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Background: Radiomics and artificial intelligence approaches have been developed to predict chronic 
obstructive pulmonary disease (COPD), but it is still unclear which approach has the best performance. 
Therefore, we established five prediction models that employed deep-learning (DL) and radiomics-based 
machine-learning (ML) approaches to identify COPD on low-dose computed tomography (LDCT) images 
and compared the relative performance of the different models to find the best model for identifying COPD.
Methods: This retrospective analysis included 1,024 subjects (169 COPD patients and 855 control subjects) 
who underwent LDCT scans from August 2018 to July 2021. Five prediction models, including models 
that employed computed tomography (CT)-based radiomics features, chest CT images, quantitative lung 
density parameters, and demographic and clinical characteristics, were established to identify COPD by DL 
or ML approaches. Model 1 used CT-based radiomics features by ML method. Model 2 used a combination 
of CT-based radiomics features, lung density parameters, and demographic and clinical characteristics by 
ML method. Model 3 used CT images only by DL method. Model 4 used a combination of CT images, 
lung density parameters, and demographic and clinical characteristics by DL method. Model 5 used a 
combination of CT images, CT-based radiomics features, lung density parameters, and demographic and 
clinical characteristics by DL method. The accuracy, sensitivity, specificity, highest negative predictive values 
(NPVs), positive predictive values, and areas under the receiver operating characteristic (AUC) curve of the 
five prediction models were compared to examine their performance. The DeLong test was used to compare 
the AUCs of the different models.
Results: In total, 107 radiomics features were extracted from each subject’s CT images, 17 lung density 
parameters were acquired by quantitative measurement, and 18 selected demographic and clinical 
characteristics were recorded in this study. Model 2 had the highest AUC [0.73, 95% confidence interval (CI): 
0.64–0.82], while model 3 had the lowest AUC (0.65, 95% CI: 0.55–0.75) in the test set. Model 2 also had 
the highest sensitivity (0.84), the highest accuracy (0.81), and the highest NPV (0.36). In the test set, based 
on the AUC results, Model 2 significantly outperformed Model 1 (P=0.03).
Conclusions: The results showed that the identification ability of models that employ CT-based radiomics 
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Introduction

Chronic obstructive pulmonary disease (COPD) is a life-
threatening incurable lung disease; however, medical and 
physical treatments can help to relieve symptoms and 
improve patients’ quality of life (1). As a complex and 
extremely heterogeneous disease, COPD is challenging to 
identify in the early stages. The pulmonary function test 
(PFT) is used to diagnose COPD. However, a considerable 
proportion of COPD patients are underdiagnosed due to 
the current diagnostic criteria (2).

Chest low-dose computed tomography (LDCT) is 
increasingly being used for lung cancer screening in high-
risk populations; thus, there is an opportunity to use 
computed tomography (CT) scans to identify COPD. 
Quantitative computed tomography (QCT) has increasingly 
been used in the evaluation of COPD, as CT features can 
suggest the presence and severity of emphysema, airway 
disease, and pulmonary vessel disease (3-5). However, the 
use of QCT in COPD diagnosis is prone to variability 
between doctors and is time consuming. In addition, other 
imaging findings in COPD should also be considered, 
such as bronchiectasis and mucous plugging. The above-
mentioned disadvantages limit the clinical application of 
QCT in the diagnosis of COPD.

Compared with specific quantification methods, the 
radiomics and artificial intelligence (AI) approaches aim 
to analyze all the information from CT imaging. The AI 
approach, which includes machine learning (ML) and 
deep learning (DL), refers to the simulation of human 
intelligence by computer systems. Convolutional neural 
networks (CNNs) are becoming a mainstream DL method 
and have made remarkable achievements in medical imaging 
(6,7). The CT radiomics approach could potentially 
quantify COPD and reveal the disease’s underlying 
mechanism. Thousands of quantitative radiomics features 
can be extracted from each image and further analyzed 

using ML tools to predict COPD and disease progress (8). 
In this context, several potential clinical applications for 
radiomics features and AI in COPD have been suggested. 
The diagnosis of COPD by AI or radiomics mainly relies 
on clinical information, CT imaging, or a combination of 
clinical and imaging characterization. Previous studies have 
shown that radiomics and AI models based on CT images 
can be used to distinguish COPD from non-COPD, but 
the performance of such models has varied (9-11). Sun 
et al. (12) used a weakly supervised DL method based on 
CT images to detect COPD. The model achieved an area 
under the receiver operating characteristic (ROC) curve 
(AUC) of 0.934 [95% confidence interval (CI): 0.903–0.961] 
on the internal test set, and 0.866 (95% CI: 0.805–0.928) 
on the external validation LDCT subset. Models that 
combine image features with AI have achieved good results 
in COPD detection. Tang et al. (13) examined the use of a 
DL approach based on residual networks to detect signs of 
COPD on LDCT, and the best model achieved an AUC 
of 0.889 (standard deviation: 0.017). They concluded that 
this approach provided a powerful technique for identifying 
patients within the general population. Li et al. (14) 
evaluated the role of two radiomics classification CT-based 
methods in the identification of COPD, and the models 
achieved AUCs of 0.970 (95% CI: 0.964–0.977) and 0.972 
(95% CI: 0.969–0.975) in the test set, respectively. Another 
recent study (15) assessed the performance of radiomics 
features in COPD detection using CT images and reported 
an AUC of 0.90 (95% CI: 0.89–0.92) in the standard-dose 
CT model, and an AUC of 0.87 (95% CI: 0.83–0.91) in 
the LDCT model. Many investigations have developed 
approaches to predict COPD based on CT radiomics and 
AI; however, it is still unclear which approach has the best 
performance and could be most beneficial to apply as a 
clinical decision support system.

Therefore, we established and compared five prediction 

features combined with lung density parameters, and demographic and clinical characteristics using ML 
methods performed better than the chest CT image-based DL methods. ML methods are more suitable and 
beneficial for COPD identification.
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models, including models that employed CT images, 
lung density parameters, and demographic and clinical 
characteristics using DL and radiomics-based ML 
approaches, and determined the optimal models for the 
identification of COPD on LDCT images. We present 
this article in accordance with the TRIPOD reporting 
checklist (available at https://qims.amegroups.com/article/
view/10.21037/qims-23-1307/rc).

Methods

Data set creation

Subjects
We conducted a population-based CT screening study 
for the early detection of lung cancer, COPD, and 
cardiovascular disease. Specifically, we retrospectively 
collected the data of consecutive subjects who were screened 
using LDCT for the big-three diseases (NELCIN-B3, 
ClinicalTrials.gov, and NCT03988322) from August 2018 to 
July 2021 at the Second Affiliated Hospital, Navy Medical 
University (Shanghai, China) (16). The epidemiological 
data of the subjects were collected through questionnaires. 
PFTs (HI-801 Chestgraph, CHEST M.I., Inc., Tokyo, 
Japan) were performed at the baseline screening. To balance 
the number of subjects among groups, the data of non-
COPD subjects were collected until February 2019, and the 
data of the COPD subjects were collected until July 2021.

To be eligible for inclusion in this study, the patients had 
to meet the following inclusion criteria: have completed 
the questionnaires, PFT, and LDCT on the same day. 
Patients were excluded from the study if they met any of 
the following exclusion criteria: (I) had marked respiratory 
or heartbeat motion, or metal artifacts on their CT images; 
(II) had a CT image thickness >1 mm; (III) had an obvious 
lung disease, such as a lung mass, severe pulmonary 
interstitial fibrosis, or massive pulmonary infection; and/
or (IV) had a thoracic deformity. The subjects were divided 
into the following two subgroups based on the PFT results: 
(I) the non-COPD group [forced expiratory volume in 1 
second (FEV1)/forced vital capacity (FVC) ≥0.7]; and (II) 
the COPD group (FEV1/FVC <0.7). The inclusion and 
exclusion flowchart for the study is shown in Figure 1. In 
total, 1,024 subjects were included in this study. These 
subjects were further randomly divided into a training set, a 
validation set, and a test set at a ratio of approximately 6:1:3 
(n=622 for the training set, n=104 for the validation set, and 
n=298 for the test set). The data from the training set were 
used for the initial model development, the data from the 
validation set were used to optimize the AI models, and the 
data from the test set were used for the model evaluation. In 
this study, the term “developmental set” refers to the data 
sets used during model development, including the training 
set and validation set. The patient demographics for the 
subjects in the developmental and test sets are shown in 
Table 1.

Subjects from Big-3 screening program (n=1,221)

Excluded:
• Without complete questionnaire (n=70)
• Failed to finish PFT (n=98)
• Thick CT images (n=11)
• Motion or mental artifacts (n=18)

Subjects included in this study (n=1,024)

Training cohort (n=726) Test cohort (n=298)

Two classes
Non-COPD (n=597)

COPD (n=129)

Two classes
Non-COPD (n=258)

COPD (n=40)

Figure 1 Flowchart of the included subjects. CT, computed tomography; COPD, chronic obstructive pulmonary disease; PFT, pulmonary 
function test.

https://qims.amegroups.com/article/view/10.21037/qims-23-1307/rc
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Table 1 Subjects’ demographics, clinical, and lung density characteristics

Characteristics
Developmental set (n=726) Test set (n=298)

COPD (n=129) Non-COPD (n=597) P COPD (n=40) Non-COPD (n=258) P

Basic information

Age (years) 66 [61, 69] 68 [65, 70] <0.01 68 [65, 70.75] 68 [65, 71] 0.953

Gender <0.01 0.001

Female 46 348 12 147

Male 83 249 28 111

Level of education 0.218 0.012

Never 0 5 0 3

Primary school 6 17 2 2

Junior school 44 209 14 93

Senior high school 50 218 20 94

College/junior college 27 147 3 65

Graduate 2 1 1 1

Behavior factors

Smoking history 0.001 0.016

Never 73 435 20 184

Ex-smoker 12 37 6 18

Current smoker 44 125 14 56

Average cigarettes per day <0.001 0.008

Never 73 435 20 184

≤1 pack 45 138 15 64

>1 pack 11 24 5 10

Environmental factors

Exposure to second-hand smoke at least 1 day per 

week for more than 15 minutes

0.578 0.225

No 96 458 30 214

Yes 33 139 10 44

Whether the kitchen filled with smoke during cooking 0.093 0.213

No smoke 25 113 7 54

A little smoke 96 400 29 176

Moderate smoke 7 75 3 28

Heavy smoke 1 9 1 0

The house is on the street or in the larger vehicle way 0.478 0.325

No 87 383 23 169

Yes 42 214 17 89

In the past year, did you use air purification equipment at least 3 times a week at 

home and at least 30 minutes at a time?

0.325 0.803

Yes 9 63 3 25

Seldomly 12 41 1 13

No 108 493 36 220

Table 1 (continued)



Quantitative Imaging in Medicine and Surgery, Vol 14, No 3 March 2024 2489

© Quantitative Imaging in Medicine and Surgery. All rights reserved.   Quant Imaging Med Surg 2024;14(3):2485-2498 | https://dx.doi.org/10.21037/qims-23-1307

Table 1 (continued)

Characteristics
Developmental set (n=726) Test set (n=298)

COPD (n=129) Non-COPD (n=597) P COPD (n=40) Non-COPD (n=258) P

Dust exposure 0.796 1.00

No 124 576 39 249

Yes 5 21 1 9

Family history

Family history of lung cancer 0.92 0.806

No 115 534 34 223

Yes 14 63 6 35

Family history of emphysema 0.465 0.03

No 113 536 31 231

Yes 16 61 9 27

Disease symptoms

Cough when weather changes 0.005 0.448

No 83 456 27 189

Yes 46 141 13 69

Frequent wheeze 0.025 0.041

Never 77 417 23 189

Occasionally or often 52 180 17 69

Allergic history 0.803 0.645

No 106 496 31 208

Yes 23 101 9 50

Frequent cough 0.011 0.07

No 102 523 31 227

Yes 27 74 9 31

Chronic respiratory disease 0.02 0.739

No 115 565 37 241

Yes 14 32 3 17

Subjective health status scale (100 represents the best state of health,  

and 0 represents the worst state of health)

0.65 0.758

Score ≥80 89 384 28 170

50≤ score <80 39 207 12 87

Score <50 1 6 0 1

Lung density parameters based on CT

Whether LAA% ≥6 <0.001 <0.001

No 73 457 16 180

Yes 56 140 24 78

Table 1 (continued)
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Table 1 (continued)

Characteristics
Developmental set (n=726) Test set (n=298)

COPD (n=129) Non-COPD (n=597) P COPD (n=40) Non-COPD (n=258) P

Volume (mL) 5,013.74  

[4,084.59, 5,797.94]

4,145.17  

[3,468.51, 4,920.58]

<0.01 5,083.58  

[4,012.02, 6,037.80]

4,219.98  

[3,432.16, 5,060.94]

<0.01

Mean lung density (HU) −849.20  

[−862.16, −830.58]

−835.23  

[−849.93, −814.98]

<0.01 −852.03  

[−866.11, −838.99]

−837.98  

[−852.00, −817.23]

<0.01

Skewness 2.80 [2.49, 3.13] 2.78 [2.47, 3.02] 0.191 2.46 [2.35, 2.95] 2.84 [2.45, 3.05] 0.027

Kurtosis 13.45 [10.76, 15.74] 13.19 [10.74, 14.85] 0.32 10.52 [9.68, 14.64] 13.65 [10.74, 15.11] 0.01

Excess kurtosis 10.34 [7.76, 12.74] 10.19 [7.74, 11.85] 0.32 7.52 [6.68, 11.64] 10.65 [7.74, 12.11] 0.01

LAA volume (mL) 260.52 [124.76, 535.54] 138.78 [64.25, 271.86] <0.01 318.61 [170.82, 928.94] 155.10 [62.17, 335.29] <0.01

LAA% 5.36 [2.50, 9.62] 3.41 [1.76, 5.75] <0.01 6.78 [2.97, 14.09] 3.77 [1.76, 6.55] <0.01

PI-1 (HU) −977 [−990.5, −96.5] −971 [−980, −959] <0.01 −988 [−1,006.5, −968.25] −972 [−982, −959] <0.01

PI-5 (HU) −951 [−964, −937.5] −942 [−952, −930] <0.01 −956.5 [−974.5, −940.25] −944 [−955, −930] <0.01

PI-10 (HU) −937 [−949, −924] −928 [−938, −914] <0.01 −940.5 [−958.25, −924.25] −929 [−941, −915] <0.01

PI-15 (HU) −928 [−939.5, −912.5] −918 [−929, −903] <0.01 −930 [−948, −915] −918 [−931, −905] <0.01

PI-20 (HU) −920 [−932, −904] −909 [−921, −894] <0.01 −921.5 [−939, −907.25] −910 [−924, −896.75] <0.01

PI-25 (HU) −914 [−925, −897] −902 [−914, −886] <0.01 −915 [−931.75, −900.5] −903 [−917, −888.75] <0.01

PI-30 (HU) −907 [−919, −890.5] −895 [−908, −879] <0.01 −908 [−924.5, −894.25] −896 [−910, −881.75] <0.01

PI-35 (HU) −900 [−913, −884.5] −889 [−902, −872] <0.01 −902 [−917.5, −888.25] −890 [−903.25, −875] <0.01

PI-40 (HU) −894 [−906, −877.5] −882 [−896, −865] <0.01 −895.5 [−911.25, −882.25] −884 [−897.25, −868] 0.01

The data are presented as the median [interquartile range]. PI: CT attenuation values at a certain percentile of the CT histogram. COPD, chronic obstructive 

pulmonary disease; CT, computed tomography; LAA%, low attenuation area percentage; HU, Hounsfield units.

The study was conducted in accordance with the 
Declaration of Helsinki (as revised in 2013). The study 
was approved by the Ethics Committee of Changzheng 
Hospital, Naval Medical University, Shanghai, China, 
and the study was registered in the Chinese Clinical 
Trials Registry (http://www.chictr.org.cn/index.aspx; 
ChiCTR2000035283). All the subjects provided written 
informed consent for participating in this study.

Questionnaires
The questionnaire included questions related to basic 
information, behavior factors, environmental factors, family 
history, and disease symptoms. In total, 18 demographic and 
clinical characteristics were selected for the data analysis. 
The demographic and clinical characteristics included age, 
sex, education level, smoking history, and average cigarettes 
per day.

CT scanning
All the subjects were screened with a craniocaudal LDCT, 

lying supine with both arms raised. A 256-slice CT 
(Brilliance-iCT, Philips Healthcare, Eindhoven, The 
Netherlands) was used to obtain the CT images according 
to the NELCIN-B3 CT scan protocol. The subjects 
underwent breath-hold training before the CT scanning. 
No contrast-enhanced volumetric chest CT scanning was 
performed at the end of inspiration and expiration from 
the thoracic inlet to the diaphragm. The acquisition and 
reconstruction parameters for the chest CT scanning were 
as follows: collimation: 128×0.625 mm; tube energy: 120 kV;  
tube current modulation: Z-axial and 3D automatic; 
Doseright collimator (Philips Healthcare): on; reduced dose 
level: 3; pitch: 0.915; slice thickness: 1 mm; slice increment: 
1 mm; field of view: 350 mm × 350 mm; matrix: 512×512; 
and algorithms: high and standard resolution.

CT lung density measurement
The lung density parameters were analyzed using 
commercial software (A-VIEW, Suhai Alderi Information 
Technology Ltd., Dubai, UAE). A lung parenchyma 
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area with an attenuation value less than −950 Hounsfield 
units was defined as a low attenuation area (LAA). The 
percentage of the LAA of the whole lung relative to the 
total volume was automatically calculated as the LAA%. CT 
attenuation values at the 1st (PI-1), 5th (PI-5), 10th (PI-10), 
15th (PI-15), 20th (PI-20), 25th (PI-25), 30th (PI-30), 35th 
(PI-35), and 40th (PI-40) percentiles of the CT histogram 
were automatically acquired by software. The volume of 
the whole lung, mean lung density, the skewness, kurtosis, 
and excess kurtosis of the CT attenuation values were also 
recorded. Ultimately, 17 lung density parameters were 
selected for the data analysis.

Model development

All the ML and AL classification models were developed 
on the Python platform (Version 3.8.5, Python Software 
Foundation, USA) at a workstation equipped with an Intel 
Xeon Gold 5118 CPU and four NVIDIA GeForce RTX 
2080 Ti GPUs. As stated above, all the AI models were 
trained with the training set data and optimized with the 
validation set data. As Figure 2 shows, a total of five AI 
models, including two ML models and three DL models, 
were developed in this study. The ML-based models 
included a model based solely on radiomics features and a 
model based on the combination of radiomics features and 
clinical features, while the DL-based models included a 
model based solely on CT images, a model integrating CT 
images and clinical and lung density features, and a model 
based on the combination of CT images, clinical and lung 
density features and radiomics features. Further details of 

these five models are provided below.

Extraction of radiomics features from the CT images
Before the radiomics image extraction, the lung region 
was segmented from the CT images. The radiomics 
features were extracted from the CT images using the 
Python package “pyradiomics” (17) (Version 3.0.1) on the 
Python programming platform. For each CT volume, 107 
radiomics features, including 14 shape features, 18 first-
order statistic features, 24 gray-level co-occurrence matrix 
features, 16 gray-level run length matrix features, 16 gray-
level size zone matrix features, 14 gray-level dependence 
matrix features, and 5 neighboring gray-tone difference 
matrix features, were extracted from the segmented lung 
region. These radiomics features were further used to 
construct the radiomics-based ML classification models.

Radiomics-based ML methods for classification
The gradient boosting decision tree (GBDT) model (18) was 
adopted for the radiomics feature-based binary classification 
task. Two GBDT models were constructed using the 
“GradientBoostingClassifier” function from Scikit-
Learn Toolkit (19) (Version 0.32.2): Model 1 employed 
107 radiomics features only, while model 2 employed a 
combination of the 107 radiomics features, 17 lung density 
features, and 18 demographic and clinical characteristics 
based on the questionnaire administered to the subjects. 
During the training process, we used all the features without 
selection. To optimize the GBDT model, we used a grid 
search strategy to tune the hyperparameters in an empirical 
range. By grid searching, we constructed the optimal model 

Model 1 Performance 1

Model 2 Performance 2

Model 3 Performance 3

Model 4 Performance 4

Model 5 Performance 5

Image-based 
radiomic features

CT image

Clinical 
information 

and lung 
density 

parameters 

Extract

Performance 
comparison

Figure 2 A simplified flowchart of the study design. CT, computed tomography.
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with 40 decision trees (n_estimators =40), a learning rate 
of 0.01 (learning_rate =0.01), the number of features to 
consider when looking for the best split set as the logarithm 
to the base 2 of the feature numbers (max_features = ‘log2’), 
the maximum depth of the individual estimator of 5 (max_
depth =5), the minimum number of samples required to be 
at a leaf node of 11 (min_samples_leaf =11), the fraction of 
samples to be used to fit the individual base learners of 0.85 
(subsample =0.85), and the loss function of log loss (loss 
= ‘log_loss’). Further, given the class imbalance between 
the COPD and non-COPD samples, we put a weight of 
0.8 on the COPD samples and a weight of 0.2 on the non-
COPD samples during the training process, so that the 
classification model could better fit the minority class (i.e., 
the COPD samples).

Development of image-based DL models for COPD 
classification
In addition to the radiomics feature-based classification 
models, we also constructed three DL classification models 
based on CT images. Model 3 is based only on CT images; 
Model 4 is based on a combination of CT images, 17 
lung density features, and 18 demographic and clinical 
characteristics from the questionnaire administered to the 
subjects; Model 5 is based on a combination of the CT 
images, 107 radiomics features, 17 lung density features, 
and 18 demographic and clinical characteristics. These 

three DL models were constructed using the DL framework 
PyTorch (20) (Version 1.10.2), and Model 3 is based on the 
ResNeXt50 (21) backbone, which is a CNN using group 
convolution strategy for improving model performance.

To use the lung density parameters, demographic 
and clinical characteristics, and/or radiomics features in 
the DL models, we developed a CNN called DualNet 
that integrates multimodal information, including the 
CT images, lung density parameters, demographic and 
clinical characteristics, and the selected radiomics features 
for the classification task. As Figure 3 shows, DualNet is a 
combination of the ResNet50 (22) and Ext-Attention (23)  
networks. ResNet50 encodes the CT image features, 
while the Ext-Attention network encodes the lung density 
parameters, demographic and clinical characteristics, and/or 
radiomics features. Both ResNet50 and Ext-Attention form 
a 1,024-dimentional eigenvector, and these eigenvectors 
are further concatenated and passed to the fully connected 
layer for the final classification. Models 4 and 5 were both 
constructed with the DualNet backbone.

Before the training process for the DL models, we 
preprocessed the images by first segmenting the lung region 
from the CT volumes, and then augmenting the segmented 
lung region images by random vertical and horizontal 
flipping and random rotation. During the training process, 
we consistently employed Focal Loss or its variants as the 
loss function for the DL models. Additionally, to address 
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Figure 3 Network structure of DualNet. ReLU, rectified linear unit.
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the class imbalance between the COPD and non-COPD 
data, we balanced the weights of the sample categories and 
mitigated the data imbalance effect by using a weighted 
random sampler during the data loading to achieve superior 
training effectiveness. Adam was employed as the optimizer 
during training, with exponential decay rates for parameters 
B1 and B2 set at 0.9 and 0.999, respectively. The epsilon 
parameter was fixed at 10e−8, and the initial learning rate 
was set to 0.0005. Before training, weight initialization 
in the CNN model was performed using Kaiming 
initialization. Subsequently, the data were randomly shuffled 
and fed into the CNN, with a batch size of 32 for each 
iteration.

Model evaluation
The classification performance of all our classification 
models was evaluated on the test set data. To evaluate the 
classification performance, we plotted ROC curves and 
calculated the areas under the ROC curves (AUCs) as 
the quantitative metrics. Under the optimal classification 
threshold (a.k.a. the operating point) where the Youden 
Index (sensitivity + specificity − 1) reaches the maximum, 
we calculated the accuracy, sensitivity, and specificity of the 
models in terms of classification. Calibration curves were 
used to evaluate the calibration of the prediction model 
with the best performance.

Statistical analysis

All the statistical analyses were performed using the 
R language platform (Version 4.0.0, R Foundation for 
Statistical Computing, Vienna, Austria). To compare the 
distribution of the categorical variables between the COPD 
and non-COPD data, we used the Chi-squared test. To 
compare the distribution of the quantitative variables 
between the COPD and non-COPD data, we first tested 
if the data distribution followed a normal distribution 
using the Shapiro-Wilk Test. If the distribution was 
normal (P>0.05 for the Shapiro-Wilk test), we used the 
Student’s t-test for further analysis; otherwise, the Mann-
Whitney U test was used. In terms of the classification 
model performance, we compared the accuracy, sensitivity, 
specificity, the highest negative predictive value (NPV), 
positive predictive value (PPV), and AUC values of 
different models using the DeLong test. In all the statistical 
analysis, a P value less than 0.05 was considered statistically 
significant.

Results

COPD and non-COPD subjects’ demographic and clinical 
characteristics

A total of 1,024 subjects were included in this study, 
of whom 169 were COPD patients. The subjects were 
randomly divided into a developmental set (n=726, 
comprising a training set of 622 patients and a validation 
set of 104 patients) and a test set (n=298) for the model 
establishment and model evaluation, respectively. The 
patient demographics, clinical characteristics, and lung 
density parameters for the developmental set and the test set 
are listed in Table 1. The age of subjects in the non-COPD 
group was greater than that in the COPD group, and there 
was a significant difference between the two groups in terms 
of age (P<0.01) and gender (P<0.01) in the developmental 
set. However, no significant difference was found between 
the two groups in terms of age and gender in the test set 
(P=0.953). In addition, significant differences were observed 
between the COPD group and non-COPD group in 
terms of smoking history (P=0.001; P=0.016) and average 
cigarettes per day (P<0.001; P=0.008) for the developmental 
set and test set, respectively. Statistical differences were 
also observed between two groups in all the lung density 
parameters for the test set (all P<0.05).

Model performance for classification task

The performance results of our five classification models 
are set out in Table 2, and the corresponding ROC curves 
of these models are shown in Figure 4. In relation to the 
performance of the five models on the training set, Model 
1 achieved the highest performance (AUC =0.95, 95% CI: 
0.94–0.97) and performed significantly better than Model 
3 (P<0.001), Model 4 (P<0.001), and Model 5 (P=0.004). 
There were no significant differences between Model 1 and 
Model 2 in terms of their classification performance (AUC 
=0.95, 95% CI: 0.94–0.97 vs. AUC =0.94, 95% CI: 0.92–
0.97; P=0.13). Therefore, the classification performance of 
Models 1 and 2 was equal on the training set. In relation 
to the performance of the five models on the test set, the 
accuracy scores ranged from 0.64 to 0.81, the sensitivity 
scores ranged from 0.63 to 0.84, the specificity scores 
ranged from 0.50 to 0.73, and the AUC values ranged from 
0.65 to 0.73. Model 2 had the highest AUC (0.73, 95% 
CI: 0.64–0.82), while Model 3 had the lowest AUC (0.65, 
95% CI: 0.55–0.75). The AUC results showed that Model 
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2 performed significantly better than Model 1 (P=0.03). It 
also had the highest sensitivity (0.84), the highest accuracy 
(0.81), and the highest NPV (0.36) of the five models. 
The Hosmer-Lemeshow test results suggested Model 2 
had adequate goodness of fit for predicting COPD in the 
training and test sets (P=0.322 and P=0.531, respectively).

Discussion

In this study, we designed and evaluated five prediction 
models based on a radiomics-based ML method and a CT 
image-based DL method to detect COPD in a general 
population who underwent LDCT scans for the screening 
of three-big diseases. A COPD identification model with 

Table 2 Classification performance of five models in the test and training sets

Model Accuracy Sensitivity Specificity NPV PPV AUC (95% CI) P value†

Test set

Model 1 0.72 0.74 0.60 0.27 0.92 0.66 (0.57–0.76) 0.03*

Model 2 0.81‡ 0.84‡ 0.58 0.36‡ 0.93 0.73 (0.64–0.82)‡ Reference

Model 3 0.70 0.72 0.55 0.23 0.91 0.65 (0.55–0.75) 0.26

Model 4 0.78 0.82 0.50 0.30 0.91 0.69 (0.59–0.78) 0.52

Model 5 0.64 0.63 0.73‡ 0.23 0.94‡ 0.70 (0.61–0.79) 0.61

Training set

Model 1 0.82 0.79 0.97‡ 0.49 0.99‡ 0.95 (0.94–0.97)‡ Reference

Model 2 0.89‡ 0.91‡ 0.84 0.64‡ 0.97 0.94 (0.92–0.97) 0.13

Model 3 0.80 0.81 0.76 0.45 0.94 0.86 (0.82–0.90) <0.001*

Model 4 0.78 0.77 0.83 0.42 0.96 0.87 (0.84–0.90) <0.001*

Model 5 0.85 0.85 0.85 0.53 0.96 0.90 (0.87–0.93) 0.004*
†, the P value is for the DeLong test between the classification model and the reference model for AUC; ‡, the highest metric among all five 
models. *, P<0.05. NPV, negative predictive value; PPV, positive predictive value; AUC, area under the receiver operating characteristic 
curve; CI, confidence interval.
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Figure 4 ROC curves of the five COPD identification models. (A) ROC curves of the five COPD identification models in the test set. (B) 
ROC curve of the five COPD identification models in the training set. AUC, area under ROC curve; CI, confidence interval; ROC, receiver 
operating characteristic; COPD, chronic obstructive pulmonary disease.
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high sensitivity and specificity could effectively provide 
clinical treatment support for physicians. With the 
development of AI, several studies on COPD identification 
based on CT imaging have achieved satisfactory results; 
recently, some DL models trained from chest CT images 
and CT-based extracted radiomics features have been 
used to identify and classify COPD (24,25). However, to 
the best of our knowledge, few studies have compared the 
performance of DL models based on images to that of ML 
models based on lung radiomics features in identifying 
COPD.

The results of our experiments showed that Model 2, 
which employed a combination of CT-based radiomics 
features, lung density parameters, and demographic and 
clinical characteristics using a ML method, achieved an 
AUC of 0.73 (95% CI: 0.64–0.82) in the test set. It had 
the best performance among the five models. It also had 
the highest sensitivity (0.84), the highest accuracy (0.81), 
and the highest NPV (0.36). Conversely, Model 3, which 
used DL based on CT images, had the lowest AUC of 0.65 
(95% CI: 0.55–0.75) in the test set. Among the five models, 
Model 2 had the best COPD identification capability. 
Therefore, compared with the DL models based on the 
chest LDCT images, the ML method based on the use of 
lung radiomics features had the best performing modality 
for COPD identification in this study.

There was a high-class imbalance among the patients 
included in our study. There were only 169 COPD subjects, 
while there were 855 non-COPD subjects. Such a class 
imbalance is common and typical in clinical scenarios, 
especially for COPD screening with LDCT. However, class 
imbalance can be a problem for AI model training, as it 
might result in a classification model biased to the majority 
class. Therefore, from a technical point of view, any such 
class imbalance needs to be handled with appropriate 
strategies to avoid classification bias. In this study, we used 
higher class weights for the minority class in the training 
process of the ML models, and we used a weighted random 
sampler during the data loading to ensure class balance 
in the training data batches, so that we could correct the 
model bias in the classification task. We also used the class 
imbalance insensitive metric of the AUC in the model 
evaluation, so that the models could be fairly evaluated 
despite the class imbalance.

Our results are consistent with those of Yang et al. (26), 
who found that the classification ability of lung radiomics 
features based on ML methods was better than that of 
chest high-resolution CT images based on classic CNNs 

for COPD stage classification. However, there were two 
differences between the two studies. First, while both 
studies compared the performance of ML and DL methods 
for COPD diagnostic applications, the present study 
explored the performance of COPD identification, while 
Yang et al. investigated COPD stage classification; Second, 
Yang et al. selected the best classifier from the different ML 
methods to construct a lung radiomics model to characterize 
COPD stage, while we constructed a lung radiomics model 
combined with lung density parameters, and demographic 
and clinical characteristics. In our study, we found that 
the identification and classification ability of the ML 
method based on the images was better than that of the DL 
method based on the lung radiomics features. There may 
be a number of reasons for this. First, DL requires a large 
number of labeled training data and rich experience, so it 
cannot achieve a satisfactory performance with a relatively 
small amount of training data, such as that in this study. 
Further, due to the “black box” feature of DL, the result 
may be interpreted inappropriately because it is unknown 
what was learned from the images. Second, lung radiomics 
can focus more on extracting the features from the lung 
region than the original chest CT images. Additionally, the 
lung density parameters were combined with the radiomics 
model to achieve better identification results in our study. 
This is because lung density can reflect parenchyma area 
abnormity to some extent. Therefore, when inputting the 
lung density parameters into the radiomics model (Model 
2, AUC =0.73, 95% CI: 0.64–0.82), it achieved better 
COPD identification results than the radiomics-only model 
(Model 1, AUC =0.66, 95% CI: 0.57–0.76). A recent study 
of COPD identification by a ML support vector machine 
classifier had an AUC of 0.97 (95% CI: 0.964–0.977) in 
the test set (14). Another study for COPD detection by 
radiomics features showed that the radiomics features model 
had an AUC of 0.90 (95% CI: 0.89–0.92) in the standard-
dose CT scans and an AUC of 0.87 (95% CI: 0.83–0.91) in 
the LDCT scans (15). The performance of the model was 
better than that of the models in our study. This may be 
because LDCT images and a different ML classifier were 
used in our study.

Many studies have confirmed that radiomics based 
on CT can improve COPD detection; however, the 
implementation of pyradiomics features in clinical chest 
CT scans is not yet practical. There may be a number of 
reasons for this (27,28). First, the feature selection step 
in ML approaches differs for heterogeneous scanning 
protocols and the resulting technical variabilities (e.g., 
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different slice thicknesses, and the timings of contrast 
material administration) in the imaging data. Second, there 
is a lack of studies/development of any generalized model. 
Third, most of the current ML/DL algorithms are based on 
retrospective data, and very few ML/DL models have passed 
the clinical standard checkpoints. Finally, the performance 
of ML/DL models often diminish in uncontrolled real-
world settings due to bias and a lack of generalization. 
Hence, such ML/DL models could face medio-legal issues.

The present study had a number of limitations that 
should be considered in the interpretation of the results. 
First, our models performed much better in the training set 
than the test set, which suggests a tendency of overfitting. 
Second, the sample sizes of 129 COPD patients in the 
development group and 40 COPD patients in the test 
group were not sufficient for the DL or radiomics-based 
COPD classification study, so studies with larger study 
populations need to be conducted. Third, this study did not 
include an external data set, and the applicability of models 
to the general population was unable to be evaluated, which 
should be studied further in the future. Further, spirometric 
triggering was not applied in the CT scan, therefore we 
cannot be completely sure that the imaging was obtained 
during maximum inspiration. Finally, as the presented 
models based on feature selection and segmentation choice 
were semi-automatic in nature, their performance is biased 
towards the particular choice of features or numeric values 
in the development phase. Therefore, the algorithm might 
perform well with retrospective data but fail to perform well 
with external data.

Conclusions

In conclusion, our results confirmed that CT image-based 
DL and radiomics-based ML models could be used to 
identify COPD on chest LDCT images and had acceptable 
performance. The ML methods based on CT-based 
radiomics features combined with lung density parameters, 
and demographic and clinical characteristics performed 
better than the chest CT image-based DL methods. Thus, 
these ML methods are more suitable and beneficial for 
COPD identification.
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