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Background: Disease diagnosis in chest X-ray images has predominantly relied on convolutional neural 
networks (CNNs). However, Vision Transformer (ViT) offers several advantages over CNNs, as it excels 
at capturing long-term dependencies, exploring correlations, and extracting features with richer semantic 
information.
Methods: We adapted ViT for chest X-ray image analysis by making the following three key improvements: 
(I) employing a sliding window approach in the image sequence feature extraction module to divide the input 
image into blocks to identify small and difficult-to-detect lesion areas; (II) introducing an attention region 
selection module in the encoder layer of the ViT model to enhance the model’s ability to focus on relevant 
regions; and (III) constructing a parallel patient metadata feature extraction network on top of the image 
feature extraction network to integrate multi-modal input data, enabling the model to synergistically learn 
and expand image-semantic information.
Results: The experimental results showed the effectiveness of our proposed model, which had an average 
area under the curve value of 0.831 in diagnosing 14 common chest diseases. The metadata feature network 
module effectively integrated patient metadata, further enhancing the model’s accuracy in diagnosis. Our 
ViT-based model had a sensitivity of 0.863, a specificity of 0.821, and an accuracy of 0.834 in diagnosing 
these common chest diseases.
Conclusions: Our model has good general applicability and shows promise in chest X-ray image analysis, 
effectively integrating patient metadata and enhancing diagnostic capabilities.
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Introduction

Computer-aided diagnosis (CAD) is an advanced technology 
that uses computer technology and artificial intelligence 
methods to analyze and process medical images and data, 
providing diagnostic and treatment recommendations for 

patients. Traditional CAD methods often rely on machine-
learning algorithms that require manual feature design for 
diagnostic tasks. In the early stages of chest X-ray disease 
recognition research, manually designed and extracted 
features were commonly used.

https://crossmark.crossref.org/dialog/?doi=10.21037/qims-23-1280
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To address the challenges posed by manual feature 
extraction and the multi-class classification of chest X-ray 
diseases, we developed a multi-modal fusion network model 
based on the Vision Transformer (ViT) architecture. The 
ViT model, introduced by Dosovitskiy et al. (1) in 2020, 
represents a breakthrough in the field of visual self-attention 
models, and has demonstrated remarkable performance in 
image classification tasks. The ViT network model builds 
on the transformer architecture by making improvements 
such as discarding the decoder and using only the encoder 
to encode and compute image information. By leveraging 
the self-attention mechanism, the ViT model captures the 
global context of the input image, enabling it to effectively 
process visual information.

Currently, convolutional neural networks (CNNs) 
are commonly used for chest X-ray disease recognition. 
However, the ViT model used in this article has a number 
of advantages over CNNs, as it can capture global 
information for an entire image and learn long-range 
dependencies between different regions, which provides a 
better understanding of the image’s structure and semantics. 
However, the image segmentation method employed by 
the ViT model in the previous study may disrupt the spatial 
correlation between image patches and cannot focus on 
important regions during network training. To address 
these limitations, we proposed a sliding window image 
segmentation method to preserve the correlation between 
image patches. Additionally, we introduced an attention 
region selection module to guide the model’s focus toward 
crucial areas of the image. The proposed model had an 
average area under the curve (AUC) of 0.837 for diagnosing 
14 diseases in the ChestX-ray14 data set, representing a 
2.1% improvement compared to that of previous models 
(2-5). Notably, the most significant enhancements were 
observed for pneumonia and edema diseases, with increases 
of 7.5% and 6.8%, respectively. Further, our method 
demonstrated substantial improvements for diseases with 
a large amount of data, such as effusion and atelectasis, for 
which it showed increases of 6.5% and 5.7%, respectively.

In the process of diagnosing multi-diseases in chest 
X-rays using the ViT model, we identified the following 
main objectives:

(I)	 Automatic small lesion location extraction: the 
lesions in the chest are primarily found in the 
lungs and chest wall, and they often occupy a 
small portion of an entire X-ray image. Our first 
objective was to develop a method to automatically 
extract the location of these small lesions from 

X-ray images.
(II)	 Accurate identification of multiple diseases: each 

chest X-ray image may contain one or more diseases, 
and there are complex coexistence and dependency 
relationships among these diseases. Our second 
objective was to accurately identify and classify 
various diseases present in the chest X-ray images.

(III)	 Integration of patient metadata information: in 
the diagnosis of chest X-ray diseases, relying 
solely on imaging data may have limitations. In 
clinical practice, doctors often consider additional 
information, such as the patient’s age, gender, and 
medical history, to make a more comprehensive 
diagnosis. Our ultimate objective was to integrate 
patient metadata information into the diagnostic 
network to enhance the accuracy and reliability of 
the chest disease diagnosis.

By addressing these objectives, we sought to improve 
the efficiency and effectiveness of chest X-ray diagnosis, 
ultimately leading to better patient care and outcomes.

Overall, the main contributions of our work can be 
summarized as follows:

(I)	 We proposed an image segmentation approach 
based on a sliding window mechanism. This 
approach ensures that small lesion areas in chest 
X-ray images are not divided into multiple image 
patches, thus improving segmentation accuracy.

(II)	 We introduced a visual self-attention model 
with an attention region selection module. This 
model allows for the fine-grained identification of 
multiple diseases in chest X-ray images by focusing 
on specific regions of interest. This improves the 
accuracy and specificity of disease identification.

(III)	 We proposed a multi-modal fusion network model 
that combines patient metadata and X-ray image data. 
This addresses the limitations of diagnosing with 
single-image data, enabling the more accurate and 
comprehensive identification of complex diseases.

The remainder of this article is structured as follows: in 
Section 2, we provide a brief introduction to related works 
in the field of chest X-ray image analysis. In Section 3, we 
describe the data sets used in our experiments and explain 
how we split the data sets for training and evaluation. We 
also provide details about the architecture of our model and 
the implementation of its components. In Section 4, we 
compare our proposed model to state-of-the-art methods 
and present the results of ablation experiments. We also 
analyze the results and discuss the strengths and limitations 
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of our approach. In Section 5, we discuss the experimental 
setup for the ablation experiments, including the evaluation 
metrics used and the computational resources employed. 
Finally, in Section 6, we conclude our work and highlight 
the key findings and contributions of our research.

Methods

Data sets and data set splitting

The study was conducted in accordance with the 
Declaration of Helsinki (as revised in 2013). The 
ChestXray14 data set is one of the earliest publicly 
available, large-scale chest X-ray data sets. It was released 
by the National Institutes of Health (NIH) in the United 
States in 2017. The data set contains a total of 112,120 
chest X-ray images taken from 30,805 patients. The data set 
has the following 15 label categories: infiltration, effusion, 
atelectasis, nodule, mass, pneumothorax, consolidation, 
pleural thickening, cardiomegaly, emphysema, edema, 
fibrosis, pneumonia, hernia, and no finding. The first 14 
labels represent common chest diseases, and each X-ray 
image may be labeled with one or more of these diseases. 
The “no finding” label indicates that none of the 14 diseases 

are present in the X-ray image.

Data set splitting

The distribution of various disease samples and their 
proportions in the ChestX-ray14 data set is shown in 
the “official partitioning” column of Table 1. There is a 
significant class imbalance issue among the different disease 
categories. For instance, diseases such as infiltration, 
effusion, and atelectasis have a large number of samples, 
accounting for over 10% of all disease samples. Conversely, 
diseases such as pneumonia and hernia have a smaller 
number of samples, comprising only around 1% of all 
disease samples. The ChestX-ray14 data set divides all chest 
X-ray images on a per-patient basis, and 80% of the data 
set is used for training and validation, and the remaining 
20% is used for testing evaluation. This ensures that X-ray 
images taken from the same patient do not appear in both 
the training and testing sets.

Data sets re-divided based on patient medical history

As Figure 1 shows, the ChestX-ray14 data set not only 

Table 1 Disease numbers and ratios for different data set partitioning methods

Lesion type
Official partitioning Past medical history partitioning

Sample size Proportion of samples (%) Sample size Proportion of samples (%)

Infiltration 19,894 24.51 18,339 24.57

Effusion 13,317 16.41 12,606 16.89

Atelectasis 11,559 14.24 10,675 14.30

Nodule 6,331 7.80 5,461 7.32

Mass 5,782 7.12 4,999 6.70

Pneumothorax 5,302 6.53 5,109 6.85

Consolidation 4,667 5.74 4,423 5.93

Pleural thickening 3,385 4.17 3,013 4.04

Cardiomegaly 2,776 3.42 2,442 3.27

Emphysema 2,516 3.10 2,369 3.17

Edema 2,303 2.84 2,253 3.02

Fibrosis 1,686 2.08 1,424 1.91

Pneumonia 1,431 1.76 1,336 1.79

Hernia 227 0.28 181 0.24

Total 81,176 100 74,630 100
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contains 110,000 chest radiographs from over 30,000 
patients, but also includes the following patient-specific 
information for each radiograph: identification (ID) 
number, age, gender, and view position. The first eight 
digits of the ID number represent the patient’s ID, and the 
last three digits indicate the order in which the radiographs 
of the patient were taken. In addition, the proportion of 
patients to images in the ChestX-ray14 data set is 1:3.6, and 
there is a common phenomenon of multiple radiographs 
belonging to the same patient. Only 15.61% of patients had 
only one radiograph taken, while the majority of patients 
had 2–35 radiographs taken. Thus, there is a high degree of 
redundancy in the image data.

There is a correlation between chest diseases; for 
example, patients with atelectasis symptoms are more 
likely to have diseases such as infiltration and effusion (6).  
Therefore, based on the original official data set’s 
segmentation method, we re-divided the data set. The 
radiographs of patients with multiple images were sorted by 
the time of acquisition, and the disease information from 
the earliest radiograph was taken as the patient’s medical 
history information. We also ensured that the samples of the 
same patient did not overlap in the training, validation, and 
test sets. The distribution of the re-divided data set is shown 
in the “past medical history partitioning” column of Table 1; 
a total of 6,546 radiographs were selected and transformed 
into patient medical history information, reducing the 
image data by about 5%, but leaving the proportion of each 
disease in the total disease count basically unchanged.

Overall architecture

The overall architecture of the model based on the visual 

self-attention mechanism is shown in Figure 2. The model 
mainly consists of a serialized feature extraction module, a 
self-attention model encoder, an attention region selection 
module, and a metadata feature extraction network.

First, the input image is segmented into N equally 
sized image patches, which are then flattened into a 
one-dimensional (1D) sequence of image blocks. After 
incorporating the positional information of the images, 
the sequence is input to the encoder for encoding and 
computation. While the data is being computed in the 
encoder, the attention weight matrices from the previous 
encoder layers are saved to enable the attention region 
selection module to select key areas in the image. Once 
the encoding computation is completed in the encoder, the 
image features are generated. Finally, the image features 
are concatenated with the metadata features output by 
the patient metadata network to generate fused features, 
which are then input into a classifier for the final disease 
diagnosis.

The proposed joint network model captures the relative 
positional relationships between the image patches by 
adding an additional positional vector encoding to the 
vector of each image patch, forming the final input 
sequence. The subsequent encoder comprises 11 stacked 
transformer encoding modules, each of which comprises a 
multi-head self-attention layer, a normalization layer, and 
a fully connected layer. The metadata feature extraction 
subnetwork comprises two fully connected layers, each 
followed by an activation function and a normalization 
layer. The image feature extraction subnetwork and the 
metadata feature extraction subnetwork concatenate the 
extracted features along the last dimension, completing the 
fusion of image features and metadata features.

Age (years) 24 33 57 68

Gender Female Male Male Female

X-ray view AP AP PA PA

Patient ID 00001055_001 00000344_000 00000001_000 00000062_000

Figure 1 Patient metadata information in the ChestX-ray14 data set. The ChestX-ray14 data set includes the following patient-specific 
information for each radiograph: ID number, age, gender, and view position. AP, anterior posterior; PA, posterior anterior; ID, identification.
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Figure 2 Chest multi-disease diagnosis networks for common diseases. The model mainly consists of a serialized feature extraction 
module, a self-attention model encoder, an attention region selection module, and a metadata feature extraction network. RELU, 
rectified linear unit.

Serialized feature extraction module

As the self-attention model was originally designed to 
handle sequential data in the natural language processing 
field, it first divides the input image into multiple equally 
sized image blocks in order, and then flattens the divided 
image blocks to obtain multiple 1D image block sequences 
of the same length. In the original visual self-attention 
model, the image blocks are independent of each other, 
and there is a lack of connections between the adjacent 
image blocks, resulting in the loss of neighboring spatial 
information and the possibility of dividing distinctive and 
recognizable feature areas into multiple image blocks, 
leading to a decrease in classification performance. In this 
article, the sliding window segmentation approach adopted 
directly preserves the correlations between the adjacent 
image blocks. As the ViT network requires a large amount 
of training data for training, and performing convolutions 
on image blocks increases the number of network 
parameters, it becomes more challenging to train the 

network. Therefore, we adopted the approach of training 
with overlapping image blocks, which not only preserves 
the spatial correlations within the image blocks but also 
reduces the difficulty of network training and mitigates the 
risk of model overfitting.

To address this issue and avoid completely separating 
recognizable regions, while establishing connections 
between adjacent image blocks, we imitated the sliding 
convolutional kernel mechanism in CNNs and used a 
sliding window to divide the original image. Specifically, 
we let the size of the original image be H*W, the size of 
the sliding window be Ph*Pw, and the stride of the sliding 
window be S (S≤Ph, S≤Pw). Using the sliding window 
segmentation method, the window moves with a stride 
of S for segmentation, and each time a Ph*Pw image block 
is segmented. The number of segmented image blocks is 
calculated as follows:

* *h w
H W

H P S W P SN N N
S S

− + − +   = =       
	

[1]
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Through this division method, all adjacent image blocks 
share a cross-sectional area of size (Ph−S)*Ph (top and 
bottom adjacent) or (Pw−S)*Pw (left and right adjacent), 
ensuring that small, recognizable areas appear intact in 
a single-image block as much as possible. As the stride S 
decreases, the overlap between the adjacent image blocks 
increases, preserving spatial correlation information 
more completely. However, as the stride S decreases, the 
number of segmented image blocks increases significantly, 
generating too many redundant image regions and 
increasing computational costs, making the training process 
difficult to converge.

After the image block sequence is serialized, the image 
block sequence is first mapped to a vector space of the 
same dimension through a learnable linear transformation 
to input it into the encoder for training. At the same time, 
imitating the method of adding global classification features 
in the original visual self-attention model, a learnable 
embedding sequence xc is added in the image block 
embedding sequence, which is of the same dimension as the 
image block sequence, to learn the global features of the 
entire image in the subsequent self-attention mechanism 
calculation process. In addition, to capture the relative 
positional relationships between the image blocks and 
determine their positions in the input sequence, a position 
encoding vector is added to each image block embedding 
vector. The input sequence after serialization and image 

block embedding can be represented as:

[ ]0 1 2; , , ,c N posz x x x x E= … +
	

[2]

where Epos represents the position encoding vector, which 
is encoded in the same way as the position encoding in the 
transformer network.

As Figure 3 shows, the visual self-attention model 
encoder is mainly composed of alternating multi-head 
self-attention modules and fully connected layers, with 
layer normalization applied after each layer and residual 
connections to improve the model’s generalizability and 
avoid the problem of gradient disappearance. Assuming that 
the model encoder is stacked with L layers, the output of 
the l layer encoder can be represented as:

( )( )'
1 1l l lz MSA LN z z− −= +

	
[3]

( )( )' '
l l lz MLP LN z z= +

	
[4]

where MSA represents the multi-head self-attention 
layer, multi-layer perceptron (MLP) represents the fully 
connected layer, and Zl is the image block feature sequence 
after encoder operation.

Finally, in the classification module of the original visual 
self-attention model, only the additional global feature 
sequence zc is used for the final classification. Although 
zc learns the global features of the entire image during 
the encoder self-attention operation, there may still be 
potential information in the other feature sequences that zc 
has not captured. Therefore, all the image feature sequence 
outputs are sent by the last layer encoder together with the 
global feature sequence to the classifier for the final disease 
classification.

Attention region selection module

There is a common problem in chest X-ray images where 
the lesion area occupies a relatively small area of the entire 
chest image. To address this issue, an attention region 
selection module was added to the visual self-attention 
model (7) to select the informative regions in the image 
and achieve fine-grained disease recognition in chest X-ray 
images by focusing on specific regions of the image.

Using the inherent attention weight information in 
the visual self-attention model, the attention weights of 
all the encoders in the model are accumulated and sorted, 
and multiple regions with larger weights are selected as 
inputs to the last layer encoder. Assuming that the model 
is stacked with L encoders, and K-head self-attention 

Add & Norm

Add & Norm
L×

Multilayer perceptron

Multi-head attention

Figure 3 Encoder structure of the visual self-attention model. 
The visual self-attention model encoder is mainly composed of 
alternating multi-head self-attention modules and fully connected 
layers, with layer normalization applied after each layer and 
residual connections to improve the model’s generalization ability 
and avoid the problem of gradient disappearance.
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mechanism is used in each encoder, the attention weights 
in the first L−1 layers of the model can be represented as:

0 1 2
 ; , , , 1,2, , 1k

l l l l la a a a a l L = … ∈ … − 
	 [5]

0 1 2; , , , 0,1, ,Ni ii ii
l l l l la a a a a i K = … ∈ … 

	 [6]

where al represents the K-head attention weight matrix in 
each layer, and  i

la represents the attention weight in each 
attention head.

Since the weight in the attention matrix indicates the 
degree of attention given to the interaction between 
different image blocks when computing the output vector, 
the attention weights of all encoders is accumulated in the 
first L−1 layers; that is: 

0

L 1
final ll

a a−

=
=∑

	
[7]

The final attention weight matrix afinal obtained by 
weight accumulation contains all the attention weight 
information from the previous encoder layers. In the 
attention region selection module, the key regions are 
selected based on each attention head, and the region 
with the highest attention weight in each head is selected. 
Assuming that the regions with the highest attention 
weights in the K attention heads of the encoder are  
A1, A2, …, Ak, the output of the selected encoder in the 
L−1 layer can be represented by Eq. [8]:

1 2
1 1 1 1, , , KA A AAPSM

L L L Lz z z z− − − − = …  	 [8]

Finally, the global feature c
lz  and the selected image block 

feature 1 APSM
Lz −  are concatenated in the last dimension as the 

input to the last encoder layer; that is:

1 1;concat c APSM
L Lz z z− − =  	 [9]

A multi-disease diagnostic model based on image 
information and patient metadata

In clinical practice, doctors often use patient metadata 
information as an important reference for disease diagnosis. 
Doctors diagnose based on a combination of many different 
aspects of features, not just single information sources such 
as imaging data. This concept is in line with the essence of 
multi-information joint diagnosis in computer intelligent 
diagnosis, which uses the complementarity between 
different categories for multi-feature fusion and cross-modal 
relationship modeling to explore the correlation between 
different types of data and to more comprehensively 
describe and analyze data, increasing the model’s accuracy 

and generalization ability in decision-making and  
prediction tasks.

Combining patient metadata with image learning

The diagnostic decisions made by doctors are often based 
on the combination of features from multiple information 
sources. In the literature (8-10), multi-modal networks 
combining image features and metadata features have 
been extensively studied in the fields of dermatology and 
glaucoma. However, in the traditional CAD of chest X-ray 
images, patient data has long been neglected. Therefore, 
patient metadata is used as a supplement to image data 
to enhance the model’s understanding of pathological 
features and provide more classification evidence for model 
prediction.

The image feature extraction network is based on 
the network structure proposed in the previous section; 
that is, the final classifier output is removed to produce 
a 13×768-dimensional image feature vector. Here, 13 is 
composed of one global feature sequence and 12 key region 
sequences selected by the self-attention region selection 
module, while 768 is the dimension mapped by the image 
embedding module in the model.

Constructing a patient metadata network

The metadata information used in this article includes the 
patient’s age, gender, X-ray shooting position, and past 
medical history. All the metadata are encoded into equally 
sized feature vectors using one-hot and discrete numerical 
encoding. The patient metadata is encoded as follows: male 
and female are encoded as 0 and 1, respectively, and the 
X-ray shooting position is encoded as 0 and 1. Patient age is 
normalized from [1, 97] to [0, 1]. The patient’s past medical 
history is encoded as a 15-dimensional vector, with the first 
14 dimensions corresponding to 14 diseases in the data 
set. If the patient has had a certain disease, it is encoded 
as 1; otherwise, it is encoded as 0. If the patient does not 
have any of the 14 diseases, the 15th dimension is marked 
as 1 to indicate health; otherwise, it is marked as 0. Based 
on the above encoding rules, an 18-dimensional patient 
metadata information vector is constructed for each chest  
X-ray image.

The encoded metadata vector already has feature 
representation ability; however, the effect of each 
encoding feature on the classification results is different, 
and different weight parameters need to be assigned. 
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Figure 4 Metadata feature extraction network. The process of computing patient metadata information in the feature extraction network 
and the dimensionality changes. MLP, multi-layer perceptron.

Therefore, weighted calculations are needed for the 
metadata encoding to obtain metadata feature vectors 
with higher discriminability. As neural networks can 
map input feature vectors to a new feature space through 
matrix multiplication and bias addition operations, and 
can represent more complex and abstract features through 
learning weight parameters, a metadata feature extraction 
network was designed to further process the encoded 
metadata information.

The metadata feature extraction network constructed in 
this article consists of two fully connected layers, in addition 
to the activation and normalization layers after each layer. 
The fully connected layers are used to map low-level 
features to higher-level features to enhance the network’s 
expressive power. The activation and normalization layers 
introduce non-linear transformations in the network, 
thus improving the network’s generalization performance 
and reducing the risk of over fitting. Figure 4 shows the 
calculation process and dimensionality change of patient 
metadata information in the feature extraction network. 
After being processed by the metadata feature extraction 
network, the metadata vector is extended to 768 dimensions 
for easy feature fusion with the image feature vector. 
Specifically, after being encoded, the patient metadata 
information is first mapped to 512 dimensions through a 
neural network, and then normalized and activated by a 
rectified linear unit function before entering the second 
neural network layer, where it is further enhanced to 1,024 
dimensions. Finally, after undergoing normalization and 
activation function operations, a 768-dimensional patient 
metadata feature vector is generated.

Joint network

The structure of the joint network model is shown in  
Figure 5. In the joint network, the output features of 
the metadata feature extraction network and the image 
feature extraction network are fused to generate the final 
classification feature vector of the model. The output 
features of the joint network are represented by Eq. [10] as 
follows:

( ) ( )1 1 2 2  G F x F x= ⊕
	

[10]

where F1 represents the image feature extraction network, 
which outputs features with dimensions of 13×768, F2 
represents the metadata feature extraction network, which 
outputs features with dimensions of 1×768, and G represents 
the multidimensional information fusion feature vector 
with dimensions of 14×768, generated by concatenating the 
output features of the two networks on the last dimension. 
Finally, the fused features are fed into the classifier for the 
diagnosis and classification of chest X-ray diseases.

Results

Experimental environment and parameter configuration

The deep-learning framework used for this study was 
PyTorch, and the hardware was a graphics processing unit 
server with a Tesla P100-PCIE graphics card. The detailed 
experimental environment configuration is shown in Table 2.

The network uses pre-trained parameters of the 
ViT-B/16 model. Before training, the input image size is 
resized to 224×224 and normalized before being fed into 
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the network. The training batch size is set to 16, and the 
optimization strategy uses the stochastic gradient descent 
optimizer with an initial learning rate of 3e−2.

The hyperparameters of the model are set as follows: 
sliding window stride: 4; number of attention regions: 
12; and length of the 1D sequence after unfolding the 
image blocks: 768. The model goes through 12 layers 
of transformer encoders for encoding operations. Each 
transformer encoder has 12 attention heads, a hidden size of 
3,072 in the fully connected layer, and a dropout rate of 0.1.

Comparison to state-of-the-art and generalizability 
metrics

We compared our proposed method with the currently 
better-performing chest X-ray disease diagnosis methods. 
Figure 6 shows the AUC values of our method and previous 
methods in the diagnosis of 14 common chest diseases. The 
experimental results showed that our method had higher 
diagnostic accuracy than the previous three methods for 

most of the diseases in the ChestX-ray14 data set.
Table 3 shows the specific AUC values of the model for 

the diagnosis of 14 diseases and the average AUC value for 
all disease categories. The experimental results showed that 
the average AUC value of our method was 0.831, which is 
higher than the AUC values of Wang (0.738), Yao (0.803), 
Gündel (0.807), and Valsson (0.816). Specifically, the most 
significant improvement in the AUC values was for edema 
and pneumonia, which increased by 7.9 and 5.8 percentage 
points, respectively. Our method also showed a significant 
improvement in the diagnosis of diseases with small lesion 
areas that are difficult to identify, such as effusion and lung 
consolidation, which increased by 6.5 and 6.3 percentage 
points, respectively, which verified our method’s ability 
to identify small-area lesion diseases. Additionally, our 
method also showed a significant improvement in the 
diagnosis of diseases with a large number of samples, such 
as atelectasis and pneumothorax, which increased by 5.7 and  
4.3 percentage points, respectively. As the visual self-
attention mechanism-based network structure requires 
a large amount of data for training, the diagnostic 
performance of the network was slightly reduced in some 
disease categories with a small sample size, but it still 
maintained comparable diagnostic performance. For 
example, the AUC values for fibrosis and hernia were 0.792 
and 0.907, respectively, which were slightly lower than the 
previous highest values of 0.818 and 0.937. Overall, these 
results showed the effectiveness and superiority of our 
proposed method in the diagnosis of common chest X-ray 
diseases.

The model’s receiver operating characteristic (ROC) 

Age

Gender

Chest X-ray
shooting position

Past medical 
history

Image feature 
extraction network

Feature vector
Classifier

Output

Metadata feature 
extraction network

Figure 5 Joint network structure. The output features of the metadata feature extraction network and the image feature extraction network 
were fused to generate the joint network model.

Table 2 Experimental environment

Category Configuration

Operating system version Ubuntu 18.04

Graphics processor Tesla P100-PCIE

Central processor Intel Xeon 2.30GHz E5-2699 v4

System memory 27G 3733MHZ LPDDR4X

Deep-learning framework Pytorch 1.10.0
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Edema

Pneumonia

Infiltration

Nodule

Fibrosis Wang
Yao 
Gündel
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Atelectasis
Consolidation

Hernia

Emphysema

Effusion

Pneumothorax

Mass

Cardiomegaly

Pleural_Thickening

Figure 6 Comparisons of the AUC of different methods for disease diagnosis on the ChestX-ray14 data set. The AUC values of our method 
and previous studies in the diagnosis of 14 common chest diseases. AUC, area under the ROC curve; ROC, receiver operating characteristic.

Table 3 AUC comparisons of 14 disease diagnoses using different diagnostic methods on the ChestX-ray14 data set

Disease types
Diagnostic methods for chest X-ray disease

Wang (2) Yao (3) Gündel (4) Valsson (5) Ours

Infiltration 0.609 0.675 0.709 0.694 0.729

Effusion 0.784 0.806 0.828 0.822 0.893

Atelectasis 0.716 0.733 0.767 0.763 0.824

Nodule 0.671 0.717 0.758 0.747 0.774

Mass 0.706 0.727 0.821 0.820 0.821

Pneumothorax 0.806 0.805 0.846 0.840 0.889

Consolidation 0.708 0.717 0.745 0.749 0.812

Pleural thickening 0.708 0.724 0.761 0.763 0.788

Cardiomegaly 0.807 0.858 0.883 0.875 0.910

Emphysema 0.815 0.842 0.895 0.895 0.896

Edema 0.805 0.806 0.835 0.846 0.914

Fibrosis 0.769 0.757 0.818 0.816 0.792

Pneumonia 0.633 0.690 0.731 0.714 0.789

Hernia 0.767 0.824 0.896 0.937 0.907

AUC mean 0.738 0.803 0.807 0.816 0.837

AUC, area under the ROC curve; ROC, receiver operating characteristic.
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curves for 14 disease diagnoses on the ChestX-ray14 data 
sets are shown in Figure 7.

By evaluating the generalizability of the chest X-ray 
CAD model, we can gain a better understanding of its 
performance and limitations and provide guidance for 
further improvements and optimizations. When evaluating 
the generalizability of the chest X-ray model, several 
important metrics can be considered. First, accuracy is a 
crucial metric that measures a model’s overall performance 
in classifying normal and abnormal cases. A high accuracy 
indicates that a model is effective in distinguishing between 
the two classes. Second, sensitivity is an important metric 
that evaluates a model’s ability to correctly identify diseases. 
It measures the proportion of true positive cases identified 
by a model, indicating its effectiveness in detecting 
abnormalities. Third, specificity measures a model’s 
ability to correctly exclude normal cases. It represents 
the proportion of true negative cases correctly classified 
by a model, indicating its effectiveness in ruling out 
abnormalities when they are absent.

To assess the generalizability of our proposed model, we 

conducted statistical experiments on the ChestX-ray14 data 
set. This data set includes a diverse range of X-ray images 
collected from different populations, age groups, time 
periods, and types of X-ray devices, making it statistically 
significant for evaluating the model’s generalization ability.

The general izabi l i ty  metrics  for  our proposed 
model on the ChestX-ray14 data set are summarized in  
Table 4, providing a comprehensive evaluation of its 
accuracy, sensitivity, and specificity. These metrics provide 
valuable insights into the model’s performance and its 
ability to generalize to unseen data.

By considering these metrics and conducting rigorous 
evaluations, we can gain a deeper understanding of a 
model’s strengths and weaknesses, and identify areas for 
further improvement. This evaluation process is essential 
for enhancing a model’s performance and ensuring its 
reliability in real-world scenarios.

Ablation experiments

To validate the effect of different modifications to the 
ViT in our proposed model on the chest X-ray disease 
classification task, we conducted ablation experiments 
on the image patch segmentation method, attention 
region selection module, and image classification feature 
representation method. The detailed experimental results 
are shown in Table 5.

Sliding window ablation experiment

In this study, to ensure that the small lesion areas were 
not divided into multiple image patches, the image patch 
segmentation method in the original visual self-attention 
model was improved. A sliding window approach is used 
to divide the original input image, with partial overlap 
between adjacent image patches. This enables cross-
patch connections between adjacent image patches to 
be established and preserves the integrity of small lesion 
areas. To evaluate the effect of different image patch 
segmentation methods on model prediction performance, 
the other parameters of the original visual self-attention 
model  were  le f t  unchanged,  and only  the  image 
patch segmentation method was varied in an ablation 
experiment. The experimental results, indicate that the 
sliding window segmentation method used in this study 
significantly improved the diagnostic performance of the 
model compared to the non-overlapping segmentation  
method (Table 6).

1.0

0.8

0.6

0.4

0.2

0.0

Tr
ue

 p
os

iti
ve

 r
at

e

0.0 0.2 0.4 0.6 0.8 1.0
False positive rate

Atelectasis
Cardiomegaly
Effusion 
Infiltration
Mass 
Nodule
Pneumonia
Pneumothorax
Consolidation
Edema 
Emphysema
Fibrosis 
Pleural_Thickening
Hernia

Figure 7 Our model’s ROC curves for 14 disease diagnoses on the 
ChestX-ray14 data set. ROC, receiver operating characteristic.

Table 4 Generalizability metrics

Generalizability metrics Values

Specificity 0.821

Sensitivity 0.863

Accuracy 0.834
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The sliding window stride values were set to 14, 12, 
and 8, respectively. The experimental results are shown in 
Table 7. As the stride decreased, the overlap area between 
the adjacent image blocks increased, and the AUC values 
for diseases with small lesion areas, such as atelectasis, 
infiltration, mass, and nodule, increased partially.

Selected key regions ablation experiment

To address the problem of small and difficult-to-identify 
lesion areas in chest X-ray images, this study introduced 

improvements to the original visual self-attention 
model’s image embedding feature representation. The 
improvements mainly comprised two parts: (I) introducing 
a region selection module based on the inherent self-
attention mechanism of the visual self-attention model 
to highlight the regions of interest in the image to focus 
the network’ attention on lesion areas; (II) inputting all 
the feature sequences into a classifier for the final disease 
classification to retain all the feature information of the 
highlighted regions. The experimental results indicated 
that the proposed improvements in image embedding 
feature representation significantly enhanced the model’s 
predictive performance for diseases (Table 8). The AUC 
value for chest disease diagnosis increased from 0.814 to 
0.831, demonstrating the effectiveness of the proposed 
improvements.

The number of regions selected by each attention head 
was set to three different values (i.e., 1, 2, and 3). The 
experimental results are shown in Table 9. The results 
showed that the choice of the number of key regions had 

Table 5 Comparison of the AUCs of different network structures for disease diagnosis on the chestX-ray14 data set 

Disease types

Network structures

ViT
ViT + overlapping 

segmentation 
methods

ViT + overlapping 
segmentation methods + 
region selection module

ViT + overlapping 
segmentation methods + 
region selection module + 
labeling all image blocks

ViT + overlapping segmentation 
methods + region selection 
module + labeling all image 

blocks + metadata information

Infiltration 0.705 0.707 0.711 0.715 0.729

Effusion 0.856 0.861 0.877 0.879 0.893

Atelectasis 0.798 0.804 0.811 0.812 0.824

Nodule 0.748 0.751 0.762 0.756 0.774

Mass 0.801 0.807 0.826 0.826 0.821

Pneumothorax 0.860 0.863 0.879 0.882 0.889

Consolidation 0.790 0.792 0.798 0.800 0.812

Pleural thickening 0.757 0.755 0.777 0.778 0.788

Cardiomegaly 0.881 0.881 0.903 0.912 0.910

Emphysema 0.875 0.872 0.899 0.896 0.896

Edema 0.897 0.904 0.909 0.913 0.914

Fibrosis 0.789 0.794 0.803 0.801 0.792

Pneumonia 0.758 0.766 0.763 0.771 0.789

Hernia 0.894 0.897 0.913 0.918 0.907

AUC mean 0.814 0.817 0.829 0.831 0.837

AUC, area under the ROC curve; ROC, receiver operating characteristic; ViT, Vision Transformer.

Table 6 Image patch segmentation method ablation experiment

Overlapping segmentation AUC mean

× 0.814

√ 0.817

AUC, area under the ROC curve; ROC, receiver operating 
characteristic.
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Table 7 AUC values for disease diagnosis with different sliding 
window strides

Disease types
Sliding window stride

14 12 8

Atelectasis 0.807 0.812 0.816

Cardiomegaly 0.911 0.912 0.907

Effusion 0.877 0.879 0.868

Infiltration 0.715 0.715 0.712

Mass 0.829 0.826 0.831

Nodule 0.750 0.756 0.758

Pneumonia 0.768 0.771 0.767

Pneumothorax 0.884 0.882 0.879

Consolidation 0.801 0.800 0.796

Edema 0.911 0.913 0.911

Emphysema 0.899 0.896 0.893

Fibrosis 0.807 0.801 0.789

Pleural thickening 0.768 0.778 0.774

Hernia 0.916 0.918 0.911

AUC, area under the ROC curve; ROC, receiver operating 
characteristic.

Table 8 Image feature representation dismantling experiment

Labeling classifier 
image blocks

Labeling all 
image blocks

Region selection 
module

AUC 
mean

√ × × 0.813

× √ × 0.814

√ × √ 0.829

× √ √ 0.831

AUC, area under the ROC curve; ROC, receiver operating 
characteristic.

Table 9 Selection of corresponding disease diagnosis AUC values 
for different key areas

Disease types
Number of key regions

1×12 2×12 3×12

Atelectasis 0.812 0.812 0.809

Cardiomegaly 0.912 0.913 0.907

Effusion 0.879 0.882 0.880

Infiltration 0.715 0.711 0.711

Mass 0.826 0.823 0.828

Nodule 0.756 0.752 0.756

Pneumonia 0.771 0.766 0.767

Pneumothorax 0.882 0.878 0.880

Consolidation 0.800 0.803 0.796

Edema 0.913 0.909 0.916

Emphysema 0.896 0.896 0.892

Fibrosis 0.801 0.794 0.789

Pleural thickening 0.778 0.799 0.787

Hernia 0.918 0.919 0.915

AUC, area under the ROC curve; ROC, receiver operating 
characteristic.

Table 10  Patient metadata information for image block 
segmentation experiment

Metadata information AUC mean

× 0.831

√ 0.837

AUC, area under the ROC curve; ROC, receiver operating 
characteristic.

little effect on disease diagnosis. As the number of key 
regions increased, there was a slight decrease in the AUC 
values for different diseases, but the overall difference was 
not significant.

Metadata network ablation experiments

Metadata information ablation experiments
Due to the inherent limitations of individual image 
data, it is often challenging to include all the necessary 

information for disease diagnosis. Introducing patient 
semantic information can extend and supplement the 
image data, providing additional classification evidence 
for model diagnosis. Therefore, in this study, a parallel 
patient metadata feature extraction network was further 
constructed based on the image feature extraction network. 
The patient metadata features were fused with the image 
features and jointly used for disease classification. The 
experimental results indicate that compared to the sole 
image features, the introduction of patient metadata 
information in the model increased the average AUC value 
for disease diagnosis from 0.831 to 0.837 (Table 10). This 
suggests that the constructed metadata feature extraction 
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network in this study effectively extracted patient 
metadata information and supplemented the pathological 
information of the image data.

For patient gender, age, and X-ray shooting position 
information, we used a method based on image feature 
extraction network to predict non-image data to verify 

their effectiveness in disease diagnosis. Specifically, the 
image feature extraction network trained on chest X-ray 
image data was first used to extract image feature vectors, 
and the image information was then used to train classifiers 
to predict patient gender, age, and chest X-ray shooting 
position information (Figure 8).

The patient metadata network was trained for five epochs 
on the three parts of metadata information; Table 11 shows 
the network’s prediction results for the patient metadata. 
The experimental results showed that patient gender and 
chest X-ray shooting position information were accurately 
predicted using the image feature network, indicating that 
these two parts of information are not well-complementary 
with image information and cannot effectively supplement 
image information. The average absolute error of age 
information predicted by the network was 7.92 years, 
which was higher than the predicted value of the bone age 
evaluation system for adolescent clinical applications (11), 
which indicates that age cannot be accurately predicted 
solely through image data.

Past medical history information ablation experiments
We conducted ablation experiments to verify the 
effectiveness of past medical history information; the 
experimental results are set out in Table 12. The results 
showed that most of the improvement of the multi-modal 
information fusion network in diagnosing chest diseases was 

Age

Gender

Chest X-ray 
shooting 
position

Image feature 
extraction network

Image feature vector

Metadata classifier

Figure 8 Patient metadata information prediction network. The image information is used to train classifiers to predict patient gender, age, 
and chest X-ray shooting position information.

Table 11 Patient metadata information prediction results

Metadata information
Accuracy/mean 
absolute error

Chest X-ray shooting position (%) 99.51

Gender (%) 94.17

Age (years) 7.92

Table 12 Past medical history information ablation experiment

Gender + age + 
shooting position

Past medical history AUC mean

× × 0.831

√ × 0.831

× √ 0.836

√ √ 0.837

AUC, area under the ROC curve; ROC, receiver operating 
characteristic.
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due to the introduction of past medical history information, 
while gender, age, and X-ray shooting position information 
only improved the network by 0.1 percentage points, which 
shows the effectiveness of past medical history information 
in supplementing image information.

Discussion

Based on the findings from the above ablation experiments, 
a number of observations can be made. First, in the sliding 
window ablation experiment setup, the image blocks were 
divided in an overlapping manner, and the setting of the 
sliding window stride determined the size of the overlap 
area between the adjacent image blocks. The image block 
size was set to the default value of 16 in the original ViT 
model, and the sliding window stride values were set to 
14, 12, and 8, respectively, corresponding to overlap areas 
of 1/8, 1/4, and 1/2 of the entire image block size. The 
adjacent overlap area of the image increased as the sliding 
window stride value decreased, resulting in an increase in 
the number of generated image blocks. This resulted in 
higher computational costs and challenges in achieving 
training convergence. In contrast to previous methods (12), 
we proposed a flexible adjustment to the stride of the sliding 
window, taking into account the size of the lesion region. 
This adjustment was crucial, as it determined the model’s 
ability to converge quickly.

Second, in the selected key regions ablation experiment 
setup, the number of heads in the multi-head self-attention 
module was set to 12. This setting was chosen because 
previous studies (13-16) have shown that different heads 
in the multi-head self-attention mechanism represent 
semantic information in different dimensions. Therefore, 
in the key region selection module, for each attention 
head, the regions with the highest attention weights were 
selected as the key regions. We conducted experiments on 
the number of selected key regions for each attention head, 
with the number of selected key regions set to 1, 2, and 3, 
corresponding to 12, 24, and 36 key regions, respectively. 
The choice of the number of key regions might only have 
had a small effect on disease diagnosis because most of 
the images in the ChestX-ray14 data set contain one to 
three diseases; thus, selecting 12 key regions covers most 
diseases in the images. However, selecting fewer key regions 
can increase the model’s focus on key regions. Thus, it is 
more appropriate to select 12 key regions for the ChestX-
ray14 data set. If a data set is being used with more disease 
types, the selection of more key regions may achieve better 

diagnostic performance.
In the metadata information ablation experiment setup, 

to explore the effectiveness of each part of the patient 
metadata, we further investigated the correlation between 
image information and patient metadata information. 
The three parts of metadata information were predicted 
separately. The gender and chest X-ray shooting position 
were converted into binary classification problems, and the 
labels of the two parts of information were encoded using 
binary encoding. For patient age, as it is a number that falls 
within the range of 1 to 95, this section used a regression 
prediction method and used the mean absolute error as the 
evaluation index, which reflects the actual age difference 
between network predicted value and label value. The 
calculation method of mean absolute error is expressed in 
Eq. [11] as follows:

1

1 nMAE y y
n

− ′= ∑ 	 [11]

where y represents the patient’s true age, and y' represents 
the network predicted age.

If image features can effectively predict patient metadata 
information, it indicates that this category of metadata has 
poor complementarity with image data, which means that 
this information can be learned from image feature data 
and has poor complementarity with image feature data. If 
image features cannot effectively predict patient metadata 
information, it indicates that this metadata information 
has strong complementarity with image data, and they can 
therefore serve as an effective supplement to image data. 
Due to the large average absolute error of age information 
predicted from the image network, age information has 
strong complementarity with image information and can 
effectively supplement image information. Related studies 
have shown (17) that as age increases, the incidence of chest 
diseases in the elderly population also shows a growing 
trend compared to younger age groups. Therefore, fusing 
patient age information with image features can provide 
more decision evidence for the system to diagnose chest 
diseases and improve the system’s classification ability.

Conclusions

We focused our research on chest X-ray images and 
identified several limitations that needed to be addressed 
(i.e., the presence of small lesion areas, numerous and 
complex diseases, and the challenge of incorporating all 
necessary information for accurate disease diagnosis into a 
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single image). To address these limitations, we proposed a 
multi-modal fusion network model that combines patient 
metadata and X-ray image data. To address the problem of 
small lesion areas, we employed a sliding window–based 
image segmentation approach. This allows us to extract 
relevant regions of interest and focus on important lesion 
areas using an attention region selection module. By doing 
so, we ensure that the model pays attention to the most 
crucial parts of the image for accurate diagnosis.

In addition to image data, we also incorporated patient 
metadata into our model. This metadata provides valuable 
contextual information that can enhance the classification 
performance. By fusing patient metadata and image 
information, we are able to improve the model’s ability to 
predict multiple diseases in chest X-rays.

We chose the ViT model for the task of multi-label 
classification of chest X-ray images. Through extensive 
experiments on the ChestX-ray14 data set, our approach 
achieved an average AUC of 0.837. This represents a 
2.7% improvement in the average AUC compared to 
previous CNN-based methods. These results demonstrate 
the effectiveness of our proposed approach in accurately 
diagnosing chest diseases. To further validate our 
improvements, we conducted ablation experiments. 
These experiments confirmed the effectiveness of our 
modifications to the ViT model and the introduction of 
patient metadata.

However, we acknowledge that the available patient 
metadata types are limited and metadata information may 
lack information about strong correlation among chest 
diseases, such as smoking history or family medical history. 
In future research, we plan to use real-world hospital 
data sets to collect more comprehensive patient metadata 
information. This will allow us to further improve the 
performance of our model and enhance its applicability in 
real-world clinical settings.
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