-small cell lung cancer; 18F-FDG PET/
CT, flourine-18 fluorodeoxyglucose positron emission tomography/computed tomography; EGFR, epidermal growth factor receptor; TKI, 
tyrosine kinase inhibitor; ROI, region of interest; NSE, neuron-specific enolase; SCC, squamous cell carcinoma.

239 NSCLC patients with 18F-FDG PET/CT scans 
before EGFR-TKI treatment

Exclusion list of PET/CT images:
• 3 patients with data duplication
• 8 patients with EGFR-resistance mutations
• 2 patients with lack of PET/CT mask images
• 21 patients with incomplete image ROIs
• 3 patients with different slices of PET and CT images

Radiomocs-based method analysis for 202 patients 
with 18F-FDG PET/CT images

List of the missing clinical data
• 43 patients without stage data
• 3 patients without CYFRA21 data
• 6 patients without NSE data
• 3 patients without SCC data

The significant difference of clinical data analysis for 
147 patients
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consent was obtained from all the participants or their 
authorized representatives. 

Image acquisition and region of interest (ROI) 
segmentation

The 18F-FDG PET/CT images were obtained using a 
SIEMENS Biograph (Munich, Germany), which includes 
methods for acquiring CT and PET images. The scanning 
parameters for the chest PET/CT used in our work were 
as follows: (I) CT: tube voltage: 120 kV, X-ray tube current: 
240 mA, exposure time: 500 ms, and slice thickness: 5 mm; 
(II) PET: acquisition time: 50–60 minutes after the 18F-FDG 
tracer injection, reconstruction algorithm: Ordered Subset 
Expectation Maximization (OSEM), and slice thickness: 5 mm.

The ROIs for each patient were independently delineated 
on their PET and CT images. This procedure was carried 
out by an experienced from Yunnan Cancer Hospital, and 
underwent interactive validation by two nuclear medicine 
physicians with years of expertise in the field. In our work, 
the size of the CT image density corresponded to the size 
of the high-metabolism parts of the PET image. First, the 
nuclear medicine physician delineated the ROIs of the CT 
images due to the clear anatomical morphology provided 
therein. Second, using the contours on the CT images as a 
reference, the corresponding ROIs were established on the 
PET images, enabling the extraction of the patient’s tumor 
metabolic features. Finally, the ROIs encompassing both 
the PET and CT images were simultaneously acquired.

Image processing and feature extraction

To normalize the influence of each patient’s individual 
weight and tracer dose, we converted the PET image 
pixels from gray values to standardized uptake values 
(SUVs). The CT images were read with mediastinal 
(level: 40 HU; width: 300 HU) and lung (level: –400 HU; 
width: 1,500 HU) window settings. We then extracted 
the lung window from the CT images and finished the 
normalization processing. The features were extracted 
after image processing. In this study, traditional radiomics 
feature extraction was conducted in Python 3.8 with the 
PyRadiomics software package via machine learning, while 
deep feature extraction was conducted with the deep neural 
network ResNet-101 (30). The radiomics workflow is shown 
in Figure 2 and includes depictions of the feature extraction, 
feature fusion, feature selection, and prediction processes. 
As seen in the first step, the PET/CT images were input 

into a machine-learning model (PyRadiomics) and a deep-
learning model (ResNet-101). Subsequently, shallow and 
deep feature matrixes were output, and the features were 
then integrated in the second step. Finally, the prediction 
task was performed through the predictor after the feature 
selection. Next, we introduced each part in detail.

Traditional feature extraction
For the original CT and PET images and those derived 
based on Laplacian of Gaussian (LoG) and Wavelet 
transformation (31),  the radiomics features were 
automatically calculated from the tumor ROI using the 
PyRadiomics package. The following three types of 
traditional features were included: (I) shape; (II) first order 
(histogram); and (III) texture [gray-level cooccurrence 
matrix (GLCM)/gray-level dependence matrix (GLDM)/
gray-level run length matrix (GLRLM)/gray-level size 
zone matrix (GLSZM)/neighbor gray-tone difference 
matrix (NGTDM)]. The radiomics features were extracted 
independently from the PET and CT images. During the 
extraction process, the pixel space resampling value had to 
be reset for the PET and CT images. Sigma values of 3.0 
and 5.0 were selected for the LoG transformation. In total, 
1,239 features each were extracted from the PET and CT 
images. To ensure a fair comparison of the experimental 
results, both the CT and PET images used the same type of 
derived images.

Deep feature extraction
Medical images are different from natural images, but due 
to the sophisticated architecture of convolutional neural 
networks (CNNs) and abundant training data sets, many 
studies have confirmed that pretrained CNN models 
perform well in classification and prediction tasks involving 
medical images (20,21,32). Thus, the deep features in our 
study were extracted using a pretrained ResNet-101 (30). 
Both the CT and PET images had to be interpolated to 
49×224×224-pixel input images before training, where 
224×224 represents the length and width of each slice of 
every patient, and 49 represents the number of slices for 
each patient. It is worth noting that these CT and PET 
images must completely cover the ROI information. 
The last layer of the fully connected layer output 1,000 
deep features. Finally, a feature matrix (202×1,000) was 
produced as the output. Importantly, we also used the 
Visual Geometry Group (VGG)-19 (33) network to extract 
deep features to compare the predictive abilities of the deep 
features extracted by the two networks. 
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Feature fusion and EGFR-sensitizing mutation-related 
feature selection

The traditional radiomics features and deep features were 
concatenated after the feature extraction step. Feature 
selection was performed in the training cohort to remove 
redundant features and identify features that had strong 
potential predictive power. In the feature selection step, 
we aimed to eliminate redundant features that exhibited 
high correlations, which might have arisen from the same 
underlying distribution. We retained only one feature or a 
subset of representative features. Meanwhile, we aimed to 
select features with higher correlations to the target variable 
among the remaining features, as these were presumed to 
have significant potential for target identification. Thus, 
two steps were conducted in our work. First, we performed 
the Mann-Whitney U-test to assess whether the two 
sample groups were likely to have the same distribution 
and eliminated features with high confidence, retaining 
features that had P values lower than the threshold (of 
0.05). These remaining features were considered beneficial 

for performing the classification and regression tasks. 
Second, a least absolute shrinkage and selection operator 
(LASSO) regression algorithm, which is mainly used to 
solve multicollinearity problems, was built to further refine 
the remaining features by essentially setting the weights of 
unimportant features to zero. In our work, we set a large 
range of alpha values and used regression algorithms to sort 
alpha and error values, and the best thresholds were selected 
by cross-validation in the training cohort. The operations 
were conducted in Python 3.8 with the sklearn package.

Predictive models and statistical analysis

The statistical analysis was performed using Python 
(version 3.8.0). A P value <0.05 was considered statistically 
significant. The P values were used to assess the differences 
in all the variables between the EGFR-sensitizing mutation 
and wild-type EGFR patients in our work.

Two models were built based on different methods 
for integrating features. The first model, which included 
only traditional features, was named ONLY_TRAD. The 
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Figure 2 A systematic exposition of the radiomics workflow used in this study for EGFR-sensitizing mutation prediction in NSCLC 
patients. Model 1, the ONLY_TRAD model uses only traditional features; Model 2, the RES_TRAD model includes all traditional features 
and deep features extracted with the ResNet-101 network. PET/CT, positron emission tomography/computed tomography; LoG, Laplacian 
of Gaussian; LASSO, least absolute shrinkage and selection operator; ROC, receiver operating characteristic; AUC, area under the curve; 
EGFR, epidermal growth factor receptor; NSCLC, non-small cell lung cancer. 
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second model, which used all the traditional and deep 
features extracted with the ResNet-101 (30) network, was 
named RES_TRAD. The deep features extracted by the 
VGG-19 (33) network were introduced as a control group 
for comparison with those extracted by ResNet-101 (30). 
Because some data were linearly inseparable according to 
the feature analysis conducted earlier, an support vector 
machine (SVM), a model that has been confirmed to 
possess excellent classification capabilities (34-37), was 
introduced into both models, which were then trained with 
CT-only, PET-only, and PET/CT images as input for the 
analysis. For both models, the parameters were determined 
using five-fold cross-validation and grid searching in the 
training cohort. Classifier performance was evaluated in 
the independent validation cohort using the area under 
the curve (AUC) and a decision curve analysis (DCA). A 
receiver operating characteristic (ROC) curve analysis was 
used to evaluate the performances of the statistical features 
and models.

Results

Results for the clinical data

To assess whether factors such as sex and age affected the 
results, a statistical analysis of these factors was performed. 
As the results show (Table 2), no significant differences were 
found in these or other features among the groups. Thus, it 
is unlikely that there was any clinical bias in our radiomics-
based analysis of EGFR-sensitive mutations.

Comparison of predictive results between shallow and deep 
features based on PET/CT

In the training cohort (comprising 140 patients), 56 patients 
had EGFR-sensitizing mutations (EGRF+) and 84 patients 
had wild-type EGFR (EGRF−). In the validation cohort 
(comprising 62 patients), 23 patients had EGFR-sensitizing 
mutations and 39 patients had wild-type EGFR.

The shallow radiomics features were extracted by 
the PyRadiomics package. In total, 2,478 features were 
extracted from the CT and PET images with masks. The 
Mann-Whitney U-test showed that 402 stable features 
(CT: 323; PET: 79) had latent predictive abilities (Table 3). 
The ONLY_TRAD model was used to predict EGFR-
sensitizing mutations (AUC =0.685). Using the different 
feature selection algorithms and prediction models, after 
adjusting for the parameters, the AUC was 0.66 (±0.04), and 
the F1 score was 0.58 (±0.2), which suggests that there was 

no obvious classification effect.
A total of 3,478 features were extracted with the RES_

TRAD model (traditional features: 2,478; deep features: 
1,000). After a significance analysis with the Mann-Whitney 
U-test, 934 CT features (traditional: 203; deep: 731) and 
829 PET features (traditional: 20; deep: 809) remained. 
The correlation analysis (threshold >0.2) and the LASSO 
algorithm indicated that 23 features (CT: 15; PET: 6) were 
strongly correlated with the EGFR-sensitizing mutations 
(Table 3). From the selected features, it can be seen that the 
deep features had much stronger potential predictive power 
than the traditional features regardless of whether they were 
extracted from the CT or PET images (Figure 3). The results 
showed that the deep-learning algorithms dramatically 
improved prediction accuracy. Moreover, we conducted the 
same analysis on the fusion of deep features extracted by the 
VGG-19 network with traditional features, which yielded 
12 features (CT: 7; PET: 5) with strong potential predictive 
power (Figure 4). According to the ROC curve analysis, 
the RES_TRAD model showed the best performance in 
distinguishing EGFR-sensitizing mutation and wild-type 
EGFR patients in the validation cohort based on the PET/
CT images (Figure 5).

Validation of the predictive performance of the model based 
on the CT, PET, and PET/CT images

We introduced CT-only and PET-only images into the 
models and compared the results with those obtained 
with the PET/CT images. In the validation cohort, the 
performance of the RES_TRAD model was best for all 
three types of images, especially PET images (Figure 5). 
The results of the DCA showed that the RES_TRAD 
model with fused deep-shallow features yielded a higher net 
benefit compared to other models (Figure 6). Further, the 
results showed that the fusion of shallow and deep features 
might be sufficient to predict the potential risk of EGFR-
sensitizing mutations in NSCLC patients. Additionally, 
the results based on the PET/CT images were generally 
superior to those based on the PET-only or CT-only images 
(Figures 5,6). Additionally, we analyzed the P values among 
the three models and different imaging data methods 
(Tables 4). Both the RES_TRAD and VGG_TRAD models 
had lower P values when compared to the ONLY_TRAD 
model (P<0.001). Thus, both the RES_TRAD and VGG_
TRAD models possessed greater diagnostic and predictive 
capability than the ONLY_TRAD model for EGFR-
sensitive mutations.
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Table 2 Analysis of patients’ clinical features

Features
Training cohort (n=103) Validation cohort (n=44)

Total EGFR− EGFR+ P value Total EGFR− EGFR+ P value

Age (years) 64.8 [40–89] 65 [41–83] 64.5 [40–89] 0.386 61.2 [37–83] 61.6 [37–83] 60.5 [46–81] 0.527

Sex 0.241 0.129

Male 56 (54.4) 34 (60.7) 22 (39.3) 24 (54.5) 16 (66.7) 8 (33.3)

Female 47 (45.6) 23 (48.9) 24 (51.1) 20 (45.5) 13 (65.0) 7 (35.0)

Weight (kg) 60.0 [41–90] 60.7 [41–90] 59.1 [42–82] 0.397 61.8 [41–79] 61.7 [41–79] 61.8 [45–76] 0.729

Stage 0.237 0.530

I–II 58 (56.3) 35 (60.3) 23 (39.7) 22 (50.0) 16 (72.7) 6 (27.3)

III–IV 45 (43.7) 22 (48.9) 23 (51.1) 22 (50.0) 13 (59.1) 9 (40.9)

CEA (µg/L) 0.238 0.150

≤5 34 (33.0) 23 (67.6) 11 (32.4) 15 (34.1) 10 (66.7) 5 (33.3)

5–100 52 (50.5) 26 (50.0) 26 (50.0) 22 (50.0) 16 (72.7) 6 (27.3)

>100 17 (16.5) 8 (47.1) 9 (52.9) 7 (15.9) 3 (42.9) 4 (57.1)

Smoking 0.839 0.595

Yes 40 (38.8) 23 (57.5) 17 (42.5) 18 (40.9) 12 (66.7) 6 (33.3)

No 63 (61.2) 34 (54.0) 29 (46.0) 26 (59.1) 17 (65.4) 9 (34.6)

CYFRA21 (ng/mL) 0.288 0.521

≤3.3 32 (31.1) 15 (46.9) 17 (53.1) 17 (38.6) 10 (58.8) 7 (41.2)

>3.3 71 (68.9) 42 (59.2) 29 (40.8) 27 (61.4) 19 (0.70) 8 (0.30)

SCCA (ng/mL) 0.253 0.536

≤1.5 89 (86.4) 47 (52.8) 42 (47.2) 34 (77.3) 22 (64.7) 12 (35.3)

>1.5 14 (13.6) 10 (71.4) 4 (28.6) 10 (22.7) 7 (70) 3 (30)

NSE (ng/mL) 0.210 0.177

≤17.0 69 (67.0) 35 (50.7) 34 (49.3) 30 (68.2) 22 (73.3) 8 (26.7)

>17.0 34 (33.0) 22 (64.7) 12 (35.3) 14 (31.8) 7 (50.0) 7 (50.0)

Data are presented as median [range] or n (%). The P value represents the univariate association between the EGFR-sensitizing mutations 
and clinical features. EGFR, epidermal growth factor receptor; CEA, carcinoembryonic antigen; CYFRA21, cytokeratin 19 fragment antigen 
21; SCCA, squamous cell carcinoma antigen; NSE, neuron-specific enolase.

Table 3 Distribution of the number of features after the application of the Mann-Whitney U-test

Mann-Whitey U-test
CT PET

Total Traditional features (%) Deep features (%) Total Traditional features (%) Deep features (%)

ONLY_TRAD 402 323 – 79 79 –

RES_TRAD 934 203 (21.7) 731 (78.3) 829 20 (2.4) 809 (97.6)

Data are presented as n (%). ONLY_TRAD denotes the model with only shallow features. RES_TRAD denotes the model with ResNet-deep 
and shallow features. CT, computed tomography; PET, positron emission tomography.
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Discussion

During targeted therapy, EGFR sensitization caused by 
the T790M mutation occurs in 50% of patients, resulting 
in drug resistance (38,39). Effectively identifying such 
sensitive mutations could help doctors make medical 
decisions. NSCLC patients who are prone to drug 
resistance will gain little benefits from targeted therapy. 
The detection of EGFR-sensitizing mutations in NSCLC 
patients could potentially predict the effects of targeted 
therapy and provide guidance for clinical treatment. Thus, 
it is very important to predict EGFR-sensitizing mutations 
in NSCLC patients before treatment (40). In recent years, 
research on EGFR genes, EGFR-sensitizing mutations, and 
targeted therapy for non-small cell cancers has continued 
unabated (8,41,42). Meanwhile, AI algorithms have been 
considered to have great potential in medicine (43-51). This 
study aimed to reveal the relationship between radiomics 
features and EGFR-sensitizing mutations and to evaluate 
whether the latter could be predicted in NSCLC patients 

before treatment by fusing deep features with traditional 
radiomics features based on PET/CT images. We also 
introduced CT-only and PET-only images into the models 
as control groups.

Before the addition of any deep features, the overall 
performance of the ONLY_TRAD model was unsatisfactory 
(Figure 5, ONLY_TRAD_AUC =0.685). We speculated that 
the inclusion of deeper image features extracted by deep-
learning algorithms might improve the predictive power of 
the model. The results of integrating these deep features 
(Figure 5, RES_TRAD_AUC =0.938) showed that they had 
strong correlations with EGFR-mutation related tumors 
and potential predictive power in identifying EGFR-
sensitizing mutations in a way that was less random than 
that with the traditional features alone.

Bizzego et al. (52) believed that cancer prediction would 
be more accurate if deep and traditional features were 
combined, which is supported by our results. We also used 
the VGG-19 network to extract deep features and fused 
them with traditional features in our study (to create the 
VGG_TRAD model). As Figure 4 shows, the PET deep 
features extracted by the VGG-19 network for identifying 
EGFR-sensitizing mutations were less correlated with 
each other, and the traditional radiomic features extracted 
from the PET images did not have good predictive 
power. However, the PET deep features extracted by the 
ResNet-101 network had strong correlations with the 
target labels (Figure 3). Moreover, as Figure 5 shows, the 
features extracted by the RES_TRAD model showed the 
best performance in terms of the PET image-based ROC 
curve based on the PET images. These results indicate that 
the deep features extracted by the residual network had 
more latent predictive abilities than VGG networks. The 
reason for this difference between the models might lie in the 
structure of the corresponding deep algorithms. Compared 
with the VGG models, the ResNet models introduced 
a residual block and had a deeper network structure. In 
addition, the residual network, which was built on a Bayesian 
network and used polynomial fitting differences, made 
learning the optimal solution easier, and thus showed great 
potential predictive power when extracting the deep features.

Among the different imaging methods, CT images 
convey good structure, shape, size, density, and other 
information ,  while PET images, which can better 
distinguish the lesion from the surrounding normal tissue, 
always reflect the molecular and metabolic functions of the 
lesion. Compared to the models with the CT-only and PET-
only images, the predictive accuracy of the models with the 

Figure 3 The most predictive features with the corresponding 
coefficients selected for constructing RES_TRAD model. CT_
F denotes CT deep features; PET_F denotes PET deep features. 
PET, positron emission tomography; CT, computed tomography; 
LDHLE, large dependence high gray-level emphasis; HGLRE, 
high gray-level run emphasis.
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PET/CT images was generally higher (Figures 5,6). These 

results showed that the fusion of PET and CT radiomics 

features simultaneously achieved clarity and had the ability to 

distinguish the lesion from its surrounding normal tissue.

Despite the valuable results described above, this study 
still had some limitations. First, while we had complete 
PET/CT images from 202 patients, we were only able to 
collect the clinical data of 147 of these patients (Figure 1). 
From a sampling perspective, using clinical data from only 
147 patients may appear reasonable. However, there is 
an incongruity between the number of NSCLC patients 
included in the clinical information analysis and the number 
of NSCLC patients included in the PET/CT image 
analysis. This incongruity may introduce certain unknown 
sources of bias, the specific effects of which have not been 
validated or confirmed. Thus, in our future work, we will 
need to address this issue cautiously to ensure the reliability 
and credibility of our analysis and conclusions. This also 
underscores the importance of continuing to collect more 
clinical data in future work to provide comprehensive 
support for our research findings. Second, this study did 
not compare different SUVs, such as SUVmax, SUVmean, and 
SUVpeak, from the PET images of the patients. Comparing 
these values may allow for the extraction of more optimized 
features. Finally, due to the small sample size of this study, 
a rigorous external validation design was not implemented. 
Further research is necessary to address the challenge of 
predicting disease by using the most appropriate and state-
of-art CNN models for medical applications.

Conclusions

In conclusion, fusing deep features with shallow features 
could improve the ability of clinicians to predict EGFR-
sensitizing mutations in NSCLC patients before treatment. 
Notably, the ResNet-101 network seemed to extract more 
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Figure 5 ROC curves and AUC values for evaluating the 
predictive abilities of the models based on CT-only, PET-only, 
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TRAD_PET_AUC. ROC, receiver operating characteristic; AUC, 
area under the curve; PET, positron emission tomography; CT, 
computed tomography.

Figure 4 Correlations for features extracted by VGG_TRAD. (A) Heatmap of the correlations between the CT features and labels. CT_F 
denotes the CT deep features; (B) heatmap of the correlations between the PET features and labels, where PET_F represents the PET deep 
features. LGLRE, low gray level run emphasis; PET, positron emission tomography; CT, computed tomography; MP, maximum probability; 
P, percentile.
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recognizable features that are very likely to have potential 

predictive abilities than the VGG-19 network due to the 

better feature extraction capability of the deeper network 

design of the former. In addition, compared with CT-

only or PET-only images, PET/CT images appear to be a 
better choice for analyzing EGFR-sensitizing mutations. In 
the future, the successful integration of different types of 
features could provide intuitive results to physicians.
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shallow features. VGG_TRAD denotes the model with VGG-
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