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Background: Fundus fluorescein angiography (FFA) is an imaging method used to assess retinal vascular 
structures by injecting exogenous dye. FFA images provide complementary information to that provided by 
the widely used color fundus (CF) images. However, the injected dye can cause some adverse side effects, and 
the method is not suitable for all patients.
Methods: To meet the demand for high-quality FFA images in the diagnosis of retinopathy without 
side effects to patients, this study proposed an unsupervised image synthesis framework based on dual 
contrastive learning that can synthesize FFA images from unpaired CF images by inferring the effective 
mappings and avoid the shortcoming of generating blurred pathological features caused by cycle-consistency 
in conventional approaches. By adding class activation mapping (CAM) to the adaptive layer-instance 
normalization (AdaLIN) function, the generated images are made more realistic. Additionally, the use 
of CAM improves the discriminative ability of the model. Further, the Coordinate Attention Block was 
used for better feature extraction, and it was compared with other attention mechanisms to demonstrate 
its effectiveness. The synthesized images were quantified by the Fréchet inception distance (FID), kernel 
inception distance (KID), and learned perceptual image patch similarity (LPIPS).
Results: The extensive experimental results showed the proposed approach achieved the best results with 
the lowest overall average FID of 50.490, the lowest overall average KID of 0.01529, and the lowest overall 
average LPIPS of 0.245 among all the approaches.
Conclusions: When compared with several popular image synthesis approaches, our approach not only 
produced higher-quality FFA images with clearer vascular structures and pathological features, but also 
achieved the best FID, KID, and LPIPS scores in the quantitative evaluation.
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Introduction

Fundus fluorescein angiography (FFA) is a significant 
diagnostic tool for understanding pathophysiological 
mechanisms and guiding treatment (1). Sodium fluorescein 
is injected into the human body through a vein and the 
structure of the retinal blood vessels is imaged through 
the blood circulation. However, the application of this 
technology causes varying degrees of damage to patients’ 
bodies. Further, fluorescein leakage may occur if the 
procedure is not performed correctly. It is also unsuitable 
for some patients, such as the elderly, those with poor 
kidney function, hyperglycemia, hypertension, and allergies. 
Therefore, it is not easy to obtain high-quality FFA images.

Optical coherence tomography (OCT) (2) has become 
increasingly popular in recent years, as it is radiation-
free, non-invasive, high resolution, and affordable. High 
resolution cross-sectional imaging of the retina is possible; 
however, it requires a high level of patient cooperation 
during image acquisition and cannot provide direct 
information about blood flow. Further, if patients are not 
careful, severe motion artifacts or data loss may occur. 
Optical coherence tomography angiography (OCTA) is 
an emerging, non-invasive imaging modality that provides 
information about the vascular structure of the retina and 
choroid, which can provide a detailed view of vascular 
occlusion and vascular compromise by the quantitative 
assessment of the severity of diabetic retinopathy (3). 
Further, OCTA can also provide high-resolution vascular 
images that display vascular abnormalities in the macular 
region, including choroidal neovascularization in patients 
with wet age-related macular degeneration. However, due 
to the high cost of the equipment, OCTA is not widely 
available at some small-sized hospitals.

At present, color fundus (CF) images (4) are the main 
tool for the diagnosis of retinal diseases, as the CF method 
is more accessible than most other methods and the 
equipment for this method is cheaper than that required 
by other methods. However, due to the low resolution of 
CF images, it is not entirely reliable as a diagnostic tool for 
retinal diseases.

The appearance  of  CF and FFA images  d i f fer 
significantly. As existing FFA image synthesis methods 
cannot accurately represent the pathological location and 

corresponding pathological structure of the retina, their 
clinical application value is low. In addition, due to the 
insufficient number and type of data sets, the models have 
poor generalizability. A more effective method of converting 
CF images to higher quality FFA images in unpaired data 
sets, without increasing the risk to patients, may reduce the 
need for authentic FFA images and improve the diagnostic 
accuracy of retinal disease.

Medical image synthesis is mainly used to: (I) increase 
the data diversity, which traditional data enhancement 
methods cannot effectively do; (II) reduce the acquisition 
time and the risk of side effects for patients; and (III) 
convert multimodal images to unimodal images before 
image registration to avoid the problems caused by 
inconsistent correspondence features and improve the 
registration accuracy to some extent.

Synthesizing FFA images from CF images is equivalent 
to image-to-image (I2I) translation (i.e., translation from 
the CF domain to the FFA domain). With the emergence of 
deep learning, generative adversarial networks (GANs) (5)  
have been widely used to solve I2I problems, such as image 
style transfer (6), image denoising (7), and image super-
resolution (8). GANs have also been applied to medical 
imaging, such as computed tomography (CT) synthesis 
from magnetic resonance imaging (MRI) (9,10), super-
resolution cardiac MRI (11), and positron emission 
tomography to CT translation (12).

The proposed FFA image synthesis approaches can be 
split into supervised (paired) and unsupervised (unpaired) 
approaches, depending on whether the data sets are paired 
or not. Researchers have proposed supervised approaches 
(13,14) that learn the direct mapping between two domains 
based on the U-Net structure (15). However, such 
approaches are unsatisfactory, as the methods can only 
learn the pixel-to-pixel mapping. In addition, multimodal 
image registration followed by image generation can 
complicate the task of image synthesis. Kamran et al. 
proposed a conditional GAN (CGAN)-based (16) approach 
for the generation of FFA images from a coarse-to-fine  
framework (17). Li et al. developed a separate representation 
method (18) based on the CGAN, and while their evaluation 
index results were better than others, the generated retinal 
vascular structure and pathological features were inaccurate. 
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Subsequently, Tavakkoli et al. (19) increased the number 
of discriminators from two to four. Based on this, Kamran 
et al. added an attention mechanism (20). After which, 
Kamran et al. proposed the image generation method using 
vision transformers (21) to replace the discriminator as an 
improvement (22). The generated normal retinal image 
was clearer than before; however, there is still room for 
improvement in the generation of the vascular structure and 
pathological features of the abnormal retina.

In relation to the unsupervised approaches, the methods 
proposed by researchers (23,24) have been largely similar 
to the cycle-consistent GAN (CycleGAN) (25), and the 
pathological features in the generated images are relatively 
fuzzy. Cai et al. introduced a triple multiscale structure to 
the CycleGAN to strengthen the similarity between the CF 
and FFA domains (26). However, due to the cycle-consistent 
property, the fake images have similar global features to the 
real images in the target domain, preventing the generation 
of accurate pathological structures that can be directly used 
for disease diagnosis. Further, in the absence of supervisory 
information, it is difficult to obtain better results if the data 
sets are not large enough.

The pathological features of the retinal images generated 
by the supervised methods are superior to those generated 
by the unsupervised methods; however, public paired retinal 
data sets are scarce, and lack expert annotation, which 
has limited the value of supervised methods in clinical 
applications. The CycleGAN structure is the mainstay of 
current unsupervised FFA synthesis approaches. The results 
obtained by these unsupervised methods are unsatisfactory 
in terms of the vascular structure and pathological 
characteristics, and thus cannot be applied to the clinical 
diagnosis of retinal diseases.

Several unsupervised I2I translation approaches based 
on cycle-consistency have been proposed. Based on the 
CycleGAN, the unsupervised generative attentional 
network with adaptive layer-instance normalization for 
image-to-image translation (U-GAT-IT) (27) model 
developed for better feature embedding that relies on class 
activation mapping (CAM) (28) and the adaptive layer-
instance normalization (AdaLIN) function (27) and has 
all the advantages of the adaptive instance normalization 
(AdaIN) (29), instance normalization (IN) (30) and layer 
normalization (LN) (31). However, the U-GAT-IT can only 
ensure that the basic shape of real and fake images is not 
significantly changed. Additionally, too many discriminators 
may generate some unnecessary parts. However, the 
CycleGAN and U-GAT-IT rely on the pixel information 

of the input images to achieve image reconstruction, which 
may introduce some errors. The geometry-consistent  
GAN (32) replaced the cycle-consistency with the 
geometry-consistency, which may help the model to reduce 
semantic errors during the I2I translation.

On the strength of  contrast ive learning,  some 
approaches have been put forward to address the problems 
of I2I translation. Contrastive learning for unpaired I2I 
translation (CUT) (33) introduced contrastive learning 
to maximize the mutual information shared between 
corresponding patches of real and fake images. CUT 
achieves the efficiency of contrastive learning by adopting 
an embedding approach between two domains that focuses 
only on what the two domains have in common and ignores 
the differences between them. Based on the CycleGAN and 
CUT, the dual contrastive learning GAN (DCLGAN) (34)  
learns the correspondence between real and fake image 
patches to maximize mutual information using a separate 
embedding block, which avoids the disadvantage of the 
cycle-consistency.

Models can sometimes be improved by the addition of 
some attention mechanisms, such as the commonly used 
channel attention mechanisms self-attention (35), the 
squeeze-and-excitation (SE) block (36), and the spatial and 
channel squeeze-and-excitation (scSE) block (37). However, 
these methods only focus on the information on the channel 
and ignore other information. The convolutional block 
attention module (CBAM) (38) focuses on the information 
on the channel, height, and weight, but may yield some 
ambiguous information. The coordinate attention (CA) 
block (39) takes both horizontal and vertical information 
into consideration, which may help the model generate more 
accurate information than the aforementioned methods.

The main contributions of this study are summarized 
as follows: (I) inspired by the DCLGAN and lightweight 
unsupervised generative attentional network with AdaLIN 
for I2I translation (L-U-GAT-IT), we first developed an 
unsupervised dual contrastive learning framework for 
FFA image synthesis, called the dual contrastive learning 
attention GAN (DCLAGAN), which also addressed 
the issue of multimodal retinal image registration. The 
correspondence between the real and generated image 
patches can be learned using a separate embedding block to 
maximize mutual information and derive effective mappings 
between unpaired images. Dual contrastive learning can 
avoid the fuzzy pathological features caused by cycle-
consistency in conventional unsupervised approaches 
and improve the reference value of the generated images 
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in retinal diseases; (II) DCLAGAN used the CAM with 
an AdaLIN function (CAM-A) based on global average 
pooling (GAP) and global max pooling (GMP) as an 
attention-guiding model for the generator to distinguish 
whether an area is vital or not and to make the generated 
images more realistic. A similar CAM structure was also 
added to the discriminator to help the discriminator to 
more accurately distinguish between the generated and 
real images; (III) DCLAGAN appended CA blocks to 
the encoder in the generator to improve the process of 
dual contrastive learning, which can achieve more useful 
positional information for feature extraction and more 
accurately locate the corresponding vascular structures in 
the generated images.

Methods

Network architecture

The study was conducted in accordance with the Declaration  

of Helsinki (as revised in 2013). Figure 1 depicts the 
proposed DCLAGAN, which includes domains A (CF 
images) and B (FFA images), generators G1 and G2, and 
discriminators D1 and D2. We define the encoders of G1 and 
G2 as G1enc, and G2enc, respectively, and the decoders of G1 
and G2 as G1dec and G2dec, respectively. Generators are used to 
translate the input images into another image domain. To 
ensure that the generated images are in the correct domain, 
discriminators are used to determine whether the input 
images are real or fake.

We set G1enc with H1 [two-layer multilayer perceptron 
(MLP) projection] as embedding A, and G2enc with H2 (two-
layer MLP projection) as embedding B. Image features 
can be extracted from the second and third encoder 
layers, and the first and last residual neural network blocks 
(ResnetBlocks). The information extracted from the four 
layers can be sent to H1 or H2. We define the CA block 
as CA, the ResnetAdaLINBlocks as Ada, the patch noise 
contrastive estimation (PatchNCE) loss as NCE1 and NCE2 
loss, and the adversarial loss as GAN1 and GAN2 loss.
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Figure 1 The overall framework of the DCLAGAN. G1 and G2, generators. D1 and D2, discriminators. G1enc and G2enc, the encoders 
of G1 and G2, respectively. G1dec and G2dec, the decoders of D1 and D2, respectively. H1 and H2, two-layer MLP projections. NCE, noise 
contrastive estimation; CA, coordinate attention block; CAM, class activation mapping; GAN, generative adversarial network; Ada, 
ResnetAdaLINBlocks.
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Real images are fed into the generator and the other 
generator with identity loss to produce the fake and identity 
images, respectively. By the dual contrastive learning of two 
mappings (G1: A→B and G2: B→A), the translation between 
the CF and FFA images can be realized.

Generator

Figure 2 uses the mapping direction of G1: A→B as 
an example. We input the real A image into the four 
ResnetBlocks and perform down-sampling to output 
the encoder feature map. We use the encoder feature 
map as input for the CAM-A, including the CAM, fully 
connected (FC) layers, and ResnetAdaLINBlocks. After 
which, we generate the attention feature map based 
on the auxiliary classifier ƞ1. Through GAP and the 
FC layers, the parameters of γ and β are input into the 
ResnetAdaLINBlocks. Ultimately, the generated images 
(fake B) are produced by up-sampling.

Figure 3A shows the detailed structure of the CAM. 
Specifically, the working process of CAM can be split into 
two main steps. First, through the GAP, GMP, GMP_FC, 
and GAP_FC, we can obtain the auxiliary classifier, which 
can calculate the probability that the input images are from 
the CF domain or FFA domain. Second, by multiplying 
the encoder feature map and the weights of each encoder 

feature map generated by the auxiliary classifier, we can 
obtain the GMP and GAP attention feature map, and join 
them together based on the auxiliary classifier. Finally, 
we can obtain the results of the attention feature maps 
through the convolution layer and the activation function. 
CAM can determine the significance of image regions 
by using its’ superior localization ability. The attention 
feature map output from the CAM is used as the input to 
the FC layer, and the output provides two parameters, γ 
and β. Next, the obtained parameters are substituted into 
the ResnetAdaLINBlocks, and the synthesized image is 
finally generated by the decoder. In this work, the attention 
guidance model CAM-A not only supports the model by 
ensuring better feature extraction by focusing on the vital 
information, but also makes the generated images look 
more realistic.

Figure 3B,3C show the structures of ResnetBlock and 
ResnetAdaLINBlock. Among them, the ReflectionPad, 
Convolution and InstanceNormed layers are included in 
the ResnetBlock structure. The ReflectionPad layers, the 
Convolution layers and the AdaLIN functions are contained 
in the structure of the ResnetAdaLINBlock. The AdaLIN 
function in the ResnetAdaLINBlock can flexibly maintain 
or change the information of the images according to the 
actual situation by dynamically adjusting the ratio of IN to 
LN; IN is a normalization operation for each channel in 
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Encoder Decoder

256

Down-sampling

Auxiliary classifier

EnConv layer

CA Block CAM

ResnetBlock Fully connected layer

ResnetAdaLINBlock

DeConv layer

CAM-A Up-sampling

256128 128
64 64

Figure 2 The structure of the generator G1. EnConv layer, the convolution layer in the encoder; DeConv layer, the convolution layer in 
the decoder; CA Block, coordinate attention block; CAM, class activation mapping; CAM-A, class activation mapping with adaptive layer-
instance normalization function.
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each image, which can maintain the independence between 
each image and preserve the content information in the 
source images; LN is a normalization operation for different 
channels of the same layer in each image, which can 
preserve different features in different channels and ensure 
that the different features between the generated images can 
be attenuated simultaneously. Specifically, LN allows more 
thorough style translation of the generated images than IN.

The AdaLIN function is expressed as:

( ) ( )( )ˆ ˆ, , 1IN LNAdaLIN α γ β γ ρ α ρ α β= ⋅ ⋅ + − ⋅ + 	 [1]
 

( )[0,1]2 2
ˆ ˆ, ,IN LN

IN LN

IN LN

clipα µ α µα α ρ ρ η ρ
σ χ σ χ

− −
= = ← − ∆

+ +
	 [2]

where µIN,  µLN, and σ IN
2, σLN

2
 represent the mean and 

variance by normalizing the input images at the channel 
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Figure 3 The structures of the CAM, ResnetBlock, and ResnetAdaLINBlock. (A) The structure of CAM. (B) The structure of ResnetBlock. 
(C) The structure of ResnetAdaLINBlock. GMP, global max pooling; GAP, global average pooling; FC, the fully connected layer; Concat, 
the concatenation operation; Weight, the weight of each encoder feature map generated by the auxiliary classifier; Conv, the convolution 
layer; AdaLIN, adaptive layer-instance normalization; ResnetBlocks, residual neural network blocks; ReLU, the rectified linear unit 
activation function; CAM, class activation mapping.
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and layer levels, respectively. The parameters of γ and β are 
dynamically obtained from the output of FC. The ρ is the 
probability value from 0 to 1 that can adaptively balance 
the ratio between IN and LN. The initial value of ρ in 
ResnetAdaLINBlocks is 1, while the initial value in up-
sampling is 0. ƞ represents the learning rate. ∆ρ represents 
the update vector (27).

The realization of the CA block (Figure 4A) can be 
split into two steps. First, the coordinate information is 
embedded to obtain accurate position information. The 
output channels of the c-th at h or w are expressed as:

( ) ( )
0

1 ,h
c c

m W
p h x h m

W ≤ ≤

= ∑ 	 [3]

( ) ( )
0

1 ,w
c c

n H
p w x n w

H ≤ ≤

= ∑ 	 [4]

Second, the coordinated information is generated. A 
concatenation operation and a convolution function F 
are used to reduce the dimension of C and integrate the 
feature maps of the W and H orientations. Next, the weight 

information of each dimension can be obtained by using 
batchnorm2d and the non-linear activation function δ as 
follows:

( )( ) ( )/, , C r H Wh wf F p p f Rδ × + = ∈  	 [5]

where [∙,∙] represents the concatenation operation. The 
( )/C r H Wf R × +∈  represents the feature map that can encode 

spatial information in the H and W directions. The r can 
be used to control the size of the block. Further, the split 
function is used to split f into two tensors, using the F 
function and the activation function σ to generate each 
channel of weight along the H or W orientations, which are 
expressed as:

( )( ) /,h h h C r H
hg F f f Rσ ×= ∈ 	 [6]

( )( ) /,w w w C r W
wg F f f Rσ ×= ∈ 	 [7]

The entire function is expressed as:

( ) ( ) ( ) ( ), , h w
c c c cy m n x m n g m g n= × × 	 [8]
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Figure 4 The structures of the CA block and discriminator, D2. (A) The structure of the coordinate attention block. (B) The structure of 
the discriminator D2. X Avg Pool, 1D horizontal global pooling; Y Avg Pool, 1D vertical global pooling; Conv2d, 2D convolution layer; 
BatchNorm, batch normalization; Non-linear, non-linear activation function; Sigmoid, sigmoid activation function; Enconv layer, the 
convolution layer in encoder; CAM, class activation mapping; C, the channel; H, the height; W, the width; r, the reduction ratio.
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Unlike the widely used channel attention mechanisms, 
the self-attention and SE blocks focus only on channel 
attention and ignore information about H  and W 
orientations. When these attention mechanisms are 
added to the proposed model, the vascular structures in 
the generated images become fuzzier than before. Some 
attention mechanisms, such as the scSE block and CBAM, 
combined with the information from H, W, and C, cannot 
obtain the information of the exact locations. The CA block 
can embed spatial coordinate information into the channel 
attention mechanism (39). In this way, generated images 
with more accurate locations of vascular structures and 
pathological features can be obtained.

Discriminator

Figure 4B uses D2 as an example. D2 is a multi-scale 
structure that includes the encoder, the auxiliary classifier 
ƞD2, and the classifier. By inputting real B and fake B 
images, the D2 encoder can output the encoder feature 
map. The encoder feature map is then used as the input 
for the CAM. The output of the attention feature map 
from the CAM based on ƞD2 can optimize the classifier 
by concentrating on the difference between the real and 
generated images in domain B.

Loss functions

The proposed approach has the following four loss 
functions: GAN loss, PatchNCE loss, CAM loss, and 
identity loss. The GAN loss ensures that the fake images are 
as similar as possible to the target domain. For the mapping 
G1: A→B, the GAN1 loss is expressed as:

( ) ( ) ( )( )( )1 1 2 ~ 2 ~ 2 1, , , log log 1GAN b B a AL G D A B E D b E D G a = + −     	 [9]

where G1 encourages G1(a) to look similar to the target 
domain, while D2 tries to distinguish G1(a) from real images 
in domain B. Analogously, for the mapping G2: B→A, the 
GAN2 loss is expressed as:

( ) ( ) ( )( )( )2 2 1 ~ 1 ~ 1 2, , , log log 1GAN a A b BL G D A B E D a E D G b = + −     	 [10]

The contrastive learning problems consist of three 
signals; that is, the query q, positive p+, and N negative p−. q 
is associated with p+ and then compared with the signal p−. 
q, p+, and N p− are mapped to D-dimensional vectors. They 
are denoted as h, Dh R+ ∈ , and N Dh R− ×∈ . The samples are 

normalized to form an (N + 1) classification problem. The 
cross-entropy loss is expressed as:

( ) ( )( )
( )( ) ( )( )1

exp ,
, , log

exp , exp ,N
nn

sim h h t
h h h

sim h h t sim h h t

+

+ −

+ −
=

= −
+∑

 	 [11]

where the distance between q and the other samples is 
scaled by the temperature parameter t, q refers to the 
output, and p+ and p− refer to the corresponding and non-
corresponding inputs, respectively.

To ensure that the corresponding patches between fake 
and real images are as similar as possible and different from 
other patches, we exploit the noisy contrastive estimation 
framework (40), which can extract features from domains 
A and B without sharing weights between the two parts 
of the embedding blocks for A and B. Thus, we can learn 
better embedding information and obtain variability in 
two different image domains A and B. Next, the images are 

embedded into the stack of features { } ( )( ){ }1 1
l l

l encL L
w H G a= , 

where 1
l
encG  represents the output of layer l.

The result of each feature represents an image patch, and 
each feature has the goal of matching the corresponding 
patches between real and fake images. The spatial positions 
in the selected four layers are denoted as { }1,..., ls S∈ . The 
corresponding positive features are denoted as s z

lw R∈ , 

( )1l lz S C= − × . For G1(a), we use the embedding B and obtain 

other stacks of features { } ( )( )( ){ }2 2 1ˆ l l
l encL L

w H G G a=  (34).  
The mapping G1: A → B PatchNCE1 loss is expressed as:

( ) ( )/
1 1 1 2 ~

1 1

ˆ, , , , ,
lSL

s s S s
PatchNCE a A l l l

l s
L G H H A E w w w

= =

= ∑∑ 	 [12]

Similarly, the mapping G2: B → A PatchNCE2 loss is 
expressed as:

( ) ( )/
2 2 1 2 ~

1 1

ˆ, , , , ,
lSL

s s S s
PatchNCE b B l l l

l s
L G H H B E w w w

= =

= ∑∑
	 [13]

The attention feature map generated by CAM-A in 
the generators or CAM in the discriminators are used to 
learn the areas in which they need to improve or to better 
distinguish the real images from the fake images. The losses 
of CAM in the generators are expressed as:

( ) ( )( ) ( )( )( )1 ~ 1 ~ 1log log 1GCAM a A b BL A E a E aη η   = − + −    	 [14]

( ) ( )( ) ( )( )( )2 ~ 2 ~ 2log log 1GCAM b B a AL B E b E bη η   = − + −    	 [15]

Where the ƞ1 and ƞ2 refer to the auxiliary classifier in 
G1 and  G2. The CAM losses in the discriminators are  
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expressed as:

( ) ( )( )( ) ( )( )( )22
1 1 2 ~ 2 ~ 2 1, , , 1DCAM b B a AL G D A B E D b E D G aη η = + −   	 [16]

( ) ( )( ) ( )( )( )22
2 2 1 ~ 1 ~ 1 2, , , 1DCAM a A b BL G D A B E D a E D G bη η  = + −    

	 [17]

where ƞD1 and ƞD2 are defined as the auxiliary classifiers in 
D1 and D2 respectively.

The identity loss is added to avoid unnecessary 
changes generated by the generators and to encourage the 
mappings to maintain the similar colors between the real 
and fake images in the same domain. The loss of identity is 
expressed as:

( )Identity 1 2 ~ 2 ~ 11 1
, ( ) ( )a A b BL G G E G a a E G b b   = − + −    	 [18]

The entire loss function is expressed as:

( )
( )
( )
( )

1 2 1 2 1 2

1 1 2 2

1 2

1 2

, , , , ,

GAN GAN DCAM GAN DCAM

NCE PatchNCE PatchNCE

CAM GCAM GCAM ID Identity

L G G D D H H

L L L L

L L

L L L

λ

λ

λ λ

= + + +

+ +

+ + +

	 [19]

Implementation details

We ran our proposed approach in Pytorch. We trained our 
model and other comparative models on NVIDIA A100 
GPU. We set λGAN =1, λNCE =1, λCAM =1,000, λID =10, batch 
size =1. We chose the Adam optimizer with β1 =0.5 and β2 

=0.999. The model was trained using the following learning 
rate: 0.0001 up to 200 epochs, and a linearly decaying zero 
up to 400 epochs.

Data sets

CF-FFA
We compared the DCLAGAN with other comparison 
models using the public data set provided by Isfahan 
medical image and signal processing (MISP) (41), which 
comprises 59 pairs of unaligned CF and FFA images with a 
resolution of 720×576. Among them, 29 pairs were healthy 
retinal images from 29 healthy individuals, and 30 pairs 
were retinal images from 30 individuals with diabetes. 
We selected 42 pairs as the training data set and extracted 
eight pairs with a crop size of 512×512 in each image. After 
data augmentation and image resizing, the training data 
set comprised 1,680 images with a resolution of 256×256. 
We used the other 17 pairs as the testing data set and 

extracted 16 with a random crop in each image. Ultimately, 
the testing data set comprised 272 pairs of images with a 
resolution of 256×256. All of the images from the training 
and testing data sets were converted to the red green blue 
(RGB) format.

OCT-OCTA
The data set comprised 200 OCT and 200 OCTA 
projection maps with a resolution of 304×304, including 
160 normal and 40 abnormal pairs. After data augmentation 
and image resizing, we had 800 pairs for training and  
200 pairs for testing with a resolution of 256×256. All the 
data were acquired from the OCTA-500 data set (with a 
3-mm view) (42).

Horse-Zebra
The data set comprised 1,068 horse and 1,335 zebra images 
for training and 120 horse and 140 zebra images for testing 
with a resolution of 256×256. All the data were acquired 
from ImageNet (43).

Cat-Dog
The data set comprised 5,153 cat and 4,739 dog images for 
training and 500 cat and 500 dog images for testing with 
a resolution of 512×512. All the data were acquired from 
StarGAN2 (44). The images were resized with a resolution 
of 256×256 before training and testing.

Metrics

Fréchet inception distance (FID)
The feature distance between real and fake images (45) was 
measured using the following formula:

( ) ( )2, 2a b a b a bFID a b Trµ µ σ σ σ σ= − + + − × 	 [20]

where µa and µb refer to the mean feature value of the real 
and generated images, σa and σb refer to the covariance 
of the real and generated images, respectively, and Tr 
represents the trace of the matrix. Each image generated 
2,048 feature vectors through the Inception Net-V3 (45). 
The more realistic the generated images, the smaller the 
FID value.

Kernel inception distance (KID)
The square of the maximum mean discrepancy between the 
distributions of Pa and Pb was calculated to assess the quality 
of the fake b images (46) using the following formulas:
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( ) ( ) ( ) ( ), '~ ~ , ~ , '~, , ' 2 , , '
a a b ba a P a P b P b b PKID a b E k a a E k a b E k b b= − +           	 [21]

( )
31, 1Tk a b a b

d
 = + 
 

	 [22]

where k is the feature kernel, d =2,048 is the dimension 
of the feature vector, and a' and b' are the new samples 
obtained after adding polynomial features. The smaller the 
KID, the closer the two distributions, and the better the 
quality of the images produced by the model.

Learned perceptual image patch similarity (LPIPS)
The distance between the real a and fake b images were 
computed at the perceptual level. The lower the value, the 
higher the degree of similarity between the images. The 
feature extraction process was performed by the trained 
network, and the distance of the feature maps between the 
a and b images in the layer l was output. Next, the vector W 
was used for scaling, and the L2 distance was calculated at 
the channel level (47). The distance function is expressed as 
follows:

( ) ( ) 2

2,

1 ˆˆ, ,

ˆˆ , ,l l l l

l l
l hw hw

l h wl l

H W C Cl l l

d a b w a b
H W

a b R w R× ×

= −

∈ ∈

∑ ∑ 

	 [23]

Baselines

The current unsupervised FFA image synthesis approaches 
are mainly based on the strength of the CycleGAN. 
Therefore, we used the CycleGAN as our comparison 
model. In addition, several popular unsupervised image 
synthesis approaches related to the DCLAGAN were 
selected as the contrast models, including the U-GAT-IT, 
L-U-GAT-IT, GcGAN, CUT, and DCLGAN.

Results

There were three main stages to the experiments for 
which the CF-FFA data set was used. First, we analyzed 
the effectiveness of the CAM-A in the generator and the 
CAM in the discriminator (Figure 5 and Table 1). Second, 
we compared the effectiveness of different attention 
mechanisms using the proposed model without CA blocks as 
a baseline (Figure 6 and Table 2). Third, the DCLAGAN was 
compared with other popular image synthesis approaches 
using the same training and testing samples (Figures 7,8 
and Table 3). We also used the OCT-OCTA, Horse-
Zebra and Cat-Dog data sets to verify the generalization 

and robustness of the DCLAGAN (Figures 7,9,10).  
In addition, to facilitate the qualitative analysis of the 
synthesized retinal images, the synthesized FFA and OCTA 
images were classified into the following two categories: 
normal and abnormal images (Figures 8,9).

Discussion

We chose CAM-A as an attention-guiding model for the 
generators to help the model embed stylistic features into 
content features more accurately, and we used CAM in 
the discriminators to improve the discriminative capacity 
of model. In the absence of the CA block, we verified 
the effectiveness of the CAM-A in the generators and 
the CAM in discriminators using the metrics of the FID, 
KID, and LPIPS. As detailed in Table 1, when we used the 
CAM-A, the mean values of the FID, KID, and LPIPS 
were decreased by 2.278, 0.00053, and 0.011, respectively. 
When we used the CAM in the discriminators, the FID, 
KID, and LPIPS were reduced by 2.173, 0.00358, and 0.012, 
respectively. Further, if we added the CAM-A and the CAM 
at the same time, the three metrics were reduced by 4.981, 
0.00565, and 0.009, respectively.

The effectiveness of CAM-A and CAM can also be seen 
in the comparisons displayed in Figure 5. Notably, the 
magnified images in Figure 5, F2 are more similar to the real 
FFA images in Figure 5, B2 than the other images, and the 
location of the vessels is clearer than in Figure 5, C2,D2,E2. 
Additionally, the pathological characteristics in the first row 
of Figure 5, F2 are more obvious than those in the first rows 
of Figure 5, C2,D2,E2. The CAM fine-tunes the model by 
helping it to determine what to focus on or ignore; however, 
the location of vessels in Figure 5, E2 is not as accurate 
as that in Figure 5, F2 when compared with Figure 5, A2. 
From the attention maps generated by the generator in 
Figure 5, D3,F3, the darker the color of the attention maps, 
the more attention the items receive. We can see that while 
the CAM-A can guide the model to focus on the area of the 
retina and ignore the area without the retina, the location 
of the retinal edge vision is not distinguished more clearly 
than the model in which the CAM-A and CAM are used 
together.

To verify the effectiveness of the CA block, some 
attention mechanisms, including the channel attention 
mechanisms (the self-attention and SE blocks), and the 
channel combined with the spatial attention mechanisms 
(the scSE block and CBAM) were chosen for the 
comparisons. As detailed in Table 2, the mean scores of the 
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Figure 5 Ablation analysis of the CAM-A and CAM. (A1,A2) real CF images. (B1,B2) Real FFA images. (C1,C2) Synthesized images 
of DCLGAN. (D1,D2) Synthesized images of DCLGAN with CAM-A. (E1,E2) Synthesized images of DCLGAN with CAM. (F1,F2) 
Synthesized images of DCLGAN with CAM-A and CAM. (D3) Attention maps generated by the generator using CAM-A. (F3) Attention 
maps generated by the generator using CAM-A and CAM. The prominent pathological features or key vascular locations in each image are 
magnified with red frames. CAM, class activation mapping; CAM-A, class activation mapping with adaptive layer-instance normalization 
function; CF, color fundus; FFA, fundus fluorescein angiography; DCLGAN, dual contrastive learning generative adversarial network.

Table 1 The effects of the CAM-A and CAM

Methods FID↓ KID×100↓ LPIPS↓

DCLGAN 58.914±1.854 2.453±0.169 0.256±0.013

DCLGAN + CAM-A 56.636±0.915 2.400±0.216 0.245±0.004

DCLGAN + CAM 56.741±0.032 2.095±0.308 0.244±0.008

DCLGAN + CAM-A + CAM 53.933±0.338 1.888±0.200 0.247±0.006

The values are presented as the mean ± standard deviation. ↓ means smaller numbers are better. CAM-A, class activation mapping with 
adaptive layer-instance normalization function; CAM, class activation mapping; FID, Fréchet inception distance; KID, kernel inception 
distance; LPIPS, learned perceptual image patch similarity; DCLGAN, dual contrastive learning generative adversarial network.
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A1 B1 C1 D1 E1 F1 G1 H1

A2 B2 C2 D2 E2 F2 G2 H2
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C4 D4 E4 F4 G4 H4

D3 E3 F3 G3 H3

Figure 6 Visualization of the synthesized images and attention maps with different attention mechanisms. Baseline, DCLAGAN without 
CA block. (A1-A3) Real CF images. (B1-B3) Real FFA images. (C1-C4) Synthesized image and attention map generated by baseline. (D1-D4) 
Synthesized image and attention map generated by baseline with self-attention. (E1-E4) Synthesized image and attention map generated by 
baseline with SE block. (F1-F4) Synthesized image and attention map generated by baseline with scSE block. (G1-G4) Synthesized image 
and attention map generated by baseline with CBAM. (H1-H4) Synthesized image and attention map generated by baseline with CA block 
(DCLAGAN). The local vessels in each image are enlarged with red frames. DCLAGAN, dual contrastive learning attention generative 
adversarial network; CA, coordinate attention; CF, color fundus; FFA, fundus fluorescein angiography; SE, squeeze-and-excitation; scSE, 
spatial and channel squeeze-and-excitation; CBAM, convolutional block attention module. 

Table 2 Comparisons of different attention mechanisms using the DCLAGAN without the CA block as the baseline

Methods FID↓ KID×100↓ LPIPS↓

Baseline 53.933±0.338 1.888±0.200 0.247±0.006

Baseline + SA 59.822±2.983 2.494±0.523 0.251±0.004

Baseline + SE 52.235±0.527 1.771±0.121 0.243±0.010

Baseline + scSE 54.803±1.969 1.955±0.223 0.245±0.006

Baseline + CBAM 56.587±3.298 2.098±0.181 0.246±0.008

Baseline + CA 50.490±1.270 1.529±0.210 0.245±0.007

Values are presented as the mean ± standard deviation. ↓ means smaller numbers are better. Baseline, the DCLAGAN (our proposed 
model) without the CA block; CA, coordinate attention block; FID, Fréchet inception distance; KID, kernel inception distance; LPIPS, 
learned perceptual image patch similarity; SA, self-attention; SE, squeeze-and-excitation block; ScSE, spatial and channel squeeze-
and-excitation block; CBAM, convolutional block attention module; DCLAGAN, dual contrastive learning attention generative adversarial 
network.
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Figure 7 Comparisons of the DCLAGAN with other popular unsupervised image synthesis methods using histograms, the metric of the 
FID, and four data sets (CF-FFA, OCT-OCTA, Horse-Zebra, and Cat-Dog). FID, Fréchet inception distance; CF, color fundus; FFA, 
fundus fluorescein angiography; OCT, optical coherence tomography; OCTA, optical coherence tomography angiography; CycleGAN, 
cycle-consistent generative adversarial network; U-GAT-IT, unsupervised generative attentional networks with adaptive layer-instance 
normalization for image-to-image translation; GcGAN, geometry-consistent generative adversarial networks; CUT, contrastive learning for 
unpaired image-to-image translation; DCLGAN, dual contrastive learning generative adversarial network; DCLAGAN, dual contrastive 
learning attention generative adversarial network.

FID and KID improved greatly when we the CA block was 
chosen, but worsened when the self-attention block, scSE 
block, and CBAM were added. However, the mean score 
of the LPIPS obtained by the addition of the CA block was 
slightly worse than that obtained by the addition of the SE 
block.

As Figure 6 shows, the vascular structure of Figure 6, 
H2,H3 was clearer than the other attention mechanisms 
with the baseline model, and the vascular structures of 
the baseline model with the CA block were closer to the 
real CF image than the images of others. Thus, the image 
synthesis model with the CA block improved the reliability 
of the fake images by providing more accurate information 
about the location of the vascular structures. From the 
attention maps generated by the generator in row 4, we can 
see that the location of the retinal edge in Figure 6, H4 was 
clearer than that in other attention maps generated by other 
attention mechanisms. Figure 6, C4 distinguishes more 
clearly between the retinal and extraretinal areas; however, 
the location is not as smooth and clear as the attention map 
in Figure 6, H4.

We performed quantitative evaluations for the proposed 
model DCLAGAN against several widely used unsupervised 
image synthesis models, including the CycleGAN, U-GAT-
IT, L-U-GAT-IT, GcGAN, CUT, and DCLGAN. To 
make fair comparisons, we used the same training samples 
[1,680] and testing samples [272] for the evaluations. The 
quantitative image synthesis results are set out in Table 3, 
and our method gained 8.424 improvements in the FID, 
0.00924 improvements in the KID, and 0.011 improvements 

in LPIPS compared with the baseline method of DCLGAN. 
As is well known, the current unsupervised FFA image 
synthesis methods are mainly based on the CycleGAN. 
Compared with the CycleGAN, our method gained 27.319 
improvements in the FID, 0.04002 improvements in the 
KID, and 0.07 improvements in LPIPS.

Further, as Figure 7 vividly and intuitively shows, our 
DCLAGAN achieved the best FID compared to any of the 
comparison baselines using the CF-FFA data set, while the 
GcGAN achieved the next best FID. However, as Figure 8F 
shows, the FFA images generated by the GcGAN were not 
realistic and some information about the vessels was lost.

Additionally, as Figure 8I shows, the visual effects of our 
DCLAGAN were also better than those of others. Despite 
the fact that the L-U-GAT-IT required less GPU and 
training time than the U-GAT-IT, the basic shape of the 
generated images in Figure 8E was not as accurate as the 
basic shape in the images in Figure 8D when compared with 
Figure 8A. The GcGAN tries to ensure the basic shape of 
the source images are kept as similar as possible; however, 
the style characteristics of the target images cannot be 
preserved in the generated images any better than they can 
be by the DCLAGAN.

To verify the generalization and robustness of the 
DCLAGAN, we selected three other data sets; that is, the 
OCT-OCTA, Horse-Zebra and Cat-Dog data sets. Among 
them, the OCT and OCTA images in the OCT-OCTA 
data set have been popular retinal imaging modalities in 
recent years. The Horse-Zebra and Cat-Dog data sets 
are commonly used for image synthesis tasks. In the first 
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Figure 8 Comparisons of the DCLAGAN with other advanced methods using the CF-FFA data set: (A) real CF images; (B) real FFA 
images; (C) synthesized images generated by CycleGAN; (D) synthesized images generated by the U-GAT-IT; (E) synthesized images 
generated by the lightweight U-GAT-IT; (F) synthesized images generated by the GcGAN; (G) synthesized images generated by the CUT; 
(H) synthesized images generated by the DCLGAN; (I) synthesized images generated by the DCLAGAN. The location of the optic disc in 
each normal image is magnified with a red frame. The location of the prominent pathological features in each abnormal image is magnified 
with a red frame. DCLAGAN, dual contrastive learning attention generative adversarial network; CF, color fundus; FFA, fundus fluorescein 
angiography; CycleGAN, cycle-consistent generative adversarial network; U-GAT-IT, unsupervised generative attentional networks with 
adaptive layer-instance normalization for image-to-image translation; GcGAN, geometry-consistent generative adversarial networks; CUT, 
contrastive learning for unpaired image-to-image translation; DCLGAN, dual contrastive learning generative adversarial network.

row of positions (Figure 9), the synthesized OCTA images 
generated by the CycleGAN (Figure 9C), DCLGAN 
(Figure 9G), and DCLAGAN (Figure 9H) retained most of 
the blood vessel information. Comparing the CycleGAN 
synthesized OCTA images (Figure 9C) with the real OCT 
(Figure 9A) and real OCTA images (Figure 9B), we can 
clearly see that in the CycleGAN synthesized OCTA 
images, the accuracy of the vessel location was not as 
good as the results obtained using the DCLGAN and 
DCLAGAN methods. In the last row of positions, it is 

clear that there was more redundant information in the 
synthesized OCTA images generated by the U-GAT-IT, 
CUT, and DCLGAN. Figure 7 shows the average results of 
the FID by using the OCT-OCTA data set; our proposed 
DCLAGAN had the best average score for the FID.

As Figure 10 shows, the zebra images generated by the 
CUT, DCLGAN, and DCLAGAN were closer to the 
zebra in reality. The average results of the FID by using the 
Horse-Zebra data set can also be used as an aid to validate 
the above observation (Figure 7). However, the visualization 
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Table 3 The quantitative comparisons of the DCLAGAN against the mentioned baselines

Methods FID↓ KID×100↓ LPIPS↓

CycleGAN (25) 77.809±7.973 5.531±1.230 0.315±0.006

U-GAT-IT (27) 76.986±8.937 4.333±0.576 0.302±0.017

L-U-GAT-IT (27) 99.787±4.801 7.432±0.438 0.328±0.013

GcGAN (32) 55.993±1.373 1.639±0.055 0.266±0.004

CUT (33) 67.793±6.140 3.112±0.531 0.291±0.003

DCLGAN (34) 58.914±1.854 2.453±0.169 0.256±0.013

DCLAGAN 50.490±1.270 1.529±0.210 0.245±0.007

Values are presented as the mean ± standard deviation. ↓ means smaller numbers are better. DCLAGAN, dual contrastive learning 
attention generative adversarial network; FID, Fréchet inception distance; KID, kernel inception distance; LPIPS, learned perceptual image 
patch similarity; CycleGAN, cycle-consistent generative adversarial network; U-GAT-IT, unsupervised generative attentional networks with 
adaptive layer-instance normalization for image-to-image translation; L-U-GAT-IT, lightweight U-GAT-IT; GcGAN, geometry-consistent 
generative adversarial network; CUT, contrastive learning for unpaired image-to-image translation; DCLGAN, dual contrastive learning 
generative adversarial network.

of the synthesized zebra images and the FID results all 
indicate that the quality of the synthesized zebra images 
generated by the DCLAGAN was slightly lower than that 
of the DCLGAN.

In relation to the synthesized dog images in Figure 10,  
it is clear that the images generated by the U-GAT-IT, 
DCLGAN, and DCLAGAN were more realistic than those 
generated by the other methods. The synthesized dog 
images generated by the CycleGAN and GcGAN retained 
some of the cat characteristics. The average results of the 
FID by using the Cat-Dog data set show that the quality of 
the synthesized dog images generated by the U-GAT-IT, 
DCLGAN, and DCLAGAN was better than that generated 
by the other method (Figure 7). In addition, the average 
FID score of the DCLAGAN using the Cat-Dog data set 
was the lowest among all the approaches.

In relation to the category of abnormal images shown in 
Figure 8, it is clear that the synthetic FFA images generated 
by the DCLAGAN (Figure 8I) retained more pathological 
features than the images generated by other methods when 
compared to the real FFA images (Figure 8B), but there was 
still a small proportion of pathological features that were 
not shown. The pathological features were barely visible 
in the abnormal FFA images generated by the U-GAT-
IT (Figure 8D), L-U-GAT-IT (Figure 8E), and GcGAN 
(Figure 8F). The abnormal FFA images generated by 
the CycleGAN (Figure 8C) preserved some pathological 
features. However, the vessel location was not accurate. 
Further, the synthesized FFA images generated by the 

CUT and DCLGAN, while preserving some pathological 
features, also had some redundant vessels whose locations 
were inaccurate.

In relation to the category of abnormal images shown 
in Figure 9, it is obvious that the OCTA images generated 
by the DCLAGAN also ensured that the vessel locations 
were largely accurate and the vast majority of pathological 
features were retained, but a small number of vessels and 
pathological features were still blurred. The OCTA images 
generated by the CUT and DCLGAN had some obvious 
pathological features; however, they also had some more 
redundant vessels. The OCTA images generated by the 
CycleGAN, U-GAT-IT, and GcGAN showed clear blood 
vessels; however, the pathological features were largely lost.

Conclusions

We developed an unsupervised image synthesis framework 
DCLAGAN based on dual contrastive learning that can 
synthesize FFA images from unpaired CF images. Further, 
we also revised the structure of the generators to increase 
the effectiveness of the dual contrastive learning. Our 
extensive experimental results demonstrate the superiority 
of the DCLAGAN for unsupervised FFA image synthesis 
over the other methods mentioned, both in terms of our 
quantitative evaluation results and the visual effects. We 
believe that unsupervised FFA image synthesis will be 
widely used for the diagnosis of retinal diseases in the near 
future. The FFA images synthesized by the DCLAGAN 
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Figure 9 Comparisons of the DCLAGAN with other advanced methods using the OCT-OCTA data set: (A) real OCT images; (B) real 
OCTA images; (C) synthesized images generated by CycleGAN; (D) synthesized images generated by the U-GAT-IT; (E) synthesized 
images generated by the GcGAN; (F) synthesized images generated by the CUT; (G) synthesized images generated by the DCLGAN; 
(H) synthesized images generated by the DCLAGAN. The local vessel in each normal image is enlarged with red frame. The location of 
prominent pathological features in each abnormal image is magnified with a red frame. DCLAGAN, dual contrastive learning attention 
generative adversarial network; OCT, optical coherence tomography; OCTA, optical coherence tomography angiography; CycleGAN, 
cycle-consistent generative adversarial network; U-GAT-IT, unsupervised generative attentional networks with adaptive layer-instance 
normalization for image-to-image translation; GcGAN, geometry-consistent generative adversarial networks; CUT, contrastive learning for 
unpaired image-to-image translation; DCLGAN, dual contrastive learning generative adversarial network. 

retained most of the pathological features; however, a small 
amount of redundant information still inevitably appeared 
in the images. In addition, the DCLAGAN may work better 
if data sets are used in which the positions of the content to 

be transformed in the source and target images are close to 
each other. In the future, we will seek to improve the quality 
of FFA images generated by image synthesis by attempting 
to incorporate a diffusion model with the DCLAGAN, and 
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A B C D E F G

Figure 10 Comparisons of the DCLAGAN with other advanced methods using the Horse-Zebra and Cat-Dog data sets: (A) real horse 
and cat images; (B) synthesized images generated by CycleGAN; (C) synthesized images generated by the U-GAT-IT; (D) synthesized 
images generated by the GcGAN; (E) synthesized images generated by the CUT; (F) synthesized images generated by the DCLGAN; 
(G) synthesized images generated by the DCLAGAN. DCLAGAN, dual contrastive learning attention generative adversarial network; 
CycleGAN, cycle-consistent generative adversarial network; U-GAT-IT, unsupervised generative attentional networks with adaptive layer-
instance normalization for image-to-image translation; GcGAN, geometry-consistent generative adversarial networks; CUT, contrastive 
learning for unpaired image-to-image translation; DCLGAN, dual contrastive learning generative adversarial network.

to ameliorate the unsupervised approaches of multimodal 
retinal registration based on the DCLAGAN. We will also 
improve CAM-A and CA to improve the accuracy of the 
content and location of the generated pathological features.
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