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Automated anatomical landmark detection on 3D facial images 
using U-NET-based deep learning algorithm
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Background: Facial anthropometry based on 3-dimensional (3D) imaging technology, or 3D 
photogrammetry, has gained increasing popularity among surgeons. It outperforms direct measurement 
and 2-dimensional (2D) photogrammetry because of many advantages. However, a main limitation of 3D 
photogrammetry is the time-consuming process of manual landmark localization. To address this problem, 
this study developed a U-NET-based deep learning algorithm to enable automated and accurate anatomical 
landmark detection on 3D facial models.
Methods: The main structure of the algorithm stacked 2 U-NETs. In each U-NET block, we used 3×3 
convolution kernel and rectified linear unit (ReLU) as activation function. A total of 200 3D images of 
healthy cases, acromegaly patients, and localized scleroderma patients were captured by Vectra H1 handheld 
3D camera and input for algorithm training. The algorithm was tested to detect 20 landmarks on 3D images. 
Percentage of correct key points (PCK) and normalized mean error (NME) were used to evaluate facial 
landmark detection accuracy.
Results: Among healthy cases, the average NME was 1.4 mm. The PCK reached 90% when the threshold 
was set to the clinically acceptable limit of 2 mm. The average NME was 2.8 and 2.2 mm among acromegaly 
patients and localized scleroderma patients, respectively.
Conclusions: This study developed a deep learning algorithm for automated facial landmark detection 
on 3D images. The algorithm was innovatively validated in 3 different groups of participants. It achieved 
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Introduction

Anthropometry on 3-dimensional (3D) images, or 3D 
photogrammetry, is a powerful tool for the study of facial 
morphology. It outperforms direct measurement for its 
convenience and efficiency (1). It is also considered a better 
alternative to 2-dimensional (2D) photogrammetry because 
it has higher precision and allows for volume and surface 
area measurement (2). Previous studies have confirmed 3D 
photogrammetry as the best method for the analysis of facial 
soft tissue morphology (3,4). In recent years, 3D imaging, 
and facial anthropometric analysis have been widely used 
in many research fields including ethnic study, facial aging 
study, facial attractiveness study, preoperative consultation, 
and postoperative follow-up (5-10).

However, 3D photogrammetry is not without limitations. 
One constraint is that manually localizing landmarks onto 
the 3D meshes can be a time-consuming process. There is 
a trend to include an increasing number of 3D facial images 
for analysis and to plot more anthropometric landmarks 
for detailed meticulous measurements, calling for the need 
for automated landmark localization algorithms. Nair and 
Cavallaro proposed a landmark detection framework based 
on a 3D point distribution model (11). The study mainly 
tested the detection accuracy of 5 key landmarks. The 
absolute mean error in the detection of the endocanthion, 
exocanthion, and pronasale was about 12, 20, and 9 mm, 
respectively. There was a non-negligible percentage of 
detection failure. Liang et al. introduced an improved 
method to achieve automatic landmark detection (12). They 
located a set of landmarks on each 3D mesh by geometric 
techniques and created a dense correspondence between the 
individual mesh and the template mesh using a deformable 
transformation algorithm. The study had the advantage 
of detecting a set of 20 facial landmarks automatically, 
surpassing the previous studies. Moreover, the study 
showed a remarkable improvement in detection accuracy. 
The average distance between the automatic landmarks and 
the ground truth was only 2.64 mm. Baksi et al. invented 
another automated landmark identification algorithm, 

which innovatively added texture information into the 
landmark detection process (13). 3D meshes underwent 
initialization, alignment, and elastic deformation. The 
mean Euclidean difference between automated identified 
landmarks and manually plotted landmarks was 3.2±1.64 mm.  
The algorithm would be more convincing if tested on a 
larger dataset.

U-NET, a convolutional network architecture proposed 
by Ronneberger et al. in 2015 (14), has gained popularity 
in medical image processing as it largely increases the 
efficiency of using annotated samples and yields excellent 
results in medical image recognition. A common use of 
U-NET in the medical field is the automated segmentation 
of tumor lesions and other structures of interest. It is 
theoretically possible to use U-NET for the segmentation 
of landmarks in 3D facial images. One of the difficulties 
in 3D facial image processing is the limited sample size. 
U-NET has the potential to perform accurate image 
segmentation using highly limited training samples, making 
it an ideal network architecture for developing automated 
landmark localization algorithms. This study aimed to 
develop a novel automated algorithm based on U-NET for 
facial landmark detection and test its accuracy on different 
case groups.

Methods

The landmark detection process is briefly outlined in Figure 1.  
The main steps involved 3D image acquisition, coarse 
detection of the Frankfort plane, 3D model alignment, 3D 
model projection, automated landmark detection, back-
projection to 3D model, and data analysis.

Study sample and development tools

This study enrolled 200 3D facial images including 160 
from healthy individuals, 20 from acromegaly patients, 
and 20 from localized scleroderma patients (82 males 
and 118 females, mean age: 37 years old). The healthy 

accurate landmark detection and improved the efficiency of 3D image analysis.
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cases and localized scleroderma patients were recruited 
from the Department of Plastic and Aesthetic Surgery, 
Peking Union Medical College Hospital (PUMCH). The 
acromegaly patients were recruited from the Department of 
Endocrinology, PUMCH. All the 3D images were acquired 
by Vectra H1 handheld 3D camera (Canfield Scientific, 
Inc., Parsippany, NJ, USA). The study was conducted in 
accordance with the Declaration of Helsinki (as revised 
in 2013). The study was approved by the Institutional 
Review Board of PUMCH. All volunteers signed the 
informed consent form and agreed on their images and 
anthropometric data to be used for analysis.

TensorFlow 1.8 (Google, Mountain View, CA, USA) 
was used as the deep learning framework, and NVIDIA 
RTX3060 Ti (NVIDIA, Santa Clara, CA, USA) was used 
as the computing hardware. The training process took about 
70 epochs to finish with a batch size of 8, we applied Adam 
optimizer and a learning rate of 3e-5 in the training process. 
The landmark detection process is briefly outlined in Figure 1. 

Anatomical landmark selection

We selected 20 facial anthropometric landmarks in 
this study to train the automated landmark detection 
algorithm. In the periorbital region, the algorithm was 
trained to automatically localize 8 landmarks including the 
right endocanthion (enR), left endocanthion (enL), right 
exocanthion (exR), left exocanthion (exL), right palpebrale 
superiori (psR), left palpebrale superiori (psL), right 
palpebrale inferioris (piR), and left palpebrale inferioris 
(piL). In the nasal region, the algorithm was trained to 
automatically localize 5 landmarks including nasion (n), 
pronasale (prn), subnasale (sn), right alare (alR), and left 
alare (alL). In the orolabial region, the algorithm was 
trained to automatically localize 7 landmarks including 
the right crista philtri (cphR), left crista philtri (cphL), right 
chelion (chR), left chelion (chL), labiale superius (ls), stomion 
(sto), and labiale inferius (li).

Manual landmark annotation

The 20 landmarks above were manually plotted onto the 200 
3D facial images using Geomagic Wrap 2017 (Geomagic, 
Inc., Research Triangle Park, NC, USA) by the first author 
with years of experience in stereophotogrammetry. To 
ensure the accuracy of the manual annotation, 5 3D images 
were randomly selected from each group to test for intra-
observer reliability and another 5 3D images were randomly 
selected from each group for inter-observer reliability. A 
mean distance between the 2 sets of landmarks of less than 
2 mm was considered clinically acceptable (15-17). 

Network architecture and design

The main structure of our network stacks 2 U-NETs. 
The U-NET architecture, as shown in Figure 2, consisted 
of a contracting path (left) and an expansive path (right). 
In the contracting path, we used 3×3 convolution kernel 
(padded convolutions) and doubled the number of feature 
channels. Each convolution layer was followed by a rectified 
linear unit (ReLU) activation function and a 2×2 max 
pooling operation for down-sampling. The above steps 
were repeated 3 times. After contracting, the image size 
became 1/8 of the original input size, and the number of 
feature channels became 256. In the contracting path, we 
used transpose convolution that halved the number of the 
feature channels. Then, there was a concatenation with the 
corresponding feature map from the contracting path, and 
2 3×3 convolutions, each followed by a ReLU. The above 
steps were also repeated 3 times. At the final layer, a 1×1 
convolution was used to correspond each feature vector to 
the intermediate feature with the same size to generate the 
final heat map. Also, we embedded drop-out layers in the 
network to relieve overfit effect during the training process. 
The outputs of U-NET blocks were heat maps, as shown in 
Figure 2. The pixel value represented the probability of the 
target point lying on this pixel position.

We fed output heat maps of both U-NET blocks into 

3D facial models
3D model trimming 

and preparation
Coarse detection of 
the Frankfort plane

3D model alignment

Data analysis
Back-projection to 
3D facial models

Accurate anatomical 
landmark detection

Projection of 3D 
facial models

Figure 1 Algorithm development workflow. 3D, 3-dimensional.
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loss function during the training process for intermediate 
supervision. The loss function was defined as follows:
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nH  was the output heat map of the first U-NET block; 

2
nH  was the output heat map of the second U-NET block; 
GT
nH  was the output heat map of the ground truth.

Evaluation metrics and results

Percentage of correct key points (PCK) and normalized 
mean error (NME) were used to evaluate facial landmark 
detection accuracy. PCK calculated the fraction of 
successfully predicted results, of which the distance to 
ground truth was smaller than a specified threshold, which 
was usually set as 2 mm, the clinically acceptable threshold 
used in previous studies (15-17). NME calculated the 
distance between ground-truth points and model prediction 
result, then divided it by a normalized factor, as defined 
below.
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L  was the normalized factor and was set to 1 in this 
study; t

nS  was the predicted result; GT
nS  is the ground truth 

point.

Results 

The intra- and inter-observer reliability is shown in Table 1. 

The mean distances were all less than 2 mm, indicating that 
manual landmark annotation had good reliability and could 
be used as the ground truth. 

The detection accuracy on different participant groups is 
shown in Table 2. Among normal healthy cases, the average 
NME of the 20 landmarks was 1.4 mm; the NME of 90% 
(18/20) landmarks were within the clinical acceptance of  
2.0 mm. Among the acromegaly patients, the average 
NME of the 20 landmarks was 2.8 mm; among localized 
scleroderma patients, the average NME of the 20 landmarks 
was 2.2 mm. The output of automated landmark detection 
on 3D facial images is shown in Figure 3. 

PCK revealed the percentage of landmarks that were 
accurately detected. When the threshold was set to the 
clinically acceptable limit of 2 mm, the PCK among 
normal healthy cases, acromegaly patients, and the 
localized scleroderma patients was 90%, 35%, and 60%, 
respectively; if the threshold was set to 3 mm, the PCK 
among normal healthy cases, acromegaly patients, and the 
localized scleroderma patients was 100%, 60%, and 85%, 
respectively; if the threshold was set to 5 mm, the PCK 
among the 3 groups of participants was 100%, 90%, and 
95%, respectively (Table 3).

Discussion

This study proposed a novel U-NET based algorithm to 
achieve automated landmark detection on 3D facial images. 
The algorithm was tested on 3 groups of participants. The 

Input 3D facial model Output heat map

Conv 3×3, ReLU 

Max pool 2×2 

Up-conv 2×2 

Conv 1×1 

Copy and crop

Figure 2 U-NET architecture. The main structure of our network stacks 2 U-NETs. The output of the first U-NET was used as the input 
of the second U-NET. This design allowed the first U-NET output a feature block for intermediate supervision. 3D, 3-dimensional; ReLU, 
rectified linear unit. This image is published with the participant’s consent.
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Table 1 Intra- and inter-observer reliability (mm) 

Landmark
Intra-observer variability Inter-observer variability

Healthy cases Acromegaly patients LS patients Healthy cases Acromegaly patients LS patients

Periorbital region

enR 0.29 0.64 0.16 0.56 0.70 0.83

enL 0.26 0.35 0.28 0.30 0.46 0.55

exR 0.79 1.09* 0.62 1.41* 1.33* 0.74

exL 0.66 0.48 0.31 0.61 1.36* 0.46

psR 0.98 1.32* 1.36* 1.71* 1.44* 1.61*

psL 0.74 1.67* 1.43* 1.54* 1.06* 1.26*

piR 1.40* 1.31* 1.49* 1.43* 1.66* 1.65*

piL 1.17* 1.36* 0.92 1.93* 1.71* 1.67*

Nasal region

n 0.82 0.73 0.58 0.49 0.77 0.57

prn 0.84 0.56 0.93 0.23 0.81 0.35

sn 0.58 1.13* 0.59 0.54 0.43 0.62

alR 0.96 1.49* 1.45* 1.10* 1.51* 1.81*

alL 1.14* 1.50* 1.06* 1.48* 1.32* 1.88*

Orolabial region

cphR 0.50 0.86 0.59 0.49 0.34 0.24

cphL 0.66 0.87 0.66 0.39 0.23 0.22

chR 1.04* 0.74 0.71 0.40 0.53 0.28

chL 0.68 0.63 0.44 0.77 0.43 0.31

ls 0.35 0.71 0.37 0.46 0.41 0.27

sto 0.30 0.78 0.29 0.50 0.37 0.42

li 0.59 1.28* 0.57 0.80 0.66 0.69

*, values between 1.0 and 2.0 mm. LS, localized scleroderma; enR, right endocanthion; enL, left endocanthion; exR, right exocanthion; 
exL, left exocanthion; psR, right palpebrale superiori; psL, left palpebrale superiori; piR, right palpebrale inferioris; piL, left palpebrale 
inferioris; n, nasion; prn, pronasale; sn, subnasale; alR, right alare; alL, left alare; cphR, right crista philtri; cphL, left crista philtri; chR, right 
chelion; chL, left chelion; ls, labiale superius; sto, stomion; li, labiale inferius. 

algorithm achieved accurate landmark detection on normal 
healthy cases. The average NME on normal cases was only 
1.4 mm, whereas the average NME on acromegaly patients 
and localized scleroderma patients was 2.2 and 2.8 mm, 
respectively.

Currently, deep learning techniques are widely applied 
in clinical areas to increase the diagnosis and treatment 
efficiency of surgeons. For example, deep neural networks 
have been applied to automatically identify and segment 
lung cancer regions (18,19). Shen et al. used a Visual 

Geometry Group (VGG)-structured network to localize 
and extract suspicious breast cancer areas on full-field 
digital mammography images (20). Orthopedic doctors 
utilized deep learning-related technology in recent years to 
accurately segment bones for disease evaluation and for pre-
surgical planning to intervene clinical treatment process 
(21-23).

Attempts to develop algorithms for landmark detection 
on 3D models are not new. Abu et al. automated the 
craniofacial landmark detection on 3D images and validated 
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it on 8 inter-landmark distances (24). Baksi et al. developed 
an algorithm and tested on 30 3D facial images and achieved 
a mean Euclidean difference of 3.2 mm (13). In comparison, 
this study achieved an average NME of 1.4 mm among 
normal cases, which was significantly smaller than previous 
results. In this study, we mainly used U-NET structure 

as our backbone network, as U-NET has displayed high 
robustness and stability in other medical research fields. 
The network was down-sampled to extract high-level 
features and then up-sampled to restore original input size, 
and down-sampled layers would be concatenated to up-
sampled layers for feature enhancement and derivative 
maintenance. Besides, we stacked 2 U-NET structures and 
made an intermediate supervision instead of building up 
a bigger and deeper neural network, so that the network 
architecture would be more light-weighted and easily 
converged during the training process.

3D imaging and facial anthropometric analysis have 
gained increasing popularity among plastic surgeons. It 
gradually replaces traditional 2D photogrammetry to be 
the most reliable tool for morphologic analysis. A previous 
meta-analysis demonstrated that common 3D facial optical 
instruments were reliable in linear distance measurement 
and suitable for research and clinical use (25). As 3D images 
accumulate, surgeons tend to spend increasingly more time 
plotting anatomical landmarks and doing measurements. 
Although some commercial software such as Vectra 
Analytical Module (VAM) supports automatic landmark 
detection, its accuracy is debatable, and it is usually bundled 
with hardware for sale. This study proposed a novel 
algorithm for landmark localization. It automatically plots 
20 landmarks on a 3D image in seconds with high accuracy 
and reproducibility. This algorithm spares surgeons from 
the laborious and time-consuming process of plotting 
landmarks.

Additionally, manual landmark identification is subject 
to human error. Different researchers, or even the same 
researcher at different times, reliably yield inconsistent 
results. Testing for intra- and inter-observer reliability 
reveals whether the bias is acceptable but does not deny 
its existence. Using an automated algorithm to detect 
landmarks ensures the placement of the landmarks is always 
consistent so that the measurement is more reliable and no 
further statistical testing is needed. 

The algorithm showed different prediction accuracy in 
different groups of cases. Landmark automatic localization 
on normal healthy humans and localized scleroderma 
patients was reliable, whereas the test on acromegaly 
patients did not yield clinically acceptable results. It is 
reasonable that prediction accuracy decreased when there 
were local deformities. For example, acromegaly patients 
usually have soft tissue changes in the nasolabial region. 
The algorithm had poor prediction accuracy on landmarks 
in this region such as prn, cph, ls, and sto. This study 

Table 2 Accuracy of the automated landmark identification 
algorithm on different subject groups (mm) 

Landmark Healthy cases Acromegaly patients LS patients

Periorbital region

enR 1.03 1.52 1.01

enL 1.11 2.02* 1.42

exR 1.01 1.95 1.72

exL 1.15 2.10* 1.42

psR 1.39 1.92 1.33

psL 1.18 2.07* 1.44

piR 2.04* 3.52* 2.07*

piL 1.54 2.15* 1.79

Nasal region

n 2.76* 6.31** 5.55**

prn 1.51 4.4* 2.58*

sn 0.83 1.73 1.67

alR 1.53 1.82 1.94

alL 1.02 1.57 1.57

Orolabial region

cphR 1.56 4.01* 2.84*

cphL 1.69 3.21* 1.97

chR 1.46 1.80 1.70

chL 1.61 2.95* 2.28*

ls 1.09 3.49* 2.51*

sto 1.39 5.07** 3.61*

li 1.53 3.31* 3.41*

*, values between 2.0 and 5.0 mm; **, values higher than 5.0 mm. 
LS, localized scleroderma; enR, right endocanthion; enL, left 
endocanthion; exR, right exocanthion; exL, left exocanthion; 
psR, right palpebrale superiori; psL, left palpebrale superiori; 
piR, right palpebrale inferioris; piL, left palpebrale inferioris; n, 
nasion; prn, pronasale; sn, subnasale; alR, right alare; alL, left 
alare; cphR, right crista philtri; cphL, left crista philtri; chR, right 
chelion; chL, left chelion; ls, labiale superius; sto, stomion; li, 
labiale inferius. 
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Figure 3 Display of automated landmark detection on different participant groups. These images are published with the participant’ consent.

innovatively trained the algorithm with 3D facial images 
from patients with facial abnormalities to improve its 
prediction accuracy on 3D images with local deformities. 
There are possible ways to improve the prediction accuracy. 
Apart from enlarging the sample size for algorithm training, 
prediction accuracy can be improved by adding attention 
gates to highlight salient features that passed through 
the skip connections and using context fuse modules to 
aggregate contextual information at multiple scales. In 
the future, the algorithm will be improved to be more 
accurate and applied to a wider range of diseases with facial 
abnormalities.

Conclusions

Automated landmark detection on 3D facial images has 
the potential to improve the efficiency and the accuracy 
of 3D photogrammetry. This study developed a U-NET-

based algorithm for automated facial landmark detection 
on 3D models. The algorithm was validated in 3 different 
participant groups. It achieved great landmark localization 
accuracy on normal healthy cases. The average NME of the 
20 landmarks was 1.4 mm. The prediction error of 90% of the 
landmarks was within the clinically acceptable range (<2 mm).  
The algorithm achieved good landmark localization 
accuracy on localized scleroderma patients. The average 
NME was 2.2 mm. The accuracy on acromegaly patients 
needs improvement, for whom the average NME was 
2.8 mm. Possible improvements to the algorithm include 
adding attention gates and context fuse modules. 
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