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Background: Accurate segmentation of pancreatic cancer tumors using positron emission tomography/
computed tomography (PET/CT) multimodal images is crucial for clinical diagnosis and prognosis 
evaluation. However, deep learning methods for automated medical image segmentation require a 
substantial amount of manually labeled data, making it time-consuming and labor-intensive. Moreover, 
addition or simple stitching of multimodal images leads to redundant information, failing to fully exploit the 
complementary information of multimodal images. Therefore, we developed a semisupervised multimodal 
network that leverages limited labeled samples and introduces a cross-fusion and mutual information 
minimization (MIM) strategy for PET/CT 3D segmentation of pancreatic tumors.
Methods: Our approach combined a cross multimodal fusion (CMF) module with a cross-attention 
mechanism. The complementary multimodal features were fused to form a multifeature set to enhance 
the effectiveness of feature extraction while preserving specific features of each modal image. In addition, 
we designed an MIM module to mitigate redundant high-level modal information and compute the latent 
loss of PET and CT. Finally, our method employed the uncertainty-aware mean teacher semi-supervised 
framework to segment regions of interest from PET/CT images using a small amount of labeled data and a 
large amount of unlabeled data.
Results: We evaluated our combined MIM and CMF semisupervised segmentation network (MIM-
CMFNet) on a private dataset of pancreatic cancer, yielding an average Dice coefficient of 73.14%, an 
average Jaccard index score of 60.56%, and an average 95% Hausdorff distance (95HD) of 6.30 mm. In 
addition, to verify the broad applicability of our method, we used a public dataset of head and neck cancer, 
yielding an average Dice coefficient of 68.71%, an average Jaccard index score of 57.72%, and an average 
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Introduction

Pancreatic cancer is a highly malignant tumor with a 
5-year survival rate of about 6–10% after diagnosis (1-3).  
The complex structure of tissues around the pancreas 
and the similar density of adjacent tissues render 
the segmentation of pancreatic tumors considerably 
challenging. [18F]-fluorodeoxyglucose (18F-FDG) positron 
emission tomography/computed tomography (PET/
CT) combine two different imaging technologies: PET 
reflects the metabolic information of the lesion through 
the uptake of the tracer, while CT accurately describes the 
anatomical characteristics of the lesion. Obtaining PET/
CT multimodal pancreatic cancer data is valuable but 
challenging. Wang et al. have proposed the only approach 
for multimodal pancreatic cancer tumor segmentation, 
which includes a multimodal fusion and calibration network 
(MFCNet) (4). The fused image of PET/CT provides 
simultaneous visualization of organ location, shape, and 
functional abnormalities (5), which cannot be provided by 
single-modality images [such as CT or magnetic resonance 
imaging (MRI)]. PET/CT is widely used in clinical practice 
for tumor diagnosis (6), staging (7), radiomics analysis (8), 
treatment evaluation, and prognosis assessment (9). Tumor 
segmentation is essential for quantitatively analyzing PET/
CT images, and combining the image information of PET 
and CT can improve tumor segmentation accuracy (4,10). 
In Table 1, we provide the baseline characteristics of subjects 
in the pancreatic cancer dataset. However, exploiting 
the complementary information between PET and CT 
images to enhance segmentation performance remains 
a significant challenge, but one which may be overcome 
through multimodal feature fusion. Multimodal image 
segmentation networks employ various fusion strategies, 
such as input-level fusion (11,12), layer-level (13-16), and 

late-fusion networks (17,18). An input-level fusion network 
regards each modality as a channel of the input image, and 
these multimodal image channels are concatenated as the 
network input. A layer-level fusion network independently 
extracts features from each modality and fuses them at 
an intermediate level in the data flow. In a late-fusion 
network, each modality is passed through independent 
encoder-decoder networks, and the learned features are 
fused at the end of each stream. However, these traditional 
multimodal methods struggle to cross-correlate information 
from different modalities, limiting the mutual guidance of 
these extracted features. Therefore, we propose a cross-
modal fusion (CMF) attention-encoding module, which 
merges multi-modal information while preserving single-
modal features, simultaneously interacting with multimodal 
features to enforce constraint learning within the network. 
Most previous studies report achieving multimodal feature 
fusion by directly combining features of each modality (19),  
but this leads to redundant features and irrelevant 
information and fails to fully leverage the effective features 
from each modality. A multimodal segmentation scheme 
should be capable of managing the complementarity, 
redundancy, and cooperation between different modalities. 
Therefore, we designed a mutual information minimization 
(MIM) module to reduce modal redundancy. This 
module calculates the potential loss of both PET and 
CT modalities, incorporating it into the loss function to 
separate the salient feature distributions of PET images 
from those of CT images. In addition, the approaches in the 
aforementioned studies relied on fully supervised training, 
which requires a considerable amount of labeled data and 
constitutes a significant a limitation. Therefore, we sought 
to identify the semisupervised segmentation networks that 
could reduce reliance on labeled data while maintaining 

95HD of 7.88 mm. 
Conclusions: The experimental results demonstrate the superiority of our MIM-CMFNet over existing 
semisupervised techniques. Our approach can achieve a performance similar to that of fully supervised 
segmentation methods while significantly reducing the data annotation cost by 80%, suggesting it is highly 
practicable for clinical application.
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performance.
Compared with fully supervised learning, semisupervised 

learning utilizes a small amount of labeled data and a large 
amount of unlabeled data for model training. Popular 
semisupervised medical image segmentation techniques 
employ rule-based encoder-decoder segmentation networks 
as their backbone (20-23). In terms of learning strategies, 
these methods can be categorized into self-training (24,25), 

adversarial learning (26,27), cotraining (28,29), contrastive 
learning (30,31), and consistency regularization methods 
(32-39). Consistency regularization methods are widely 
applied in semisupervised medical image segmentation 
and facilitate consistent model predictions for the same 
input under different perturbations. The most classical 
method is mean teacher (MT) (40,41), which learns from 
labeled data in a supervised manner, uses a teacher model 
to provide pseudolabels for unlabeled data, and maintains 
prediction consistency of the teacher-student model for 
the unlabeled data through regularization. Finally, the 
supervised loss and consistency loss are combined and fed 
back to the network to update the student model. The 
teacher model’s parameters are acquired via the moving 
average of the student model’s parameters rather than 
via updating the gradient through loss backpropagation. 
This operation allows the teacher model to continuously 
accumulate historical prediction information for unlabeled 
data. However, the pseudolabels generated by the teacher 
model may be unreliable, leading to unstable training. 
Therefore, Yu et al. (35) proposed an uncertainty-aware 
mean teacher (UA-MT) framework, in which the student 
model undergoes multiple forward propagations, and the 
teacher model gradually learns more reliable targets based 
on uncertainty estimation. In addition, Luo et al. (37) 
introduced a dual-task consistency (DTC) regularization 
technique, employing a dual-task deep network to jointly 
predict the target’s pixel-wise segmentation maps and 
geometry-aware level set. Wu et al. (39) proposed a mutual 
consistency network (MC-Net) containing two decoders 
and used the prediction difference between the two as 
model uncertainty information to regularize model training 
and enhance pseudolabel quality. Subsequent studies  
(42-45) have employed various consistency regularization 
strategies to improve semisupervised model performance. 
In our study, we aimed to leverage the differences and 
complementarity between CT and PET modalities 
to improve model prediction consistency, and thus 
direct use of the consistency regularization method was 
deemed appropriate (46). The proposed method uses the 
information interaction between modalities for consistency 
prediction on multimodal data, overcoming the limitation 
of previous methods that cannot directly use multimodal 
information. The proposed method was designed with the 
UA-MT framework used as the baseline.

To the best of our knowledge, only a few studies (46-48) 
have examined multimodal medical image semisupervised 
segmentation, and even fewer studies have done so 

Table 1 Subject baseline characteristics

Variables Pancreatic cancer (n=93)

Age (years) 68.6±9.8

Male 58

Female 35

Weight (kg) 61.2±10.5

Tumor diameter (cm) 3.2±1.5

CT (HU) 17.3±35.9

PET (SUV) 9.0±3.9

Histological type PDAC

Lesion location

Head 22

Neck 28

Body 26

Tail 17

Histopathological diagnosis/cytological examination

Exfoliative cytologic examination 8

Needle biopsy 23

Surgical biopsy 62

TNM stage

I A 2

I B 25

II A 12

II B 19

III 27

IV 8

Continuous variables are expressed as the mean ± standard 
deviation. Categorical variables are expressed as numbers. 
CT, computed tomography; HU, Hounsfield unit; PET, positron 
emission tomography; SUV, standard uptake value; PDAC, 
pancreatic ductal adenocarcinoma; TNM, tumor-node-
metastasis. 
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within the context of PET/CT images. Mondal et al. (47) 
employed generative adversarial learning for semisupervised 
segmentation of multimodal brain MRI images, which 
prevents overfitting by learning to discriminate between 
real and fake patches from the generator network. Chartsias  
et al. (48) proposed a dense attention fluid network 
(DAFNet) to segment multimodal cardiac and abdominal 
MRI images, using disentanglement, alignment, and fusion 
to construct a complex network for multimodal data fusion. 
In the context of PET/CT research, Zhang et al. (46) 
proposed using area-similarity contrastive loss to leverage 
cross-modal information and prediction consistency 
between different modalities for contrastive mutual 
learning (CML). They also included a soft pseudolabel 
relearning scheme to address potential performance gaps 
between various modalities, achieving good segmentation 
performance on PET/CT head and neck images and 
multimodal brain tumor MRI images. In contrast, our 
study focused on 3D volume data from PET/CT images of 
pancreatic cancer. We employed cross-modal feature fusion 
and minimized mutual information feature selection to 
more precisely segment pancreatic tumor edges, enhancing 
semisupervised segmentation performance.

This study aimed to achieve more accurate segmentation 
of multimodal PET/CT images of pancreatic cancer by 
leveraging a large amount of unlabeled multimodal data 
and a small amount of labeled data, following the classic 
UA-MT semisupervised segmentation framework. In 
addition, experiments on a public dataset of head and neck 
cancer demonstrated the universal applicability of the 
proposed module. We hope that this study will enable peers 
to focus on semisupervised studies on other multimodal 
disease images. Our main contributions are as follows: (I) 
we developed a CMF module to improve feature fusion 
effectiveness by fusing complementary multimodal features 
and preserving specific features of single-modal images; 
(II) we used MIM to reduce feature redundancy in each 
modality, screening out effective multimodal features; 
and (III) we combined semisupervised learning with 
multimodality to make full use of the limited labeled data 
and harness complementary information from various 
modalities. This combination can provide more effective 
and reliable solutions in the field of medical imaging 
analysis and has promising practical applications.

Methods

Overview

In this study’s overall architecture (Figure 1), the student and 
teacher models have the same network structure, receiving 
PET and CT images as input. The teacher model’s network 
parameters are acquired through the exponential moving 
average (EMA) of the student model. The teacher model 
generates targets and performes T times (T =8) forward 
propagation with Monte Carlo dropout to estimate the 
uncertainty of the targets. Subsequently, the teacher model 
filters out the relatively unreliable (high uncertainty) 
predictions, selecting specific predictions as learning 
targets for the student model. Finally, the student model is 
optimized by minimizing the supervised segmentation loss 
(Lseg) on labeled data, the prediction consistency loss (Lcon) 
generated by the student-teacher model, and the latent loss 
(Llatent) generated by the student model.

Optimization objectives of the semisupervised tasks

The objective function of our semisupervised segmentation 
framework comprised Lseg, Lcon, and Llatent as provided by 
the MIM module. The training set comprised N-labeled 

and M-unlabeled data, denoted as ( ){ } 1
,

N
L i i i

D x y
=

=  and 

( ){ } 1

M
U i i N

D x
= +

= , respectively, where H W D
ix R × ×∈  represents 

the 3D input volume, and { }H W D
i 0,1y × ×∈  corresponds to 

the ground-truth label. The objective function of our 
semisupervised segmentation framework can be formulated 
as follows:

( ) ( )( ) ( ) ( )( )' 'min ; , ; , , ; ,total seg i i con i i latentl L f x y L f x f x L
θ

θ θ λ θ η θ η υ= + + [1]

where Lseg represents the supervised segmentation loss 
[binary cross-entropy (BCE) loss and Dice loss (49) are 
used here] to evaluate the network’s segmentation quality 
for labeled data; Lcon denotes the unsupervised consistency 
loss (computed using mean squared error) to measure the 
consistency between predictions of the student and teacher 
models under the same input xi and different perturbations. 
In Eq. [1], ( )f ⋅  denotes the segmentation neural network; 

θ  and θ ′ represent the weights of the student and teacher 
models, respectively; η  and η′  denote different perturbation 
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operations (e.g., incorporating noise to the input or network 
dropout); λ  is an ramp-up weighting coefficient used to 
balance Lseg and Lcon, ensuring that most of the supervisory 
signal originates from labeled data during the early training 
stages; Lseg is computed from the labeled data only; Lcon is 
unsupervised and used to supervise all the training data; and 
υ  is a hyperparameter set to 1×10−5 in the pancreas dataset 
and 1×10−4 in the head and neck dataset to control the 
degree of minimizing mutual information and to adjust the 
correlation between modalities. Larger values of υ  enhance 
the correlation between modalities, making the modalities 
more consistent, while smaller values of υ  reduce the 
correlation between modalities, allowing for the difference 
between modalities.

Structure of the MIM-CMFNet

The improved structure of our student model, named MIM-

CMFNet (Figure 2), consisted of four main components: two 
parallel encoders, one decoder, a CMF module (Figure 3),  
and an MIM module (Figure 4).

The encoder-decoder architecture was based on that of 
V-Net (23), comprising five encoding blocks for extracting 
PET and CT features independently. The PET and CT 
encoders shared the same network structure but had 
separate weights. We used 3×3×3 convolution kernels with a 
stride of 1 and BatchNorm (50) to maintain the consistency 
of input data distribution. Subsequently, rectified linear unit 
(ReLU) (51) with a negative slope of 0.01 was applied as 
the activation function to prevent overfitting and vanishing 
gradients during backpropagation. We used V-Net to act 
as a Bayesian network for uncertainty estimation by adding 
two dropout layers with a dropout rate of 0.5 in addition 
to the five layers of the L-stage and one layer of R-stage of 
V-Net. Dropout was activated during network training and 
uncertainty estimation but deactivated during testing since 

Student model

PET

PET

CT

CT

Llatent

EMA

Teacher model

Predict B

Loverall = Lseg + λLcon + υLlatent

N
oise η'

N
oise η'

Monte Carlo 
Dropout

Uncertainty map

Lcon

Lseg

LabelPredict A

Figure 1 The proposed semisupervised segmentation framework for multimodal PET/CT medical images. PET, positron emission 
tomography; CT, computed tomography; EMA, exponential moving average; Lseg, segmentation loss; Lcon, consistency loss; Llatent, latent loss. 
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Figure 2 MIM-CMFNet structure. PET, positron emission tomography; CT, computed tomography; EF, EasyFusion; CMF, cross-modal 
fusion; MIM, mutual information minimization; Conv, convolution; BN, Batch Normalization; ReLu, rectified linear unit. 

uncertainty estimation was unnecessary during testing.
The decoder consisted of four decoding blocks, each 

equipped with a transpose convolution layer and several 
convolutional layers. The decoder progressively upsampled 
the fused feature maps in four levels and used a 1×1×1 
convolution kernel to obtain the final segmentation 
probability map.

EasyFusion (EF) was used for PET and CT fusion in 
layers 1 and 2 of the L-stage, while the CMF module was 
used for PET and CT fusion between layers 3 and 5 of the 
L-stage.

In layer 5 of the L-stage, high-level features from CT 
and PET were preserved and fed into the MIM module to 
compute the latent loss Llatent.

In  summary,  we developed a dual-parallel encoder 
feature fusion network for the student model that 

incorporated the CMF and MIM modules to facilitate the 
interaction of multimodal information. Finally, the decoder 
was used to recover the fused results, producing the final 
segmentation image.

CMF module 

Inspired by the intrinsic correlation between PET and CT 
data and by the nonlocal block that encodes space-time 
relation (52), we adopted a similar module to encode pixel-
level PET/CT information. We addressed the issue of the 
two modalities not mutually benefiting from each other 
by introducing the CMF module to facilitate information 
interaction between the PET and CT modalities, aiming 
to better incorporate CT information for guiding PET 
segmentation. PET was considered the primary modality 
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Figure 3 This is the CMF module in Figure 2 for feature map fusion of PET and CT, which focuses on pixel-level modal interaction, takes 
the PET and CT feature output from layers 3–5 of the main network as input, denoted as Pi and Ci, respectively. CMF, cross-modal fusion; 
conv, convolution; CT, computed tomography; PET, positron emission tomography. 

(Figure 3) due to its sensitivity to tissue metabolism. 
Variations in metabolic activity can be associated with 
abnormal tissues or lesions in various diseases, making PET 
images highly valuable for localizing pancreatic lesions 
and segmenting tumors. Combining high-resolution CT 
images can achieve more accurate image segmentation 
and localization. B u i l d i n g  u p o n  t h i s  f o u n d a t i o n , 
the proposed CMF module allowed for the interactive 
fusion of PET and CT features, leveraging CT features 
to guide PET segmentation instead of simply adding or 
concatenating operations between the two modalities.

During stages 3–5 (Figure 2), the current PET feature 
map Pi and CT feature map Ci were fed into the CMF 
module to identify pixels in Pi that strongly responded to Ci 
across the entire PET. This modal interaction was measured 
as the dot product, and the updated feature map Zi at the i-th 
stage was calculated as follows:

( )( )
( ) ( )i i

i i i i i

ˆ
, where

T
P C

Z P g P
N

ω φ
µ α α= + =  [2]

where ω , φ , g and µ  are 1×1×1 convolutions; ii whTN ××=  
is a normalization factor; and iα  is the modal similarity and 

CwhT
i

iiRZ ×××∈ . Each PET pixel interacted pixel-wise with 
all CT pixels through the CMF module.

MIM module 

After obtaining the CT feature embeddings (CTfeat) and 
PET feature embeddings (PETfeat), we introduced an MIM 
module (Figure 4) to explicitly mitigate the redundancy 
between these two modalities. MIM (53,54) is widely used in 
representation learning to produce representations similar 
to the input; thus, MIM was used as a regularizer in our 
study to reduce feature redundancy for effective multimodal 
feature screening. We assumed that good PET and CT 
saliency features should contain common parts (semantic 
relevance) and distinct attributes (domain relevance). For 
the multimodal learning task, a well-trained mode was 
required that maximized the joint entropy of different 
modalities within the network’s capacity range, equivalent 
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Figure 4 The MIM module accepts the CTfeat and PETfeat from the last layer of the V-Net network as inputs and then obtains latent loss 
after a series of calculations. CTfeat, CT feature embeddings; CT, computed tomography; PETfeat, PET feature embeddings; PET, positron 
emission tomography; Llatent, latent loss; MIM, mutual information minimization. 

to minimizing mutual information and thus preventing 
redundant information in the network. This approach used 
a pixel-level interaction module to inject PET semantic 
information as guidance for CT segmentation to perform 
bimodal mapping interaction. In addition, the mutual 
information regularization term extracted salient features of 
each modality, explicitly modeling the redundancy between 
PET and CT features to make them distinct and effectively 
fusing PET and CT features under the constraint of MIM.

The MIM module received CTfeat and PETfeat output from 
the last layer of V-Net as input for complementary learning. 
Each modality’s feature map was projected onto a lower-
dimensional feature vector, and MIM was used as a regularizer 
to mitigate the redundancy between PET and CT features.

The specific steps for MIM were as follows:
(I) The input channels were reduced to hidden 

channels C’ = 64 through a 1×1×1 convolution 
operation. After reshaping, the feature maps were 
separately mapped to two low-dimensional feature 

vectors with a size of K =24 through two distinct 
fully connected layers. A tanh activation function 
was then applied to obtain each sample’s mean and 
variance in the latent space.

(II) An independent normal distribution was created 
based on the variance and mean, representing 
the feature distributions for CT and PET. The 
Kullback-Leibler (KL) divergence was computed 
between the CT and PET feature distributions, 
and the mean of the KL divergence was obtained. 
The KL divergence measured the discrepancy 
between two probability distributions. In some  
instances (55), the KL loss term was used as a 
measure of distribution similarity, whereas in 
our case, it was used to measure the similarity of 
modalities in multimodal learning.

(III) The reparameterization technique was employed to 
obtain the sampling results of the latent variables 
(latent features) based on the mean and variance. 
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The values were restricted to the [0,1] range using a 
sigmoid operation, and the BCE loss was computed 
for both values.

(IV) The final Llatent comprised two BCE losses and 
the KL divergence. Mutual information was used 
to measure the difference between entropy terms 
(correlation) as follows:

( ) ( ) ( ) ( ), ,IM c p H c H p H c p= + −  [3]

where H(:) denotes the entropy function; H(c) and H(p) are 
the marginal entropies of c and p, respectively; and H(c,p) 
is the joint entropy of c and p. The KL divergence of two 
latent variables (conditional entropy) was defined as follows:

( ) ( ) ( )pKL c p H c H c= −  [4]

( ) ( ) ( )cKL p c H p H p= −  [5]

where ( ) ( ) ( )logp x
H c c x p x= −∑  is the cross-entropy. 

Subsequently, summing Eqs. [3-5] results in the following:

( ) ( ) ( ) ( )
( ) ( )( )

, ,I p cM c p H c H p H c p

KL c p KL p c

= + −

− + 

 [6]

Given a PET image and a CT image, H ( c ,p )  is 
nonnegative (the nonnegativity of  entropy).  The 
mutual information can be minimized by minimizing 

( ) ( ) ( ) ( ) ( )( ),I p cM c p H c H p KL c p KL p c= + − +  . Subsequently, 
when observing p, MI measures an uncertainty reduction of c, 
and vice versa. As a multimodal task, each modality required 
learning new attributes from other modality’s learning tasks. 
By minimizing MI, we could explore the complementary 
attributes between the two modalities.

Datasets and preprocessing

We evaluated the proposed method using an internal 
dataset. It was obtained from the Department of Radiology 
of Shanghai Changhai Hospital. The study was conducted 
in accordance with the Declaration of Helsinki (as revised 
in 2013) and was reviewed and approved by the Ethics 
Committee of The First Affiliated Hospital (Changhai 
Hospital) of the Naval Medical University. Informed consent 
was waived due to the retrospective nature of the study. The 
private dataset comprised PET/CT data of 93 patients with 
pancreatic cancer (75 in the training set and 18 in the 
testing set). In order to minimize individual variations, 

the region of interest (ROI) for pancreatic lesions was 
manually delineated by an abdominal radiologist with over 
5 years of experience in diagnosing pancreatic diseases using 
3D Slicer software. This delineation was then validated and 
confirmed by another radiologist with more than 10 years 
of experience in pancreatic disease diagnosis. Importantly, 
both radiologists were kept blind to the patients’ clinical 
outcomes (56,57). The pancreatic cancer datasets in this 
study were all confirmed by histopathological or cytological 
examination. Preprocessing steps involved strict registration 
between 3D CT and FDG-PET images to account for 
respiratory motion (58,59). We then obtained Hounsfield 
units (HUs) for CT images and standardized uptake 
values (SUVs) for FDG-PET images through numerical 
conversion (60). Subsequently, all images were resampled 
to an isotropic resolution of 1×1×1 mm using trilinear 
interpolation. Finally, we applied global normalization to 
the CT images, performing CT intensity value scaling 
based on the 0.5th and 99.5th percentiles of the foreground 
voxels from the training data. We normalized all CT images 
using the global foreground mean and standard deviation, 
while each PET image was independently normalized using 
the z-score method. All images were cropped to a fixed size 
of 144×144×48. Additionally, in order to demonstrate the 
universality of the study and further prove the validity of 
the module, we also used a public dataset as support. The 
public dataset was obtained from the HECKTOR (Head 
and Neck Tumor Segmentation and outcome prediction) 
challenge dataset at the 2021 Medical Image Computing 
and Computer Assisted Intervention Conference (61,62), 
comprising PET/CT data of 224 (180 in the training set 
and 44 in the testing set) patients with head and neck cancer 
from 5 medical centers. The data preprocessing steps 
were the same as mentioned above, with the images being 
cropped to a fixed size of 144×144×144.

Implementation

The framework was implemented in PyTorch, and training 
executed on a 11 GB NVIDIA GTX 2080Ti GPU. We 
used the stochastic gradient descent (SGD) optimizer to 
update the network parameters with a weight decay of 
0.0001 and a momentum of 0.9. We ensured repeatability 
by fixing random seeds for all experiments. The initial 
learning rate was set to 0.01, and the network was trained 
for 30,000 iterations with progressive aggregation. The 
batch size was set to four, comprising two labeled and 
two unlabeled images. For the pancreatic cancer and 
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head and neck cancer datasets, patches with the sizes of 
112×112×48 and 112×112×80 were randomly cropped as 
the network input, respectively. A sliding window strategy 
was used to acquire the final segmentation results. We used 
standard real-time data augmentation techniques to avoid  
overfitting (63), including random flipping and rotations of 
90°, 180°, and 270° along the axial plane.

Evaluation criteria

We quantitatively evaluated our proposed method using the 
Dice coefficient, Jaccard coefficient, and 95% Hausdorff 
distance (95HD). The Dice coefficient indicates the overlap 
between model predictions and ground truth labels. The 
Jaccard coefficient describes the similarity between sets. 
95HD refers to the maximum value of all the distances 
from the closest point in automatically segmented results 
to manually segmented results. A higher Dice score, a 
higher Jaccard index, and a lower 95HD indicate better 
segmentation results. The equations are described in Eqs. 
[7-9], where X represents the predicted result output by the 
network, and Y represents the true label. 

( ) 2 X Y
Dice X, Y

X Y
∩

=
+

 [7]

( ) X Y
Jaccard X, Y

X Y
∩

=
∪

 [8]

( ) ( ) ( )( )2 2YX
HD X,Y max max min , max min

y x Xx y Y
x y x y

∈ ∈∈ ∈
= − −  [9]

Results

Segmentation performance comparison

During training, we used only 20% of the labeled data, 
following the common practice in most semisupervised 
tasks (35,37,39). The baseline model was V-Net with two 
encoder and decoder branches. We conducted a three-fold 
cross-validation to evaluate the performance of our method 
on the head and neck cancer and pancreatic cancer datasets, 
which was compared with other semisupervised and fully 
supervised methods.

The segmentation results (Table 2) showed that the 
single-modal CT images performed the worst on both 
datasets when using 20% of the labeled data, with the 
Dice and Jaccard metrics at 34.03% and 22.33% for the 
pancreatic cancer dataset and 40.64% and 29.99% for the 

head and neck cancer dataset, respectively. The low contrast 
of the CT images challenged the segmentation algorithm 
to distinguish different tissues or structures accurately. In 
addition, substantial noise and artifacts further contributed 
to blurred boundaries or erroneous segmentation results. 
In contrast, segmentation accuracy significantly improved 
when PET images were used, with the Dice and Jaccard 
metrics increased by 34.42% and 32.14% on the pancreatic 
cancer dataset and 22.49% and 21.58% on the head 
and neck cancer dataset, respectively. However, tumor 
heterogeneity and partial volume effects in PET images still 
yielded several inaccuracies. Simultaneous segmentation 
using PET and CT yielded better results in our baseline, 
with Dice scores of 70.52% and 66.61% for the pancreatic 
cancer and head and neck cancer datasets, demonstrating 
that multimodal PET/CT segmentation outperformed 
single-modal segmentation.

Our proposed MIM-CMFNet achieved promising 
overall segmentation performance on both datasets. With 
only 20% of the labeled training data, the average Dice 
score on the pancreas dataset reached 73.14%, representing 
a 2.62% improvement over the baseline. The 95HD 
was reduced from 10.19 to 6.30 mm, indicating better 
segmentation boundaries. On the head and neck cancer 
dataset, the average Dice score reached 68.71%, showing 
a 2.1% improvement over the baseline. The 95HD was 
reduced from 13.40 to 7.88 mm, further demonstrating 
improved segmentation accuracy. Our semisupervised 
framework achieved results close to the state-of-the-art fully 
supervised frameworks while reducing the annotation cost 
by 80%, demonstrating its practicability.

Furthermore, we compared our method with several 
advanced semisupervised segmentation methods, including 
DTC (35), MC-Net (37), and CML (44), which are based 
on consistency-driven semisupervised segmentation 
networks. DTC and MC-Net were originally designed 
for single-modal cardiac image segmentation, and we 
adapted these two models for multimodal images. CML 
is specifically designed for PET/CT head and neck 
cancer multimodal image segmentation. We ensured fair 
comparisons using the same network backbone (Bayesian 
V-Net) in all methods. The results showed (Table 2) that 
our method outperformed these approaches in all evaluated 
metrics. Figures 5,6 show the final segmentation effects of 
different methods on the pancreatic cancer dataset and the 
head and neck cancer dataset, respectively. 

In addition, we observed that tumor segmentation on 
the head and neck cancer dataset was significantly more 
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Table 2 Segmentation performance comparison of state-of-the-art methods on the pancreatic cancer and H&N cancer datasets with PET/CT 
(UA-MT) as the baseline of the experiment

Dataset Methods L U Dice (%) Jaccard (%) 95HD (mm)

Pancreas CT (UA-MT) 15 (20%) 60 34.03±3.64 22.33±2.38 15.98±2.74

PET (UA-MT) 15 (20%) 60 68.45±1.88 54.47±2.05 9.07±2.60

PET/CT (UA-MT) 15 (20%) 60 70.52±1.45 56.72±2.11 10.19±1.29

DTC (37) 15 (20%) 60 68.43±1.96 55.50±1.98 7.98±2.51

MC-Net (39) 15 (20%) 60 71.42±1.15 57.86±2.13 6.61±1.63

CML (46) 15 (20%) 60 71.86±2.76 58.15±2.31 7.37±2.31

Xue et al. (15) 75 (100%) 0 69.31±2.32 55.05±2.63 23.56±7.13

Zhong et al. (13) 75 (100%) 0 72.46±0.25 59.58±0.80 7.63±2.24

Wang et al. (4) 75 (100%) 0 76.20±0.53 63.08±0.70 6.84±3.27

Proposed 15 (20%) 60 73.14±2.71 60.56±2.35 6.30±2.49

H&N CT (UA-MT) 36 (20%) 144 40.64±2.62 29.99±2.38 17.22±3.32

PET (UA-MT) 36 (20%) 144 63.13±2.00 51.57±2.05 15.47±6.31

PET/CT (UA-MT) 36 (20%) 144 66.61±1.97 56.37±2.47 13.40±2.85

DTC (37) 36 (20%) 144 66.92±2.90 56.74±3.09 9.92±1.56

MC-Net (39) 36 (20%) 144 67.62±0.37 57.13±0.61 9.08±1.05

CML (46) 36 (20%) 144 66.15±1.91 56.47±0.89 10.74±1.33

Xue et al. (15) 180 (100%) 0 63.88±5.38 51.54±5.27 24.55±7.45

Zhong et al. (13) 180 (100%) 0 71.10±5.71 59.71±4.98 7.86±1.80

Wang et al. (4) 180 (100%) 0 74.14±2.77 62.96±2.24 6.41±1.01

Proposed 36 (20%) 144 68.71±1.16 57.72±1.38 7.88±1.77

The Dice score, Jaccard index, and 95HD are described as the mean ± standard deviation. 95HD, 95% Hausdorff distance; L, number of 
labeled samples (numbers in parentheses represent the proportion in the training set); U, number of unlabeled samples; CT, computed 
tomography; UA-MT, uncertainty-aware mean teacher; PET, positron emission tomography; DTC, dual-task consistency; MC-Net, mutual 
consistency network; CML, contrastive mutual learning; H&N, head and neck.

challenging compared to the pancreatic cancer dataset due 
to the significant variability in the shape, size, and location 
of head and neck cancer tumors, as they can occur in various 
locations within the head and neck region (4). Moreover, 
the head and neck cancer dataset came from five different 
medical centers, leading to differences in collection and 
quality, along with the presence of lymph nodes with high 
metabolic responses in PET images (56). These factors 
increased the difficulty of accurately segmenting the head 
and neck tumors.

Ablation study

We conducted ablation experiments to evaluate the 

effectiveness of the CMF and MIM modules (Table 3).
Compared with the baseline, adding the MIM module 

improved the Dice and Jaccard metrics by 0.65% and 
0.50%, respectively, and reduced the 95HD by 4.64 mm 
on the pancreatic dataset. On the head and neck cancer 
dataset, the Dice and Jaccard metrics increased by 1.35% 
and 1.17%, respectively, while the 95HD decreased by  
4.25 mm. The model with the CMF module increased the 
Dice and Jaccard metrics by 0.80% and 0.72%, respectively, 
and decreased the 95HD by 0.88 mm on the pancreatic 
cancer dataset. On the head and neck cancer dataset, the 
Dice and Jaccard metrics increased by 0.89% and 0.58%, 
respectively, while the 95HD decreased by 1.63 mm. 
Finally, the combination of both modules enhanced the 



Shao et al. Semi-supervised PET/CT medical image segmentation1758

© Quantitative Imaging in Medicine and Surgery. All rights reserved.   Quant Imaging Med Surg 2024;14(2):1747-1765 | https://dx.doi.org/10.21037/qims-23-1153

 Baseline DTC MC-Net CML XUE Zhong Wang Ours GT
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Figure 5 Visualization results of different segmentation methods for the pancreatic cancer dataset. (A-C) Each example shows the location 
of the lesion and the fine segmentation effect, and the blue box is used to indicate the fine segmentation effect. Green and red indicate 
the prediction and gold standard, respectively. From left to right: baseline, DTC (37), MC-Net (39), CML (46), Xue et al. (15), Zhong  
et al. (13), Wang et al. (4), our proposed method, and the ground truth. DTC, dual-task consistency; MC, mutual consistency; CML, 
contrastive mutual learning; GT, ground truth. 

segmentation accuracy. On the pancreatic cancer dataset, 
the Dice and Jaccard metrics of both modules increased by 
2.62% and 3.84%, respectively, while the 95HD decreased 
by 3.89 mm. On the head and neck cancer dataset, the Dice 
and Jaccard metrics of both modules increased by 2.1% 
and 1.35%, respectively, while the 95HD decreased by  
5.52 mm. Moreover, the proposed model demonstrated 
excellent segmentation performance and generalization 
ability across both datasets.

Analysis of the unlabeled data

We analyzed the importance of labeled and unlabeled data 
by experimenting with the baseline model to evaluate the 
performance improvement of our semisupervised approach 
with the addition of unlabeled data. The results (Table 4) 
showed that using only 20% of the data (15 labeled samples) 
for fully supervised pancreatic cancer segmentation resulted 
in an accuracy of 68.82%. Incorporating 60 unlabeled cases 
enhanced the segmentation accuracy to 70.52%, verifying 
that including unlabeled data improved segmentation 

performance. Similarly, the segmentation accuracy for 
the head and neck cancer dataset also improved with the 
addition of unlabeled data.

Discussion

Pancreatic tumor segmentation is crucial in the diagnosis 
and radiotherapy of pancreatic cancer. Semisupervised 
learning addresses the challenge of limited labeled data in 
medical image segmentation tasks. However, most existing 
semisupervised studies focus on single-modal data and 
cannot leverage complementary information in multimodal 
medical images (46). In this study, we thus designed a 
multimodal deep learning approach that fused PET/CT 
images with limited labeled data, leading to more accurate 
segmentation results.

Module analysis

Pancreatic tumor segmentation involves inherent 
challenges. The pancreas is a complex organ composed of 
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Figure 6 Visualization results of the different segmentation methods for the head and neck cancer dataset. Each example shows the location 
of the lesion and the fine segmentation effect, and the blue box is used to indicate the fine segmentation effect. Green and red indicate the 
prediction and gold standard, respectively. DTC, dual-task consistency; MC, mutual consistency; CML, contrastive mutual learning; GT, 
ground truth.

Table 3 Ablation experiments on pancreatic cancer and head and neck cancer datasets

Dataset Method Dice (%) Jaccard (%) 95HD (mm)

Pancreatic cancer Baseline 70.52±1.45 56.72±2.11 10.19±1.29

Baseline +MIM 71.17±1.48 57.22±1.81 5.55±0.48

Baseline + CMF 71.32±1.57 57.44±1.67 9.31±1.50

Ours 73.14±2.71 60.56±2.35 6.30±2.49

Head and neck 
cancer

Baseline 66.61±1.97 56.37±2.47 13.40±2.85

Baseline + MIM 67.96±0.77 57.54±0.72 9.15±1.93

Baseline + CMF 67.50±2.23 56.95±1.66 11.77±1.80

Ours 68.71±1.16 57.72±1.38 7.88±1.77

All results are described as the mean ± standard deviation. 95HD, 95% Hausdorff distance; MIM, mutual information minimization; CMF, 
cross-modal fusion.

three parts—the head, body, and tail—with a deep location 
and complex adjacent relationships, being surrounded by 
many important organs, blood vessels, lymphatic tissues, 
and other structures. In addition, pancreatic tumors 
often have similar densities to these surrounding tissues, 

leading to low contrast problems. Our proposed model 
outperformed the model of Xue et al. (15) (Table 2), 
demonstrating significant improvement in segmentation 
accuracy and tumor boundary delineation on both 
pancreatic cancer and head and neck cancer datasets. The 
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Table 4 Comparison of results of the models with and without unlabeled data

Dataset L U Dice (%) Jaccard (%) 95HD (mm)

Pancreatic cancer 15 0 68.82±0.82 55.54±1.07 13.95±3.65

15 60 70.52±1.45 56.72±2.11 10.19±1.29

Head and neck 
cancer

36 0 64.46±1.55 54.36±1.75 14.21±3.18

36 144 66.61±1.97 56.37±2.47 13.40±2.85

All results are described as the mean ± standard deviation. 95HD, 95% Hausdorff distance; L, number of labeled samples; U, number of 
unlabeled samples.

model proposed by Xue et al. (15) achieved reasonable 
results in liver tumor segmentation based on liver masks; 
however, its segmentation accuracy dropped significantly 
with more complex and variable tumors, particularly in 
pancreatic cancer and head and neck cancer. In contrast, 
our proposed MIM and CMF strategy demonstrated 
good segmentation performance on both datasets and 
effectively delineated tumor boundaries. The Dice and 
Jaccard segmentation metrics (Table 3) were improved for 
pancreatic cancer and head and neck cancers, while the 
95HD significantly decreased from 15.19 to 6.30 mm for 
pancreatic cancer, indicating a substantial enhancement 
in tumor boundary delineation. This improvement can be 
attributed to two key factors. First, mutual information 
measures the degree of correlation and dependence 
between two variables. Our M I M  module enhanced 
feature selection and refinement processes, eliminating 
irrelevant and redundant features and learning latent high-
level features from PET and CT images, thus providing 
complementary biological metabolism and anatomical 
structural information, respectively. The extraction of latent 
features helped obtain essential information and patterns 
from the original data. By fusing their high-level features, 
our approach gained a better understanding of pancreatic 
tumors, particularly in pancreatic tumor edge segmentation, 
for which it distinguished regions with similar density to 
surrounding tissues in CT images, improving segmentation 
accuracy. Second, the CMF module guided the model to 
focus on cross-dimensional and cross-channel information, 
adaptively adjusting the weights of various features. The 
high uptake characteristics of PET allowed for rapid 
identification of pancreatic tumor regions, compensating for 
the low contrast issue in CT. Incorporating CT information 
provided more accurate anatomical details, mitigating the 
impact of PET partial volume effects. In addition, the CMF 
interaction at different levels enhanced the model’s local and 
global perception, improving its ability to perceive features 

at various scales, thus demonstrating high discrimination 
for pancreatic tumor targets. The quality of feature maps  
(Figure 7) indicated that our approach produced feature 
maps with clearer boundary effects compared to the baseline 
model.

Importance of unlabeled data for semisupervised learning

The manual annotation of multimodal data by radiologists 
for segmentation tasks is laborious and resource-intensive. 
Unlike fully supervised segmentation approaches that 
rely heavily on considerable labeled data for training, our 
semisupervised multimodal segmentation method achieves 
near-fully supervised performance with only 20% labeled 
data. First, incorporating a large amount of unlabeled data 
improved the model’s generalization and performance by 
expanding the training dataset and reducing overfitting. 
Second, the model could learn more diverse and rich 
feature representations. Through semisupervised learning 
on unlabeled data, the model explored the distribution 
and hidden structural features in a broader sample space. 
These learned feature representations were transferred to 
the labeled data to improve the model performance on the 
labeled data. Third, introducing unlabeled data acted as 
a regularization technique. By imposing the consistency 
constraint of unlabeled data, the model generated more 
consistent predictions, enhancing its robustness.

Limitations and future work

Although our method achieved good segmentation results 
on pancreatic cancer and head and neck datasets with 
limited labeled data, it still faced challenges in accurately 
segmenting extreme cases due to the lack of pixel-level 
annotated data. Therefore, future work may explore 
interactive techniques to assist in segmentation and to 
enhance segmentation performance. Moreover, our 
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Baseline Ours

Figure 7 Comparison of the feature maps of baseline and proposed methods. Our approach produces feature maps with clearer edges, 
while the baseline exhibits stronger edge adhesion, indicating that our method better distinguishes the tumor from the surrounding tissue 
structures, resulting in improved segmentation accuracy.

network was based on strictly paired multimodal data, but 
in clinical practice, it is often challenging to acquire a large 
amount of paired PET/CT data. Therefore, in the future, it 
would be worth exploring the use of the recent and popular 
generative adversarial networks to generate synthetic PET 
images. This approach can help reduce the reliance on 
multimodal PET/CT image data and enhance the versatility 
of our algorithm in clinical applications. 

Conclusions

This study proposed MIM-CMFNet for semisupervised 
medical image segmentation. Our method minimized 
mutua l  in format ion ,  u s ing  mutua l  in format ion 
regularization to extract salient features from each modality, 
reducing redundancy between the PET and CT modalities, 
and utilizing knowledge from the unlabeled data. In 
addition, our proposed CMF module facilitated information 
interaction between the two modalities, enabling better 
integration of CT information to guide PET segmentation. 

Experimental results on the pancreatic cancer and head and 
neck cancer datasets demonstrated that MIM-CMFNet 
outperformed existing semisupervised segmentation 
methods and achieved comparable performance to most 
fully supervised multimodal methods, thus exhibiting 
favorable generalization ability and potential for clinical 
application.
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