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Background: Capturing the segmentation of blood vessels by a fundus camera is crucial for the medical 
evaluation of various retinal vascular issues. However, due to the complicated vascular structure and unclear 
clinical criteria, the precise segmentation of blood arteries remains very challenging.
Methods: To address this issue, we developed the upgraded multi-convolution block and squeeze and 
excitation based on the U-shape network (MCSE-U-net) model that segments retinal vessels using a U-shaped 
network. This model uses multi-convolution (MC) blocks, squeeze and excitation (SE) blocks, and squeeze 
blocks. First, the input image was processed using the luminance, chrominance-blue, chrominance-red 
(YCbCr) color conversion method to further improve visibility. Second, a MC module was added to increase 
the model’s ability to accurately segment blood vessels. Third, SE blocks were added to enhance the network 
model’s ability to segment fine blood vessels in medical images.
Results: The suggested architecture was assessed using evaluation metrics, including the Dice coefficient, 
sensitivity (sen), specificity (spe), accuracy (acc), and mean intersection over union (mIoU), on an open-
source Digital Retinal Images for Vessel Extraction (DRIVE) data set. The outcomes showed the 
effectiveness of the suggested approach, particularly in the extraction of peripheral vascular anatomy. Using 
the suggested architecture, the model had a Dice coefficient of 0.8430, a sen of 0.8752, a spe of 0.9902, an 
acc of 0.9725, and a mIoU of 0.8473 for the DRIVE data set. The Dice coefficient, sen, spe, acc, and mIoU 
of the MCSE-U-net increased by 3.08%, 6.22%, 0.62%, 0.61%, and 3.01%, respectively, compared to the 
original U-net, demonstrating the better all-around performance of the MCSE-U-net.
Conclusions: The MCSE-U-net network performed and achieved more than the technologies already in 
use.
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Introduction

Atherosclerosis, diabetic retinopathy, and hypertension are 
just a few examples of the many eye-related disorders that 
can be diagnosed using retinal vascular segmentation (1,2). 
The morphological characteristics of retinal blood vessels, 

such as their thickness, curvature, and density, can serve 
as key indicators for the early detection and diagnosis of 
various illnesses. Therefore, ophthalmologists frequently 
evaluate these morphological characteristics, which serve as 
crucial diagnostic markers for a range of ophthalmological 
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illnesses, in retinal fundus pictures to determine the clinical 
status of the retinal blood vessels. Key markers can be used 
to diagnose many ocular illnesses. However, the automatic 
segmentation of retinal vessels is crucial, as the manual 
labeling of retinal vessels in such images is time consuming, 
difficult, and requires a high level of clinical knowledge (3).

Traditional segmentation algorithms rely heavily on 
hand-labeled features for training to improve performance 
and are mostly based on computer vision techniques (4). 
It is challenging to accurately and completely describe a 
particular region of interest for a small number of hand-
produced elements. In recent years, image segmentation 
and other image processing methods have repeatedly shown 
that convolutional neural networks (CNNs) outperform 
conventional computer vision algorithms (5). Performance 
advantages are achieved by stacking convolutional layers 
and extracting millions of features. These successive layers 
produce intricate feature mappings that enable the CNNs 
to automatically “learn” and “organize” the picture data 
in relation to the segmentation goal. The U-net CNN 
architecture comprises a symmetric encoder-decoder 
backbone with hopping links (2). It is frequently used 
for automatic image segmentation and has been shown 
to perform well, which has led to a continual stream of 
advancements based on the U-net (6).

To address the information imbalance between the U-net’s 
high and low levels and enhance the network’s capacity 
for generalization, Jiang et al. proposed the addition of a 
multilevel attention module (7). To improve the U-net’s 
ability to focus on structures of interest while suppressing 
background noise, Gao et al. included attention gates to 
improve the ability of the U-net architecture to deal with 
spatial disparity and loss of information (8). Beeche et al. 
further simplified the U-net structure and suppressed the 
overfitting phenomenon by using a fused up-sampling 
module and a dynamic sensory field module (9). To further 
simplify the U-net structure and address the issue of 
overfitting, Hu et al. developed the minimal U-net (10).

In the above methods, the accuracy (acc) of fine blood 
vessel segmentation remains problematic. Thus, inspired by 
the model architectures of Xin et al. and Beeche et al. (9,11), 
we proposed a new and improved U-net based on multi-
convolution (MC) blocks and squeeze and excitation (SE) 
modules; that is, the multi-convolution block and squeeze 
and excitation based on the U-shape network (MCSE-U-net) 
model. The main contributions of the model are as follows:

(I) The method performs exceptionally well in retinal 
blood vessel segmentation, and it could be extended 

to other medical image segmentation tasks in the 
future.

(II) The addition of the MC module to the U-net 
framework improves the overall segmentation 
performance of the model.

(III) The addition of the SE module to the network 
model improves the fine vessel segmentation 
performance of the model.

In terms of  ret inal  vascular segmentation,  our 
experimental findings and computational comparisons 
showed that our enhanced model performed slightly better 
than already existing models.

Methods

Network architecture

This section explains in detail how the created module 
units were introduced to the U-net benchmark model using 
the U-net as the reference model. Pre-processing, the 
MC module and the SE module comprise the bulk of the 
MCSE-U-net module. Figure 1 shows the structure formed 
by connecting these three modules. The data set image is 
first processed using the pre-processing module, and the 
resulting image is then fed into the MCSE-U-net model. 
This improvement to the U-net model uses the MC module 
rather than the two 3×3 convolutions in the original U-net 
model. Finally, in the encoder path, the features obtained 
by passing through the MC block then enter into the SE 
module to change the number of feature channels in the 
image, resulting in a maximum pooling size of 2×2. The 
number of feature channels obtained in the decoder route 
is cut in half, as the features are first up-sampled using a 
bilinear interpolation operation in each layer before being 
fed through the MC module. Through a skip connection 
between the encoder and decoder, the shallow, low-level 
features present in the encoder part are simultaneously 
combined with the high-level abstract features present in 
the decoder part, allowing the image to retain a sizable 
amount of spatial information for improved localization.

The following section provides further specifics on the 
pre-processing module, MC module, and SE module.

Pre-processing module

The photographs in the data set need to be treated to 
improve the contrast between the blood vessels and the 
background because it is poor, which negatively affects the 
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Figure 2 Diagram of the pre-processing module.

Figure 1 Architecture of the MCSE-U-net model. SE, squeeze and excitation; MCSE-U-net, multi-convolution block and squeeze and 
excitation based on the U-shape network. 

effectiveness of blood vessel segmentation (12). This study 
employed the luminance, chrominance-blue, chrominance-
red (YCbCr) color space conversion method to process 
the data sets. This method reduces color information 
interference for the segmentation task, enhancing the 
contrast and revealing the image edges and details more 
clearly. By creating a YCbCr color space, chromaticity 
components (Cb and Cr) can be adjusted to correct color 
distribution, thereby reducing color differences between 
the images and improving the model’s generalization ability 

under various lighting and sensor conditions.
However, the enhancing process of the YCbCr image 

processing method significantly affects the ability of 
model to differentiate between vascular structure and the 
background. To improve the image, gamma correction and 
contrast limited adaptive histogram equalization (CLAHE) 
are employed. If there are not enough training data, multi-
scale equalized sampling is used to prevent overfitting.

Figure 2 shows the pre-processing procedure, which 
comprises four primary steps. First, the data set image is 



Quantitative Imaging in Medicine and Surgery, Vol 14, No 3 March 2024 2429

© Quantitative Imaging in Medicine and Surgery. All rights reserved.   Quant Imaging Med Surg 2024;14(3):2426-2440 | https://dx.doi.org/10.21037/qims-23-1454

converted from the RGB color space to the YCbCr color 
space. Second, it is divided into three channels of Y, Cb, 
and Cr within the YCbCr color space. Third, the three 
channels are combined using CLAHE, and the images of 
the three channels are merged. Fourth, the merged image is 
converted back to the RGB color space. As Figure 2 shows, 
the blood vessel pixels in the output image are clearer than 
those in the input image.

MC module

Two consecutive 3×3 convolutions are done to extract 
features using the U-net. Picture features can be extracted; 
however, this method is not very useful for segmenting 
features with a great deal of variance, such as the minute 
blood veins in the retina. This is due to the fact that this 
feature extraction technique can only extract features 
that are 3×3 in size, which leads to the inadequate model 
segmentation of small blood vessels.

To improve the retinal image segmentation effect on the 
small blood vessels, we changed the U-net feature extraction 
method of fixed-size convolution. Specifically, we use three 
convolutions of different kernel sizes to extract and then 
fuse multi-scale feature information. This significantly 
improves the model’s ability to extract microvascular 
features. Figure 3 shows the MC module’s structure. 
First, the MC block performs one 1×1 convolution,  
3×3 convolution, and 5×5 convolution on the input 
feature maps to obtain three feature maps of the same size 
representing different scale information. Second, these 
three feature maps are spliced according to the channels, 
and the spliced image is subjected to one 3×3 convolution 
so that the number of channels is the same as that of the 
input feature maps. Finally, the obtained features and input 
features are added together with input feature mapping, 

and the overall feature extraction results of MC block 
are obtained. MC block extracts multi-scale features 
by convolutions of three different kernel sizes and then 
fuses them. The input is added to the multi-scale feature 
mapping through shortcuts to form the residual structure, 
which makes the model easy to train. The improved feature 
extraction module can extract multi-scale features more 
efficiently than the traditional structure of two consecutive 
3×3 convolutions, and the segmentation of small blood 
vessels is significantly improved.

SE module

In deep-learning image segmentation tasks, the SE module 
can improve a model’s performance, generalization ability, 
and long-range dependency modeling capabilities (9). The 
SE module improves the model’s capacity to represent 
various targets in an image by assisting it to adaptively learn 
the relevance weights of various channels in the feature map 
during the image segmentation task. This helps to direct 
the model’s attention to features that are meaningful for a 
specific target and reduces the attention paid to irrelevant 
information. This attentional mechanism improves the 
discriminative and generalization abilities of the model, thus 
enhancing its performance in image segmentation tasks.

SE are the two primary stages of the SE module. Figure 4  
shows the SE module’s structure. After passing through 
a residual convolution block, the input features are first 
subjected to global average pooling, which is the fusion of 
feature information from each channel to encode the spatial 
features on each channel into a global feature. Next, the 
significance of each channel is predicted through a fully 
connected layers. Again, following a rectified linear unit 
(ReLU) activation function, the obtained feature map is 
then subjected to a global average pooling and a Sigmoid 
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Figure 3 Diagram of the MC module. MC, multi-convolution block.
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activation function. Finally, the SE module performs a 
global average pooling and a Sigmoid activation function 
by means of a scale operation, which is the multiplication 
of channel weights. Once again, after a ReLU activation 
function, global average pooling and a Sigmoid activation 
function are performed on the obtained feature map. 
Finally, through a scale operation (i.e., channel weight 
multiplication), the weight values of each channel computed 
by the SE module are multiplied by each two-dimensional 
matrix of the corresponding channels of the original feature 
map, to obtain the output feature map.

The experimental environments

The overall experiments and all the ablation experiments were 

performed using Pytorch version 3.8 with an AMD Ryzen 5 
5600 H Radeon graphics processor, a Nvidia GeForce RTX 
2070 S (8GB) graphics card, and 16GB of RAM.

Description of data sets

The study was conducted in accordance with the 
Declaration of Helsinki (as revised in 2013). The new 
methodology was tested on the following three public 
data sets of vessels: Digital Retinal Images for Vessel 
Extraction (DRIVE) (13); Structured Analysis of the Retina  
(STARE) (14), and Child Heart and Health Study in 
England (CHASE_DB1) (15). The DRIVE data set, which 
was obtained from a diabetic retinopathy screening program 
in the Netherlands, has a total of 40 color fundus images 
of patients. The images were acquired using a Canon CR5 
astigmatism-free 3 CCD camera with a field of view of  
45 degrees. The resolution size of the images is 565×584 
with 8 bits per color channel. The data set has been 
divided into a training set and a test set, each set consists of  
20 images. Each image corresponds to a mask, and a vessel 
image that has been manually labeled by two experts. In this 
experiment, we used the already established training and 
test DRIVE data sets to train and validate the model; the 
image labeled by the first expert was used by default as the 
ground truth of the experiment.

The STARE data set, which was created by the 
University of Florida Eye Research Center, is a public 
data set that comprises high-resolution images captured 
by digital photography with a resolution of 700×605. Each 
image corresponds to the manual segmentation results of 
two experts and is commonly used for fundus image analysis 
and ocular disease diagnosis. However, this data set does not 
include any mask images and need to be set up manually. 
To validate the baseline U-net model and the CEDMU-U-
net model, we manually extracted the mask corresponding 
to each image. The data set contains 20 images, of which 12 
are used for training in experiments, and eight images are 
used as the validation set for testing.

The CHASE_DB1 data set is a subset of multi-ethnic 
children’s retinal images from the United Kingdom’s Children’s 
Heart and Health Study. It comprises 28 retinal images 
obtained from the left and right eyes of 14 children, each with 
a resolution size of 999×960. Each image similarly corresponds 
to the results of two manual segmentations performed by 
experts. Typically, the first 20 images are used for training, and 
the remaining eight images are used for testing.

Both data sets underwent pre-processing through 
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Figure 4 Diagram of the SE module. FC, fully connected; ReLU, 
rectified linear unit; SE, squeeze and excitation.
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CLAHE and normalization.

Data augmentation

As the vascular data set used was only moderately sized, we 
enriched the data for the experiment. After pre-processing, 
the minimum and maximum size of the image scaling were 
0.5 times and 1.2 times that of the size of the image of the 
input model. We performed random horizontal and vertical 
flipping of the image. Finally, we used random cropping to 
expand the data set image.

Parameter settings

Based on the properties of the eye image itself, we found 
that cropping the image uniformly to a size of 480×480 
provided better results than other sizes with the initial 
learning rate set to 0.001. Due to the performance settings 
of the server, we set the epoch number to 200, the batch 
size to 2, the optimizer to the default parameter Adam, the 
momentum to 0.9, and the network’s input layer channel 
to 3. We extended the first convolutional layer channel to 
16 and set the output layer channel to 1. The MCSE-U-
net model was trained from scratch using the training set of 
each data set, and the weights obtained were used to make 
predictions for the data in each test set.

Evaluation metrics

We used a confusion matrix to calculate the assessment 
metrics, including the Dice coefficient, sensitivity (sen), 
specificity (spe), acc, and mean Intersection over Union 
(mIoU), and to quantitatively assess the correctness of 
the approach for segmenting the retinal vessels presented 
in this study. In terms of vascular segmentation, the Dice 
coefficient illustrates the relationship between sen and acc 
It assesses the degree of overlap between the predicted and 
ground truth and is a crucial measure in segmentation work. 
Sen measures how well the model can distinguish between 
different types of vessels by representing the percentage of 
pixels properly identified as vessels compared to all blood 
vessel pixels. Spe measures how well a model can distinguish 
between the background and foreground by comparing the 
percentage of successfully segmented background pixels to 
the total number of real background pixels. Acc refers to 
the proportion of accurately segmented blood vessel pixels 
compared to the total number of segmented blood vessel 
pixels. The mIoU is frequently employed to rate image 

segmentation operations. The mIoU for each category is 
determined, and the IoU for all categories is then averaged.

The formulas for the assessment metrics are expressed as 
follows:
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× + +  
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+  

[2]

TNSpe
TN FP

=
+  [3]

TP TNAcc
TP FN FP FN

+
=

+ + +  [4]

k

i 0

1 TPmIou
k 1 TP FN FP=

=
+ + +∑

 
[5]

where true positive (TP) represents a correctly classified 
vessel pixel; true negative (TN) represents a correctly 
classified background pixel; false positive (FP) represents 
a pixel where the background was misclassified as a vessel; 
and false negative (FN) represents a pixel where the 
vessel was mislabeled as the background. In Eq. [5], the k 
represents the number of categories, and the value of k in 
vessel segmentation is 1, while k+1 represents the number 
of categories after adding the background.

Cross verification

In this experiment, given the small sample size of each 
data set, K-fold cross-validation was used in training to 
avoid large experimental errors and overfitting to enhance 
the robustness of the analysis (16). In the K-fold cross-
validation, the entire data set was divided into K equally 
sized parts. Each partition was called a “fold”. Therefore, 
as we had K parts, we called it a k-fold. One-fold was used 
as the verification set, and the remaining K-1 folds were 
used as the training set. This validation was repeated K 
times until each fold was used as a validation set and the 
remaining folds were used as a training set, and the final acc 
of the model was calculated by taking the average acc of the 
K-model’s validation data.

Results

We used cross-validation methods on all three data sets 
and compared the results. Tables 1-3 set out the quantitative 
results for the retinal vessel segmentation using the DRIVE, 
STARE, and CHASE_DB1 data sets, respectively. Table 1 
compares the segmentation results obtained by the relevant 
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Table 1 Quantitative analysis of the U-net and MCSE-U-net models using the DRIVE data set 

Method Year Dice Sen Spe Acc mIoU

Multi-scale CNN (17) 2018 – 0.7772 0.9794 0.9533 –

Laddernet (18) 2018 – 0.7856 0.9810 0.9561 –

DU-net (19) 2019 – – – 0.9697 –

AD-U-net (20) 2019 – 0.8075 0.9814 0.9663 –

Vessel-net (21) 2019 – 0.8038 0.9802 0.9578 –

FA-FCN (22) 2019 – 0.7940 0.9820 0.9579 –

BA-Transform (23) 2019 – 0.7940 0.9816 0.9567 –

SE-GAN (24) 2020 – 0.8135 0.9768 0.9560 –

Octave-U-net (25) 2019 – 0.8374 0.9790 0.9664 –

BEFD (26) 2020 – 0.8215 0.9845 0.9701 –

FAE-Segmentation (27) 2021 – 0.8448 0.9900 0.9819 –

SA-U-net (3) 2021 – 0.8212 0.9840 0.9698 –

MCPANet (7) 2022 0.8315 0.8356 0.9836 0.9705 –

MR-U-net (11) 2022 – 0.8058 0.9863 0.9705 –

MC-U-net (28) 2022 – 0.8100 0.9879 0.9678 –

BCR-U-net (29) 2022 – 0.8183 0.9840 0.9695 –

SDAU-net (30) 2023 – 0.7955 0.9848 0.9682 –

MRC-net (31) 2023 0.8270 0.8250 0.9837 0.9698 –

U-net 2023 0.8122 0.8130 0.9840 0.9664 0.8172

MCSE-U-net 2023 0.8430 0.8752 0.9902 0.9725 0.8473

MCSE-U-net, multi-convolution block and squeeze and excitation based on the U-shape network; DRIVE, Digital Retinal Images for Vessel 
Extraction; sen, sensitivity; spe, specificity; acc, accuracy; mIoU, mean intersection over union; CNN, convolutional neural networks; DU, 
deformable U-net; AD, attention densenet; FA-FCN, Separable Spatial and Channel Flow and Densely Adjacent and Fully Convolutional 
Network; BA, Bilinear attentional; SE-GAN, Squeeze and Excitation and Generative Adversarial Network; BEFD, Boundary Enhancement 
and Feature Denoising; SA, spatial attention; MCPANet, Multiscale Cross-Position Attention Network; MR, Multi-scale and Residual 
convolutions; MC, Multimodule Concatenation; BCR, Bi-directional ConvLSTM Residual; SDA, Series Deformable convolution and 
Lightweight Attention; MRC, Multi-resolution Contextual.

Table 2 Quantitative analysis of U-net and MCSE-U-net methods using the STARE data set 

Method Dice Sen Spe Acc mIoU

U-net 0.7918 0.8603 0.9660 0.9569 0.8081

MCSE-U-net 0.8108 0.8997 0.9738 0.9636 0.8200

MCSE-U-net, multi-convolution block and squeeze and excitation based on the U-shape network; STARE, Structured Analysis of the 
Retinal; sen, sensitivity; spe, specificity; acc, accuracy; mIoU, mean intersection over union.

advanced models using the DRIVE data set. As Tables 1-3 
show, our MCSE-U-net method performed better across 
all five evaluation metrics on the DRIVE, STARE, and 
CHASE_DB1 data sets.

As Table 1 shows, in relation to the DRIVE data set, our 
MCSE-U-net model performed well on all the metrics 
overall. Notably, it had a Dice coefficient of 0.8430, a sen 
of 0.8752, a spe of 0.9902, an acc of 0.9725, and a mIoU 
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A B C D E F

Figure 5 Proposed MCSE-U-net and U-net architecture results for DRIVE. (A) The original image, (B) ground truth, (C) U-net, (D) SA-
U-net, (E) MR-U-net, (F) MCSE-U-net. MCSE-U-net, multi convolution block and squeeze and excitation based on U-shape network; 
DRIVE, Digital Retinal Images for Vessel Extraction; SA, spatial attention; MR, multi-scale and residual convolutions.

of 0.8473. The baseline U-net model was compared to the 
MCSE-U-net model, and the Dice coefficient improved 
significantly from 0.8122 to 0.8430, which represents an 
improvement of 3.08%, the sen improved from 0.8130 to 
0.8752, the spe improved from 0.9840 to 0.9902, the acc 
improved from 0.9664 to 0.9725, and the mIoU improved 
significantly from 0.8172 to 0.8473. We also compared the 
results listed in Table 1 for the DRIVE data set with the 
results for the most recent models on the DRIVE data set, 
and found that the MCSE-U-net model ranked first across 
all the metrics except acc. More specifically, it achieved the 
highest Dice coefficient (1.15% higher than the second 
result), the best sen (0.02% higher than the previous highest 
score), the highest spe (3.04% higher than the previous 
highest score), and the best mIoU (3.01% higher than the 
next best result). Notably, the acc (0.9725) of our method 
was close to the best score achieved (0.9819). The above 
comparison shows the power of our model in handling 
semantic segmentation.

As Table 2 shows, in relation to the STARE data set, the 

MCSE-U-net model was more stable than the baseline 
model and performed better across all five performance 
indicators. Specifically, the Dice coefficient increased from 
0.7918 to 0.8108, the sen increased from 0.8603 to 0.8997, 
the spe increased from 0.9660 to 0.9738, the acc increased 
from 0.9569 to 0.9636, and the mIoU increased from 0.8081 
to 0.8200.

As Table 3 shows, in relation to the CHASE_DB1 
data set, the MCSE-U-net model demonstrated superior 
stability than the baseline model, and exhibited better 
performance across all five evaluation metrics. Specifically, 
the Dice coefficient increased from 0.6841 to 0.7085, the 
sen increased from 0.7877 to 0.7975, the spe increased from 
0.9763 to 0.9799, the acc increased from 0.9611 to 0.9653, 
and the mIoU increased from 0.7391 to 0.7550.

Figure 5 shows blood vessel images extracted from the 
DRIVE data set images; Figure 5A shows the original image; 
Figure 5B shows the ground truth; Figure 5C shows the 
segmentation results of the baseline U-net model; Figure 5D  
displays the segmentation results of the baseline SA-U-

Table 3 Quantitative analysis of U-net and MCSE-U-net methods using the CHASE_DB1 data set 

Method Dice Sen Spe Acc mIoU

U-net 0.6841 0.7877 0.9763 0.9611 0.7391

MCSE-U-net 0.7085 0.7975 0.9799 0.9653 0.7550

MCSE-U-net, multi-convolution block and squeeze and excitation based on the U-shape network; CHASE_DB1, Child Heart and Health 
Study in England; sen, sensitivity; spe, specificity; acc, accuracy; mIoU, mean intersection over union.
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Table 4 Quantitative analysis of the training weights of different data sets on MCSE-U-net 

Data set Dice Sen Spe Acc mIoU

STARE 0.7903 0.8694 0.9653 0.9503 0.8264

CHASE_DB1 0.7102 0.7998 0.9777 0.9667 0.7538

MCSE-U-net, multi-convolution block and squeeze and excitation based on the U-shape network; sen, sensitivity; spe, specificity; acc, 
accuracy; mIoU, mean intersection over union; STARE, Structured Analysis of the Retina; CHASE_DB1, Child Heart and Health Study in England. 

Table 5 Ablation experiments based on the DRIVE data set 

DRIVE Dice Sen Spe Acc mIoU

U-net 0.7863 0.9165 0.9700 0.9676 0.8067

U-net + Pre 0.8545 0.9212 0.9898 0.9740 0.8589

U-net + MC 0.8496 0.9206 0.9877 0.9730 0.8547

U-net + SE 0.8065 0.9206 0.9804 0.9705 0.8221

U-net + Pre + MC 0.8560 0.9078 0.9907 0.9747 0.8604

U-net + Pre + MC + SE + post-processing 0.8255 0.8550 0.9837 0.9688 0.8347

U-net + Pre + MC + SE 0.8573 0.9122 0.9904 0.9748 0.8615

DRIVE, Digital Retinal Images for Vessel Extraction; sen, sensitivity; spe, specificity; acc, accuracy; mIoU, mean intersection over union; U-net 
+ Pre, U-net and pre-processing; U-net + MC, U-net and multi-convolution block; U-net + SE, U-net and Squeeze and Excitation; U-net + 
Pre + MC, U-net and pre-processing and Multi-convolution block; U-net + Pre + MC + SE + post-processing, U-net and pre-processing and 
multi-convolution block and post-processing; U-net + Pre + MC + SE, U-net and pre-processing and multi-convolution block. 

net model; Figure 5E displays the segmentation results of 
the baseline MR-U-net model; and Figure 5F presents the 
results obtained according to the algorithm of this article. 
As Figure 5 shows, both the U-net model and the MCSE-
U-net model could detect the coarse blood vessels, but the 
MCSE-U-net model could detect some fine blood vessels 
that the U-net model could not detect (Figure 5).

In addition, to verify the stability of the model’s 
performance, we used the weights obtained from the 
training of the DRIVE data set to verify the data in the 
STARE data set and CHASE_DB1 data set, and compared 
the results (Tables 2,3) obtained from the training and 
prediction of the STARE data set and CHASE_DB1 
data set. As Table 4 shows, the proposed model had better 
generalization performance.

Discussion

To show that each module added in this article enhanced 
the performance of the model, ablation experiments were 
conducted on each module to verify its effect and the 
related data are presented in Table 5. We performed a set of 
ablation experiments on the data set to compare the baseline 

U-net model with the model to which a pre-processing 
module had been added. The results of the quantitative 
evaluation are shown in Table 5. Notably, in terms of the five 
kinds of segmentation metrics, the model to which the pre-
processing module was added performed better than the 
model with no pre-processing module. The Dice coefficient 
increased from 0.7863 to 0.8545, the sen increased from 
0.9165 to 0.9212, the spe increased from 0.9700 to 0.9898, 
the acc increased from 0.9676 to 0.9740, and the mIoU 
increased from 0.8067 to 0.8589. Thus, we can conclude 
that adding the pre-processing module to the whole model 
made it more effective.

In addition, we also compared the baseline model 
and the image after the addition of the pre-processing 
module. Figure 6A shows the original image; Figure 6B 
shows the ground truth; Figure 6C shows the segmentation 
results of the baseline U-net model; Figure 6D shows the 
segmentation results of the U-net + Pre model. As these 
figures show, compared to the baseline model, the addition 
of the pre-processing module improved the segmentation 
effect. As Figure 6 shows, the addition of the pre-processing 
module enhanced the ability of the model to inspect blood 
vessels.
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Figure 6 The ablation results for DRIVE. (A) The original image, (B) ground truth, (C) U-net, (D) U-net + Pre. DRIVE, Digital Retinal 
Images for Vessel Extraction; U-net + Pre, U-net and pre-processing. 

We performed two sets of ablation experiments on the 
DRIVE data set, the first of which compared the benchmark 
U-net model with the benchmark U-net model after the 
addition of the multi-scale module alone. The quantitative 
evaluation results are shown in Table 5. As Table 5 shows, for 
the five kinds of segmentation metrics, the model to which 
the multi-scale framework had been added performed 
better than the benchmark model, and the metrics for each 
segmentation improved. Specifically, the Dice coefficient 
improved from 0.7863 to 0.8496, the sen improved from 
0.9165 to 0.9206, the spe improved from 0.9700 to 0.9877, 
the acc improved from 0.9676 to 0.9730, and the mIoU 
from 0.8067 to 0.8547.

The second group of ablation experiments was based 
on the first group of ablation experiments; however, a pre-
processing module was added to the model for the two 
experiments. The quantitative evaluation results are shown 
in Table 5. As Table 5 shows, compared to the first group of 
ablation experiments, the results changed. The addition 
of the pre-processing module improved the experimental 
effect of the second group compared to the first group. A 
multi-scale module was also added in addition to the pre-
processing module. However, in terms of the sen, the 
performance of the model that included both the pre-
processing module and the multi-scale module was slightly 

lower than that of the benchmark model. However, after 
the addition of the pre-processing module, the overall 
performance of the model was still good. Specifically, the 
Dice coefficient increased from 0.8545 to 0.8560, the spe 
increased from 0.9898 to 0.9907, the acc increased from 
0.9740 to 0.9747, and the mIoU increased from 0.8589 
to 0.8604. These results show that the model’s overall 
performance was better than that of model to which only 
the multi-scale module had been added.

Table 5  shows the importance of the multi-scale 
framework in improving the performance of the models. 
Additionally, the overall performance of the model 
continued to improve after the addition of the pre-
processing module. Thus, the pre-processing module is 
also very important in the multi-scale framework. We also 
generated graphs and diagrams to show the effects of the 
multi-scale framework on the segmentation effect. Figure 7A  
shows the original image; Figure 7B shows the ground truth; 
Figure 7C shows the segmentation results of the baseline 
U-net model; Figure 7D shows the segmentation results 
of the U-net + MC model. Figure 8A shows the original 
image; Figure 8B shows the ground truth; Figure 8C shows 
the segmentation results of the benchmark U-net model; 
Figure 8D shows the segmentation results of the U-net + 
Pre model; Figure 8E shows the segmentation results of the 
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Figure 7 The ablation results for DRIVE. (A) The original image, (B) ground truth, (C) U-net, (D) U-net + MC. DRIVE, Digital Retinal 
Images for Vessel Extraction; MC, multi-convolution block.

Figure 8 The ablation results for DRIVE. (A) The original image, (B) ground truth, (C) U-net, (D) U-net + Pre, (E) U-net + Pre + MC. 
DRIVE, Digital Retinal Images for Vessel Extraction; U-net + Pre, U-net and pre-processing; U-net + Pre + MC, U-net and pre-processing 
and multi-convolution block. 

U-net + Pre + MC model. As these figures show, adding 
the multi-scale module increased the ability of the model 
to accurately detect the fine blood vessels compared to the 
benchmark model (i.e., the ability of the model to inspect 

blood vessels was enhanced by the addition of the MC 
module).

To evaluate the effectiveness of the SE module for retinal 
vessels, we conducted two sets of ablation experiments using 
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Figure 9 The ablation results for DRIVE. (A) The original image, (B) ground truth, (C) U-net, (D) U-net + SE. DRIVE, Digital Retinal 
Images for Vessel Extraction; U-net + SE, U-net and squeeze and excitation.

the DRIVE data set. The first set of ablation experiments 
compared the baseline U-net model to a model to which 
the SE module had been added. The quantitative evaluation 
of the results are shown in Table 5. As Table 5 shows, in 
terms of segmentation, the model to which the SE module 
had been added performed better than the U-net model. 
Specifically, the Dice coefficient increased from 0.7865 to 
0.8065, the sen increased from 0.9165 to 0.9206, the spe 
increased from 0.9700 to 0.9804, the acc increased from 
0.9676 to 0.9705, and the mIoU increased from 0.8067 to 
0.8221.

The second group of ablation experiments was based 
on the first group of ablation experiments. A multi-scale 
framework and pre-processing module were added to two 
experimental models. The quantitative evaluation results are 
shown in Table 5, which compares the results of the second 
group of ablation experiments to the first group of ablation 
experiments. The results showed certain changes. The overall 
model effect improved. Specifically, the Dice coefficient 
increased from 0.8560 to 0.8573, the sen increased from 
0.9078 to 0.9122, the acc increased from 0.9747 to 0.9748, 
and the mIoU increased from 0.8604 to 0.8615, while the spe 
decreased by 0.03% from 0.9907 to 0.9904.

In addition, we evaluated the effect of the SE module on 
segmentation (Figures 9,10). Figure 9A shows the original 

image; Figure 9B shows the ground truth; Figure 9C shows 
the segmentation results of the baseline U-net model; and 
Figure 9D shows the segmentation results of the U-net + 
SE model. Figure10A shows the original image; Figure 10B 
shows the ground truth; Figure 10C shows the segmentation 
results of the benchmark model U-net; Figure 10D shows 
the segmentation results of U-net + Pre + MC model; and 
Figure 10E shows the segmentation results of the U-net + 
Pre + MC + SE model. As Figures 9 and 10 show, the model 
to which the SE module had been added was better able to 
detect fine blood vessels than the baseline model to which 
the pre-processing module and the MC module had been 
added.

In addition, inspired by Liu et al. (32), we introduced a 
post-processing method of double threshold iteration in the 
ablation experiment to improve the acc of the segmentation 
results. As Table 5 shows, after the addition of this post-
processing method, the acc of the MCSE-U-net model 
decreased. Specifically, the Dice coefficient decreased 
from 0.8573 to 0.8255, the sen decreased from 0.9122 to 
0.8550, the spe decreased from 0.9904 to 0.9837, the acc 
decreased from 0.9748 to 0.9688, and the mIoU decreased 
from 0.8615 to 0.8347. However, as Figure 11 shows, the 
continuity of the blood vessels was enhanced. Therefore, 
we will continue to study segmentation models that include 
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Figure 10 The ablation results for DRIVE. (A) The original image, (B) ground truth, (C) U-net, (D) U-net + Pre + MC, (E) U-net + Pre + 
MC + SE. DRIVE, Digital Retinal Images for Vessel Extraction; U-net + Pre + MC, U-net and pre-processing and multi-convolution block; 
U-net + Pre + MC + SE, U-net and pre-processing and multi-convolution block.

Figure 11 The ablation results for DRIVE. (A) The original image; (B) the ground truth; (C) the results obtained according to the 
algorithm of this article, (D) the U-net + Pre + MC + SE + post-processing. DRIVE, Digital Retinal Images for Vessel Extraction; U-net + 
Pre + MC + SE + post-processing, U-net and pre-processing and multi-convolution block and post-processing.
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this post-processing method in the future to increase 
segmentation acc.

Conclusions

In this article, a novel MCSE module was proposed to 
improve the recognition and segmentation of fine blood 
vessels in retinal vascular images. The comparison and 
ablation experiment results showed that the segmentation 
performance of the MSCE-U-net model was superior to the 
baseline U-net model and most state-of-the-art methods, 
proving the superiority of the proposed method.
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