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Value of carotid intima thickness in assessing advanced 
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Background: Research has shown that carotid intima-media thickness (CIMT) could help to predict 
carotid plaque (CP) progression in patients with mild carotid stenosis. However, the debate continues 
as to the value of carotid intima thickness (CIT) in monitoring the development of CP in patients with 
severe carotid stenosis. This study sought to evaluate the relationships between CIT and the ultrasonic 
characteristics of CP and to analyze the value of CIT and the ultrasonic parameters of CP in assessing plaque 
vulnerability in advanced human carotid atherosclerosis.
Methods: A total of 55 individuals who underwent carotid endarterectomy (CEA) were included in the 
study (mean age: 65±7 years; female: 9.1%). CIMT and CIT were examined at the common carotid artery 
(CCA). Plaque textural features, such as the gray-scale median (GSM), superb microvascular imaging 
(SMI) level, and total plaque area (TPA), were also identified. A Spearman correlation coefficient analysis 
was performed to examine the relationship between CIT and the ultrasonic parameters of CP. The CIT of 
various plaque types was compared. Receiver operating characteristic (ROC) curves were used to analyze the 
diagnostic values of the ultrasound characteristics to evaluate CP vulnerability.
Results: The mean CIT of all the participants was 0.382±0.095 mm, the mean CIT of the participants with 
stable plaques was 0.328±0.031 mm, and the mean CIT of participants with vulnerable plaques was 0.424±0.106 
mm (P<0.001). CIT was associated with the SMI level (Spearman’s correlation coefficient: r=0.392, P=0.005), 
TPA (Spearman’s correlation coefficient: r=0.337, P=0.012). Patients with thicker CIT had larger lipid cores, 
higher levels of plaque vulnerability, and more intraplaque hemorrhages (IPHs). The areas under the ROCs 
(AUCs) with 95% confidence interval (CI) for CIMT, CIT, the SMI level, the GSM, the TPA, and the 
combined model for identifying vulnerable plaques were 0.673 (0.533–0.793), 0.849 (0.727–0.932), 0.771 
(0.629–0.879), 0.669 (0.529–0.790), 0.858 (0.738–0.938), and 0.949 (0.854–0.990), respectively.
Conclusions: CIT was associated with both the histology and ultrasonic features of CP. CIT may be 
helpful in the detection of severe CP development.
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Introduction

The primary causes of death worldwide are cardiovascular 
(CV) disorders, particularly coronary artery disease (CAD) 
and stroke, and 75% of CAD deaths occur in low- and 
middle-income nations (1,2). The key factor causing CV 
disorders is atherosclerosis, which mostly affects the aorta, 
carotid artery, and other large and medium-sized arteries 
(3,4). CV events are more likely to occur in vulnerable 
plaques, which are distinguished by a thin fibrous cap, a 
bigger lipid core, less collagen, ulceration, non-calcification, 
intraplaque hemorrhage (IPH), and the infiltration of 
inflammatory cells (5,6). Therefore, the most crucial factors 
in the prevention of CAD and stroke are the early diagnosis 
of vulnerable plaques and timely treatment.

Using ultrasound to assess carotid plaque (CP) 
progression, studies have shown that the gray-scale median 
(GSM) of CP was related to the type and vulnerability of 
the plaque (7,8). The total plaque area (TPA) is another 
precise, non-invasive approach for detecting subclinical 
atherosclerosis, and is a better indicator of CV risk than 
intima-media thickness (IMT) (9-11). One of the factors 
contributing to the progression of atherosclerotic lesions 
and the subsequent consequences, including IPH and plaque 
rupture, is intraplaque neovascularization (IPN) (12,13). 
Superb microvascular imaging (SMI) is a novel ultrasound 
technology that provides vascular information by extracting 
flow signals from large vessels or smaller microvasculature 
through advanced filtering algorithms and suppressing 
background tissue movement without suppressing any slow 
flow signals (14-16), and may be a promising method for 
diagnosing IPN (13).

N u m e r o u s  e x p e r i m e n t a l  a n d  c r o s s - s e c t i o n a l 
investigations have shown that increased carotid intima-
media thickness (CIMT) is a promising early marker and a 
reliable indicator of early atherosclerosis (17,18). However, 
CIMT does not appear to provide any significant benefit in 
monitoring the development of CP in patients with severe 
carotid artery stenosis (19). According to recent research, 
CIMT is more likely to reflect adaptive changes in response 
to increased shear stress with aging and is less likely to 

reflect atherosclerotic alterations (20). As an alternative, 
carotid intima thickness (CIT) might be measured to 
monitor the development of carotid stenosis. It is well 
known that the development of subintimal lipid deposits 
and the beginning of inflammation are two characteristics of 
atherosclerosis (21,22). Lipid deposits form in the subintima 
of arteries throughout the body during the progression 
of atherosclerosis. Recent studies have also revealed a 
relationship between the classic atherosclerotic risk factors 
and CIT, which has good diagnostic value for ischemic 
stroke and CAD and is helpful in identifying subtypes of 
ischemic stroke (23,24). Therefore, employing CIT to track 
the advancement of CP could have great clinical value.

The current study not only sought to determine whether 
CIT was related to the ultrasonic characteristics of CP 
but also sought to examine the correlations among the CP 
ultrasonic characteristics, CIT, and the histological features 
of vulnerable plaque. Specifically, this study sought to identify 
any potential associations between the common carotid artery 
(CCA) indicators CIT and CP that might be used to evaluate 
vulnerable CP. We present this article in accordance with 
the STARD reporting checklist (available at https://qims.
amegroups.com/article/view/10.21037/qims-23-1193/rc).

Methods

Study population

In this prospective study, we consecutively enrolled 60 
adult patients referred for carotid endarterectomy (CEA) 
at a single center from October 2021 to November 2022. 
Patients who were eligible for CEA were included in the 
study. To determine the severity of the carotid stenosis, all 
patients underwent digital subtraction angiography (DSA). 
To be eligible for inclusion in this study, the patients have 
had carotid stenosis >50% according to the North American 
Symptomatic Carotid Endarterectomy Trial (NASCET) 
criteria accompanied by symptoms (transient ischemic 
attack, stroke, or amaurosis fugax), or carotid stenosis >70% 
without evident symptoms. Patients who did not have 
atherosclerotic carotid disease or who did not qualify for 
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Figure 1 SMI measurement and its relationship to histopathology. (A) Plaque SMI examination. A cross-section of the entire patch was 
displayed, with the B mode on the left and the SMI on the right. The light color denotes a positive signal (blue arrows). (B) A magnification 
of the SMI image in (A) provides a more accurate depiction of a positive SMI signal. (C) Histological slice of the plaque (CD34 staining, ×1). 
(D) A magnification of the patch’s shoulder (which is depicted by the blue box in C), several CD34 positive neovessels are present (arrows, 
×10). ICA, internal carotid artery; SMI, superb microvascular imaging.

CEA were excluded from the study. Next, all the eligible 
participants underwent CEA, and CPs were removed to 
preserve the plaque structure. The study was conducted in 
accordance with the Declaration of Helsinki (as revised in 
2013). The study was approved by the Ethics Committee of 
Shandong University Qilu Hospital (No. KYLL-2020-183) 
and informed consent was obtained from all the patients.

Gender, age, body mass index (BMI), blood pressure, 
total cholesterol, triglycerides, low-density lipoprotein 
cholesterol, high-density lipoprotein cholesterol, and 
fasting blood glucose (GLU) data were obtained. 
Additionally, information about smoking, diabetes mellitus 
(DM), smoking history, and medications like statins, 
antiplatelet medications, and antihypertensive medications 
were simultaneously recorded. Hypertension was defined 
as systolic blood pressure (SBP) ≥140 mmHg and/or 
diastolic blood pressure (DBP) ≥90 mmHg, or taking 
antihypertensive drugs (25). DM refers to fasting blood 
GLU ≥7.0 mmol/L and/or blood GLU ≥11.1 mmol/L  
two hours postprandially, or taking hypoglycemic drugs (26).

B-mode ultrasonography of CP

An ultrasound machine (AplioI900, Canon-Toshiba 

Ultrasonic, Toshiba-Ken, Japan) with a 4–11 MHz high-
frequency linear transducer (PLT-704SBT) was used 
to perform the carotid ultrasonography. Plaques in the 
longitudinal section of the carotid artery were scanned, and 
the image with the largest plaque area was captured and 
used for further research. Software incorporated inside the 
machine was used to compute plaque area. TPA was defined 
as the sum of all plaque regions visible in the longitudinal 
images (9). The gray level of the entire plaque was 
represented by the GSM. For the image normalization and 
gray pixel analysis of the GSM, Adobe Photoshop 6.0 (Adobe 
Systems, Inc., San Jose, CA, USA) was used. The outside 
membrane was set to 190 and the blood to 0 (the gray-scale 
range was 0 to 255; black =0 and white =255) (27,28). TPA 
and GSM were measured three times and averaged.

SMI ultrasonography and image analysis

The ultrasound scanner’s settings were changed to the SMI 
mode to present a dual image of the plaque side by side in 
B mode, and color SMI after the plaque’s echogenicity was 
evaluated in B mode (Figure 1A). The region of interest of the 
SMI was applied to the entire plaque. The other SMI settings 
were as follows: mechanical index, 1.5; frame rate, 50–60 fps, 
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SMI velocity, 0.8–1.5 cm/s; and dynamic range, 55–60 dB. 
The plaques were first observed on the longitudinal section 
and then on the cross-section for 30 seconds. Dynamic 
enhancement signals or intraplaque microvascular flow 
(IMVF) signals were captured after the static enhancement 
signal was eliminated (Figure 1B). The IMVF signals were 
classified as follows: grade 0, no IMVF signals in the plaque 
or IMVF signals confined to the adjacent adventitia; grade 
1, moving IMVF signals confined to the adventitial side; 
grade 2, moving IMVF signals at the plaque shoulder; grade 
3, IMVF signals moving to the plaque core; and grade 4, 
extensive IMVF signals (29). Next, an immunohistochemical 
analysis of the endothelial cells was performed with CD34  
(Figures 1C,1D). Finally, the histology and SMI correlation of 
the specimens were examined.

CIT, CIMT ultrasonography, and image analysis

The scanning was performed longitudinally from the 
proximal end of the CCA to the bifurcation of the CCA to 
ensure that the entire 3 cm section of the CCA proximal 
to the bifurcation was fully scanned. At a depth of no more 

than 3–4 cm, the focus was adjusted to provide the best near 
and far wall resolution. The gain settings were tuned with 
the goal of generating a clear separation between the intima 
and media layers. In the long axis view during systole, CIT 
and CIMT were assessed on the plaque-free distal wall of 
the bilateral CCAs at 1.5, 2, and 2.5 cm prior to carotid 
bifurcation (Figure 2). CIT was defined as the distance 
from the leading edge of the lumen-intima interface to 
the intima-media interface of the far wall, and CIMT was 
defined as the distance from the leading edge of the lumen-
intima interface to the leading edge of the media-adventitia 
interface of the far wall. Previous research has shown that 
this method of measuring CIT and CIMT is accurate 
(30,31). Using built-in software, an offline analysis of the 
CCA pictures taken during systole was performed. The 
final CIT was determined by averaging the bilateral CIT 
measurements of each subject.

Tissue processing and histological analysis

The CEA specimens were fixed in 4% formaldehyde 
and cut into 2- to 3-mm transverse sections. Following 
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Figure 2 Measurements of CIT, GSM, and TPA. (A) Measurements of the CIT, CMT, and CIMT. Longitudinal-axis image of the carotid 
artery 3 cm before the carotid bifurcation on the left, and a zoom image of the region of interest on the right. (B) Carotid plaque with a 
histogram of gray-tone frequency distribution of pixels in the normalized image’s selected area (plaque). (C) Carotid plaque area measurement. 
Each plaque was measured in a longitudinal perspective in the plane where the plaque is maximal, and a cursor was traced around the perimeter 
of the cross-section. The microprocessor in the duplex scanner displays the plaque’s cross-sectional area (cm2). CIT, carotid intima thickness; 
CMT, carotid media thickness; GSM, gray-scale median; TPA, total plaque area; CIMT, carotid intima-media thickness.
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dehydration and paraffin embedding, the plaques were 
sectioned at 5 μm in a longitudinal plane. Hematoxylin 
and eosin was used to stain each segment, while Sirius Red 
was used to detect collagen. The following markers were 
used to stain all sections: CD3 (Abcam Cat# ab16669, 
RRID:AB_443425, Cambridge, UK) for lymphocytes, CD34 
(Abcam Cat# ab81289, RRID:AB_1640331) for endothelial 
cells, CD68 (Abcam Cat# ab125212, RRID:AB_10975465) 
for macrophages, and α-SMA (Abcam Cat# ab5694, 
RRID:AB_2223021) for smooth muscle cells. Based on their 
characteristics, the plaques were defined as follows: definitely 
stable (predominantly fibrous, few inflammatory cells, and an 
intact cap); probably stable (one feature of instability, such as 
a small hemorrhage, or the infiltration of inflammatory cells); 
probably unstable (inflammation, a thin cap, and a large core 
but no rupture); or definitely unstable (a rupture, thrombus, 
a large hemorrhage, and a thin inflamed cap). Lovett’s 
classification and the American Heart Association (AHA) 
coronary plaque classification system were used to categorize 
all the plaque features (32).

Statistical analysis

SPSS25.0 (SPSS Inc., Chicago, IL, USA) was used for the 
statistical analysis. The continuous data are presented as the 
mean ± standard deviation. The categorical data are expressed 
as the number (percentage). The normality of distribution 

of the continuous variables was assessed by both measures 
of skewness and kurtosis and by the Shapiro-Wilk normality 
test. A two-tailed Student’s t-test was used to compare 
continuous variables that follow a normal distribution, and 
a Mann-Whitney U test was used to evaluate non-normal 
continuous variables. The χ2 test was developed to compare 
the categorical variables. A non-parametric Spearman 
correlation analysis was used to conduct the correlation 
analysis. Binary logistic regression was used to investigate 
the diagnostic utility of ultrasonic parameters for plaque 
vulnerability. Variables with significant contributions in 
the binary logistics regression analysis were included in the 
combined models, and the receiver operating characteristic 
(ROC) curves were plotted. The differences between the 
ROC curves were assessed using the DeLong test. A two-
tailed P<0.05 indicated statistical significance.

Results

Clinical characteristics

In total, 60 participants underwent CEA, of whom three 
were disqualified due to poor sample quality and two due 
to subpar picture quality. The patient recruitment process 
is presented in Figure 3. Ultimately, the CIT data from  
55 plaques (49 of which also had SMI data) were examined 
in the study. Among all the plaques, 24 (43.6%) definitely 
stable or probably stable plaques were classified as stable 
plaques, and 31 (56.4%) probably unstable or definitely 
unstable plaques were classified as vulnerable plaques. The 
clinical characteristics did not differ statistically between the 
stable and vulnerable plaques (Table 1).

Carotid ultrasound

The CIMT and CIT of patients with vulnerable plaques were 
thicker than those of patients with stable plaques (0.877±0.087 
vs. 0.813±0.115 mm, P=0.022 for CIMT, and 0.424±0.106 
vs. 0.328±0.031 mm, P<0.001 for CIT). In total, 49 plaques 
were examined for SMI, including 21 stable plaques and 28 
vulnerable plaques. Meanwhile, the vulnerable plaques had 
more SMI signals, larger TPAs, and lower GSM values than 
the stable plaques (P<0.05 for all) (Table 2).

Correlations between CIT and plaque ultrasonic 
appearance

Figure 4 illustrates the correlations between CIT and 

Carotid plaque patients
(n=60)

Study patients
(n=58)

Exclude (n=3)
• Poor specimens quality (e.g., 

ruptured CEA specimens cannot be 
used for histological analysis) (n=3)

Exclude (n=2)
• Poor image quality (e.g., CIT 

measurement dissatisfaction) (n=2)
• Contradiction to CEA (n=0)
• Refused to participate (n=0)

Analyzed patients
(n=55)

Figure 3 Flowchart of the patient recruitment process. CIT, 
carotid intima thickness; CEA, carotid endarterectomy.

https://qims.amegroups.org/article/view/118224/html#figure2
https://qims.amegroups.org/article/view/118224/html#figure2
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Table 1 Clinical characteristics of patients with stable and vulnerable plaques

Characteristics All patients (n=55) Stable plaques (n=24) Vulnerable plaques (n=31) P value

Age (years) 65±7 65±7 65±7 0.970

Female 5 (9.1) 1 (4.2) 4 (12.9) 0.373

BMI (kg/m2) 24.74±3.08 24.84±2.99 24.66±3.19 0.829

Smoking 33 (60.0) 17 (70.8) 16 (51.6) 0.190

Alcohol 28 (50.9) 12 (50.0) 16 (51.6) 0.808

Hypertension 41 (74.5) 19 (79.2) 22 (71.0) 0.489

SBP (mmHg) 140.75±18.64 144.29±19.62 138±17.68 0.218

DBP (mmHg) 76.42±9.48 76.54±9.23 76.32±9.82 0.933

DM 11 (20.0) 6 (25.0) 5 (16.1) 0.634

CAD 22 (40.0) 7 (29.2) 15 (48.4) 0.149

Stroke or TIA 32 (58.2) 12 (50.0) 20 (64.5) 0.279

Antiplatelet 43 (78.2) 17 (70.8) 26 (83.9) 0.246

Statins 37 (67.3) 14 (58.3) 23 (74.2) 0.214

Antihypertensive drugs 41 (74.5) 19 (79.2) 22 (71.0) 0.489

TC (mmol/L) 3.54±0.79 3.65±0.92 3.44±0.67 0.338

TG (mmol/L) 1.37±0.62 1.39±0.66 1.35±0.60 0.821

LDL-C (mmol/L) 1.97±0.56 2.04±0.62 1.90±0.50 0.362

HDL-C (mmol/L) 1.04±0.28 1.04±0.32 1.03±0.25 0.855

GLU (mmol/L) 5.44±1.02 5.66±1.25 5.27±0.78 0.247

Values are shown as the mean ± standard deviation or numbers (%). BMI, body mass index; SBP, systolic blood pressure; DBP, 
diastolic blood pressure; DM, diabetes mellitus; CAD, coronary artery disease; TIA, transient ischemic attack; TC, total cholesterol; TG, 
triglycerides; LDL-C, low-density lipoprotein cholesterol; HDL-C, high-density lipoprotein cholesterol; GLU, fasting glucose. 

Table 2 Ultrasonic parameters in patients with stable and vulnerable plaques

Parameters All patients (n=55) Stable plaques (n=24) Vulnerable plaques (n=31) P value

CIMT (mm) 0.849±0.104 0.813±0.115 0.877±0.087 0.022*

CIT (mm) 0.382±0.095 0.328±0.031 0.424±0.106 <0.001*

SMI 31 (63.3) 8 (38.1) 23 (82.1) 0.002* 

GSM 33.46±21.20 40.74±25.08 27.83±15.87 0.032*

TPA (mm2) 77.82±34.31 55.85±20.01 94.83±33.57 <0.001*

Values are shown as mean ± standard deviation or numbers (%). Forty-nine plaques were examined for SMI, including 21 stable plaques 
and 28 vulnerable plaques. *, the values are statistically significant. CIMT, carotid intima-media thickness; CIT, carotid intima thickness; 
SMI, superb microvascular imaging; GSM, greyscale median; TPA, total plaque area. 

the SMI level (r=0.392, P=0.005), and CIT and the TPA 

(r=0.337, P=0.012). In the multiple linear regression 

analysis, none of the parameters assessed reached statistical 

significance.

Histologically determined plaque types and plaque 
vulnerability

The histological characteristics of the 55 plaques were 
graded on simple semiquantitative scales as published by 
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Figure 4 Correlations between CIT and plaque ultrasonic appearance. CIT, carotid intima thickness; SMI, superb microvascular imaging; 
TPA, total plaque area.

Lovett et al. (32). Among them, 61.8% had a lipid core 
(n=34), 61.8% had calcification (n=34), 43.6% had IPH 
(n=24), and 10.9% had thrombus (n=6). Fibrous cap 
thickness (FCT) data were available for 49 plaques, 20 of 
which were stable plaques and 29 of which were vulnerable 
plaques. Compared with the stable plaques, the vulnerable 
plaques had thinner FCT, less fibrous tissue, and more IPN, 
IPH, and thrombus (Table 3).

Relationship between plaque types and CIT

The CIT of the patients with plaques with a large lipid core 
was significantly thicker than that of the patients with plaques 
with no lipid core (0.44±0.132 vs. 0.342±0.052, P=0.021). The 
CIT of patients with plaques with more infiltrated cells in the 

fibrous cap was thicker than that of patients with plaques with 
less infiltrated cells (0.4±0.099 vs. 0.3±0.02 mm, P=0.032, 
for heavy fibrous cap cell infiltration and minor fibrous 
cap cell infiltration), and the CIT of patients with plaques 
with IPH was thicker than that of patients with plaques 
without IPH (0.439±0.079 vs. 0.355±0.089 mm, P=0.016, for 
large IPH and no IPH; 0.411±0.098 vs. 0.355±0.089 mm,  
P=0.028, for small IPH and no IPH). Increased CIT was 
associated with worse plaque stability (0.431±0.092 vs.  
0.314±0.006 mm, P=0.013, for definitely unstable and 
definitely stable; 0.431±0.092 vs. 0.331±0.034 mm, P=0.002, 
for definitely unstable and probably stable; 0.419±0.118 
vs. 0.331±0.034 mm, P=0.013, for probably unstable and 
probably stable). The relationships between plaque types and 
CIT are described in Figure 5.

Table 3 Histological characteristics of stable and vulnerable plaques

Characteristics All patients (n=55) Stable plaques (n=24) Vulnerable plaques (n=31) P value

Lipid core 34 (61.8) 12 (50.0) 22 (71.0) 0.112

Calcification 34 (61.8) 13 (54.2) 21 (67.7) 0.304

Any hemorrhage 24 (43.6) 5 (20.8) 19 (61.3) 0.003*

Any thrombus 6 (10.9) 0 6 (19.4) 0.03*

Thin fibrous cap thickness 21 (38.2) 3 (12.5) 18 (58.1) 0.001*

Fibrous cap rupture 22 (40.0) 6 (25.0) 16 (51.6) 0.046*

Marked fibrous cap infiltration 40 (72.7) 15 (62.5) 25 (80.6) 0.134

Predominantly fibrous 14 (25.5) 10 (41.7) 4 (12.9) 0.015*

Marked foam cells 37 (67.3) 15 (62.5) 22 (71.0) 0.507

Marked inflammatory cells 38 (69.1) 15 (62.5) 23 (74.2) 0.352

Neovascularization 34 (61.8) 11 (45.8) 23 (74.2) 0.032*

Values are shown as numbers (%). *, the values are statistically significant.
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Values of CIMT, CIT, SMI, GSM, and TPA in assessing 
plaque vulnerability

The areas under the curve (AUCs) with 95% confidence 
interval (CI) of the CIMT, CIT, SMI, GSM and TPA for 
predicting plaque vulnerability were 0.673 (0.533–0.793), 
0.849 (0.727–0.932), 0.771 (0.629–0.879), 0.669 (0.529–
0.790), and 0.858 (0.738–0.938), respectively (Figure 6). 
In relation to the ultrasound parameters for the plaques, 
the AUC of the TPA was the largest. In relation to the 
ultrasound parameters for the CCA, the AUC of the CIT 
was larger than the AUC of the CIMT (0.849 vs. 0.673, 
P=0.026). We also analyzed a combined model of CIT and 
TPA. The AUC (95% CI) of the combined model was 0.949 
(0.854–0.990) with a sensitivity and specificity of 84% and 
96%, respectively, when the cut-off value was 0.71, which 
was significantly larger than the AUCs of the CIMT, CIT, 
SMI, GSM, and TPA (Table 4).

Discussion

In this study, we examined CIT and the ultrasonic and 

histological manifestation of atherosclerotic plaques in 
carotid bifurcation. Our results showed that CIT was 
correlated with the ultrasonic features of CP, including the 
SMI level and TPA. Additionally, we found that CIT was 
correlated with the histological characteristics of the plaque, 
such as the size of the lipid core, the infiltration of the 
fibrous cap cells, IPH, and overall instability. Further, the 
CIT had the same importance as the TPA in determining 
plaque vulnerability and was better able to determine plaque 
vulnerability than SMI and the GSM.

It is widely recognized that a precise and reliable 
diagnosis of vulnerable atherosclerotic plaques prior to 
clinical manifestations is critical for identifying high-risk 
individuals. Computed tomographic angiography (CTA) 
is a tool commonly used to examine vulnerable plaques 
and allows for the precise assessment of the luminal and 
outer arterial wall dimensions, high-risk plaque burden and 
morphology, and remodeling patterns (33). Specifically, 
CTA enables high-risk plaques to be categorized into the 
following three types: partially calcified, calcified, and 
non-calcified (including both calcified and non-calcified 
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Table 4 Comparison of the ability of different models to predict vulnerable plaques

Models AUC (95% CI) Cut-off value Sensitivity (%) Specificity (%) △AUC# P value

GSM 0.669 (0.529–0.790) 30.67 65 75 0.280 <0.001*

SMI level 0.771 (0.629–0.879) 0 86 71 0.174 0.012*

TPA 0.858 (0.738–0.938) 73.67 mm2 77 92 0.091 0.016*

CIMT 0.673 (0.533–0.793) 0.813 mm 77 54 0.276 <0.001*

CIT 0.849 (0.727–0.932) 0.367 mm 68 92 0.100 0.049*

Combined model 0.949 (0.854–0.990) 0.71 84 96 – –

△AUC#, values were calculated as changes from the combined model. *, the values are statistically significant. AUC, area under the 
receiver operating characteristic curve; CI, confidence interval; GSM, greyscale median; SMI, superb microvascular imaging; TPA, total 
plaque area; CIMT, carotid intima-media thickness; CIT, carotid intima thickness. 

plaque tissue) (34). Further, previous studies have shown 
that CTA can identify plaque development following statin  
therapy (35). However, due to inadequate imaging 
resolution, studies have shown that CTA is not very 
accurate in differentiating between lipids, components of 
fibrotic tissue, and intraplaque inflammation (36).

High-resolution magnetic resonance imaging (MRI) is 
currently regarded as the most competitive imaging modality 

for evaluating the carotid artery wall due to its remarkably 
high soft-tissue resolution (37). Based on advanced imaging 
technologies that achieve high spatial resolution, minimal 
motion interference and black-blood, MRI has shown 
promise in providing comprehensive details about artery 
wall morphological parameters, including wall thickness, 
volume, and plaque burden (38). Moreover, MRI also has a 
good ability to predict vulnerable plaques with hemodynamic 
instability (39). However, the presence of flow, motion, or 
metal susceptibility artifacts, relatively expensive costs, and 
prolonged examination periods have hindered the widespread 
adoption of MRI (40). Non-invasive ultrasound is a widely 
used approach that is rapid, without known radiation, and 
inexpensive in comparison to other imaging modalities. 
Additionally, unlike angiography, ultrasonography can display 
both the lumen and the vessel wall.

Plaque ultrasonography is a critical tool for detecting 
plaque type and vulnerability (41). Research has shown 
that plaques with an established histology of high lipid and 
hemorrhage content had a low GSM (Spearman correlation 
r=−0.351, P<0.05) and those with a high fibrous content had 
a high GSM (r=0.411, P<0.001) (42). TPA is also regarded as 
a reliable indicator for the assessment of vulnerable plaques 
due to its high repeatability (0.95, 95% CI: 0.83–0.99  
for interobserver reliability; 0.96, 95% CI: 0.94–0.97 for 
intraobserver reliability) (43,44). SMI is a non-invasive 
technique that can facilitate the visualization of carotid 
artery IPN and has a sensitivity and specificity of 63% 
and 100% compared with patients observed Intraplaque 
enhancement by using contrast-enhanced ultrasound (45),  
and SMI may also help prevent ischemic stroke (46). 
However, measuring ultrasonic parameters close to plaques 
requires a great deal of clinical expertise and superior image 
post-processing methods. According to studies, CIMT 
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and CP progression are closely related to one another 
(47-49). In individuals with mild carotid stenosis, CIMT 
was shown to be linked to plaque thickness and TPA and 
to independently predict incident CP formation (50,51). 
Our research revealed a strong relationship between CIT 
and SMI and TPA in advanced plaques. Plaques advance 
along the carotid in the axis of flow 2.4 times quicker than 
they thicken, which is a good indicator of the plaque lipid 
burden, and CIT thickening is also primarily arises from 
subintimal lipid deposition (43,52). Given these identical 
pathogenic processes, CIT thickening and TPA elevation 
occur concurrently but to different degrees during the 
CP development process. From this, we deduced that 
in individuals with advanced CP, CIT would be more 
effectively related to CP than CIMT.

It is generally understood that CIMT is not only a 
subclinical marker for predicting atherosclerosis (17,50) 
but is also crucial in stroke diagnosis (51). It commonly 
accepted that increased CIMT and plaque merely 
represent quantitatively different phenotypes of a common 
atherosclerotic background (53), CIMT progression 
interventions reduce CV risk (54), and CIMT is associated 
with the incidence of CV events and CV risk factors (55). 
However, the combination of carotid medium thickness, 
a factor prone to hypertension, and age, challenges the 
therapeutic relevance of CIMT. 

Recent research by Jin et al. showed that radial intima 
thickness plays a significant role in the differential 
identification of stroke subtypes (24), indicating the 
significance of intimal thickness in clinical studies. However, 
the connection between CIT and the plaque types, which 
were strongly linked to plaque vulnerability and adverse CV 
events, was not further explored. In this study, we discovered 
that higher plaque vulnerability was associated with thicker 
CIT, larger lipid cores, increased fibrous cap cell infiltration, 
and increased IPH. Atherosclerosis is an inflammatory 
process whereby plaque formation begins with pathological 
intimal thickening and lesions containing lipid pools (56,57). 
The high correlation between CCA-CIT and lipid core and 
inflammatory processes in CP also demonstrates the concept 
of progressive diffuse carotid disease, with significant stenosis 
at the site of bifurcation having its roots clearly defined at the 
proximal segment of the artery (58,59).

Previous research has shown the utility of the CIMT, 
IPN, GSM, and TPA in assessing plaque vulnerability  
(60-63); however, these studies only examined the value of 
a single plaque characteristic or CCA, and the role of CIT 
in assessing plaque vulnerability is still unknown. In this 

study, we investigated the relative merits of CCA ultrasonic 
features and plaque ultrasonic features in determining 
plaque vulnerability. According to our research, among 
the plaque ultrasonic features, the TPA is a stronger 
predictor for determining plaque vulnerability than the 
GSM or SMI. Our study first used CIT to evaluate plaque 
vulnerability and discovered that CIT was more accurate 
than CIMT in predicting plaque vulnerability. In terms 
of histology, the IMT corresponds to the intima-media 
complex, which comprises endothelial cells, connective 
tissue, and smooth muscle cells, and represents the site of 
lipid deposition in plaque development (64). In states of 
health, ~97.5% of the IMT complex comprises the media, 
whereas in the presence of atherosclerotic disease, while 
the intimal contribution to the IMT complex is relatively 
higher, an estimated 80% of the IMT complex is still 
formed by the media (47,65). There are several factors 
that affect media thickness. In a population-based cohort 
study, Ferreira et al. discovered that media thickness 
is regulated by hypertension (particularly SBP), and is 
also substantially influenced by age and genetics (66). 
Therefore, it is more likely that CIT and plaque (rather 
than CIMT) represent quantitatively different phenotypes 
of a common atherosclerotic background. Thus, just as 
CIMT is a good indicator in guiding the use of statins 
in treating patients with atherosclerosis (67), CIT 
measurements based on machine learning and artificial 
intelligence can also be used to facilitate atherosclerosis 
management. Our study revealed that both TPA and CIT 
had significant utility in determining plaque vulnerability 
when we compared the ultrasonic characteristics of plaque 
and CCA. To diagnose plaque vulnerability, a combined 
model of CIT representing CCA status and TPA reflecting 
plaque state was developed. The results revealed that the 
combined model was able to more comprehensively assess 
atherosclerotic plaque and had a higher diagnostic value 
than either factor alone.

Our study had some limitations. First, this study 
only included 55 patients and was conducted in a single 
center. Therefore, a study with a larger sample size 
needs to be conducted to support the study’s findings. 
Second, the pathological analysis in this study used simple 
semiquantitative scales, which are subjective to some extent 
and may skew the research outcomes. Finally, no additional 
grouping was made in the study based on prior drug use 
(such as statins), and more research is required to examine 
how medications affect alterations in the correlation 
between CIT and plaque vulnerability.
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Conclusions

In conclusion, we found a relationship between CIT 
and carotid bifurcation stenosis. Further, we suggest 
that evaluations that combine CIT and TPA may have a 
complementary advantage in detecting vulnerable plaque. 
Hence, the additional measurement of CIT may prove 
valuable in the identification of vulnerable plaque and patients 
with advanced CP might benefit from early detection.
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