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Background: The long-term survival of kidney transplants is often influenced by various factors, among 
which renal allograft rejection is the most notable factor. A noninvasive and reliable imaging biomarker 
correlating with kidney function and histopathology would facilitate longitudinal long-term follow-up of 
renal allografts. The aim of the study is to investigate the value of arterial spin labeling (ASL) combined 
with T1 mapping for assessing kidney function in patients with long-term renal transplant survival, and 
to establish radiological and histopathologic correlations between the magnetic resonance imaging (MRI) 
measurements and kidney allograft biopsy findings.
Methods: Kidney transplant recipients who were admitted to the Department of Urology in First Affiliated 
Hospital of Soochow University between January and December 2022 were prospectively consecutively 
recruited [group A, estimated glomerular filtration rate (eGFR) ≥60 mL/min/1.73 m2; group B, 30≤ eGFR 
<60 mL/min/1.73 m2; group C, eGFR <30 mL/min/1.73 m2], and part of them underwent biopsies. All 
patients underwent ASL and T1 mapping. MRI parameters were calculated and analyzed.
Results: A total of 63 patients (Group A, 30 cases; Group B, 20 cases; and Group C, 13 cases) were 
included in this cross-sectional study. Cortical T1 increased, whereas renal blood flow (RBF) and ΔT1 
[100% × (cortical T1 − medullary T1)/cortical T1] decreased with the decrease of eGFR. The RBF, cortical 
T1, and ΔT1 values were moderately correlated with eGFR (r=0.569, −0.573, and 0.672, respectively). The 
MRI parameters were moderately correlated with Banff scores, which determined renal allograft rejection 
and chronicity. The area under the curve (AUC) for the discrimination of groups A versus B and groups A 
versus C were 0.740 [95% confidence interval (CI): 0.597–0.854, P=0.004] and 0.923 (95% CI: 0.800–0.982, 
P<0.001), respectively, using ASL; 0.873 (95% CI: 0.749–0.950, P<0.001) and 0.926 (95% CI: 0.803–0.983, 
P<0.001), respectively, using T1 mapping; and 0.892 (95% CI: 0.771–0.962, P<0.001) and 0.956 (95% CI: 
0.846–0.995, P<0.001), respectively, using multi-parameter MRI. The AUC for discrimination between 
groups B and C was 0.729 (95% CI: 0.546–0.868, P=0.02) using ASL.
Conclusions: The RBF, cortical T1, and ΔT1 can serve as new imaging biomarkers of kidney function and 
histopathological microstructure.
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Introduction

In patients with kidney failure, renal transplantation is the 
optimal treatment option compared to dialysis. However, 
the main primary independent risk factor for the long-
term survival of a transplanted kidney is renal allograft  
rejection (1). With the widespread implementation of tissue-
matching techniques, perioperative antibody induction 
therapy, and the utilization of new immunosuppressive 
agents, the incidence of acute rejection is decreasing every 
year (2). Owing to the limited number of kidney donors 
and the increasing number of patients requiring kidney 
transplants, it is essential to maintain the function of a 
transplanted kidney for as long as possible (3). Creatinine 
is the most widely used laboratory index for clinical 
monitoring of kidney function. However, it may not be 
adequately sensitive to detect rapid changes in kidney 
function till more than half of the kidney function is lost 
(4,5). This time lag may lead to delayed treatment, resulting 
in a poor prognosis of the transplanted kidney (6). An 
ultrasound can noninvasively monitor postoperative vascular 
and surgical complications in transplanted kidneys. The 
ultrasound examination strongly relies on the operator’s 
experience and has low sensitivity. A biopsy remains the 
gold standard for diagnosing diseases of transplanted 
kidneys. Although generally safe, sedation and anesthesia 
carry the risks of procedural bradycardia, hypoxemia, and 
aspiration, which cannot be neglected (7-11).

Magnetic resonance imaging (MRI) can provide 
morphological, functional, and microstructural information 
about the transplanted kidney (12-14). In addition, MRI 
is operator-independent and can be obtained without 
contrast agents and radiation exposure; thus allowing 
multiple examinations to be performed. Arterial spin 
labeling (ASL) can be used to label inflowing blood as an 
endogenous contrast agent. It is proven that renal blood 
perfusion measured using ASL is comparable to that 
measured using fluorescent microspheres and dynamic 
contrast enhancement (15,16); hence, tissue microvascular 
perfusion can be repeatedly and accurately evaluated. T1 
mapping allows the direct measurement of T1 relaxation 

time (17), which quantifies small changes in tissues (18). It 
helps to noninvasively evaluate the parenchymal changes 
in a transplanted kidney. T1 mapping has been widely used 
in the heart (19,20) and other organs to assess tissue edema 
and fibrosis. However, its use in transplanted kidneys is 
relatively rare.

In this study, we investigated the structural and functional 
changes with respect to renal tissue microstructure and 
perfusion in patients with long-term renal transplant 
survival. We aimed to explore the potential of multi-
parametric MRI (mpMRI), including ASL and T1 mapping, 
to assess kidney function and act as a noninvasive imaging 
biomarker of histopathological changes in transplanted 
kidneys. We present this article in accordance with the 
STROBE reporting checklist (available at https://qims.
amegroups.com/article/view/10.21037/qims-23-1577/rc).

Methods

Study population

We prospectively consecutively recruited kidney transplant 
recipients who were admitted to the Department of 
Urology in the First Affiliated Hospital of Soochow 
University between January and December 2022 for 
the cross-sectional study. The study was conducted in 
accordance with the Declaration of Helsinki (as revised in 
2013). The study was approved by ethics board of the First 
Affiliated Hospital of Soochow University and informed 
consent was obtained from all the patients. All participants 
underwent ASL and T1 mapping. Adult patients who 
had undergone kidney transplant surgery >3 months 
were included. The exclusion criteria were as follows: (I) 
contraindications to magnetic resonance (MR) examination; 
(II) complications including transplanted kidney infarction, 
bleeding, and transplanted renal artery stenosis; (III) fail 
to complete all MRI examination; (IV) poor image quality 
(Figure 1). The patients’ serum creatinine levels were 
recorded on the day of the MRI. The estimated glomerular 
filtration rate (eGFR) was calculated using the Chronic 
Kidney Disease Epidemiology Collaboration (CKD-EPI) 
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formula (21). Based on the eGFR, the patients were divided 
into three groups: Group A, patients with normal to mildly 
reduced eGFR (eGFR ≥60 mL/min/1.73 m2); Group 
B, patients with moderately reduced eGFR (30≤ eGFR  
<60 mL/min/1.73 m2); and Group C, patients with severely 
reduced eGFR (eGFR <30 mL/min/1.73 m2). 

MRI protocols

All patients were scanned using a 1.5 T MRI scanner 
(Ingenia Ambition, Philips Healthcare, Best, Netherlands) 
equipped with a 28-channel phased-array coil. The scan 
range extended from the inferior border of the rib arch to 
the inferior border of the pubic symphysis. Coronal T2-
weighted and axial T1-weighted images (T1WI) were 
acquired for morphological evaluation. For the pseudo-
continuous ASL (pCASL) sequence, three-dimensional (3D) 
gradient and spin-echo (GRASE) acquisition were used. 
Image parameters for pCASL were as follows: repetition 
time (TR), 3,963 ms; echo time (TE), 15 ms; voxel size, 
3.75×3.75×8 mm3; field of view (FOV), 240×240×88 mm3; 
turbo spin echo (TSE) factor, 20; echo planar imaging 
(EPI) factor, 15; and eight dynamics. The scan parameters 
for T1 mapping were as follows: a modified Look-Locker 
inversion-recovery (MOLLI) acquisition scheme, TR,  
2.8 ms; TE, 1.3 ms; flip angle, 35°; voxel size, 2.2×2.2 mm2; 
FOV, 300×300 mm2; slice thickness, 5 mm; and five slices.

Image analysis

All raw images were loaded onto a workstation (IntelliSpace 
Portal v10; Philips Healthcare). For ASL, the renal cortical 
contour was manually outlined on the axial T1WI and 

simultaneously copied to the renal blood flow (RBF) map. 
For T1 mapping, the renal cortical contour was manually 
outlined on the coronal T2-weighted images (T2WI), 
and several elliptical regions of interest (ROI) were placed 
on the medulla and copied to the T1 map. The ΔT1 was 
defined as [100% × (cortical T1 − medullary T1)/cortical 
T1], which could reflect the difference in T1 values between 
the renal cortex and medulla. The size of the medullary 
ROI was 5–25 mm2. The ROIs were selected by avoiding 
areas with blood vessels, hematomas, and cysts. Two 
abdominal radiologists, with 8 and 10 years of experience, 
independently and randomly analyzed all images without 
referring to clinical or pathologic data.

Renal allograft biopsy 

Twenty patients underwent an ultrasonography-guided 
percutaneous renal transplant biopsy. The interval 
between biopsy and MRI examination was <48 h. The 
kidney transplant biopsies were evaluated based on the 
Banff classification, a standardized system of grading 
and nomenclature for renal allograft pathology (22). In 
the Banff classification, the severity of specific histologic 
findings is represented by quantitative pathologic scores, 
which serve as a morphologic foundation for the diagnosis 
of cellular and antibody-mediated rejections (23). In our 
study, the Banff scores related to tubular, vascular, and 
glomerular rejection were collected and analyzed. The 
major Banff pathological scores included tubular atrophy (ct 
score), interstitial fibrosis (ci score), peritubular capillaritis 
(ptc score), glomerulonephritis (g score), interstitial 
inflammation (i score), and tubulitis (t score). Tubulitis 
and interstitial inflammation are important pathological 
changes in acute T cell-mediated rejection (aTCMR), 
and peritubular capillaritis and glomerulonephritis are 
characteristic pathological changes in active antibody-
mediated rejection (aAMR) (24). Tubular atrophy and 
interstitial fibrosis indicate chronicity (22). 

Statistical analysis

Statistical analysis was performed using the SPSS  
25 statistical software. Data normality was tested using the 
Kolmogorov-Smirnov test. In the case of measurement 
data conforming to a normal distribution,  i t  was 
represented as mean ± standard deviation. Between-group 
comparisons were conducted using one-way analysis of 
variance (ANOVA), followed by pairwise comparisons 

84 adult patients who had undergone 
kidney transplant surgery >3 months 

between January and December 2022

Exclusion criteria:
•	Contraindications to MR examination: 7
•	Fail to complete all MR examination: 6
•	Poor image quality: 3
•	Transplanted kidney infarction: 2
•	Transplanted renal artery stenosis: 3

Final study sample: 63

Figure 1 Flowchart of study inclusion and exclusion criteria. MR, 
magnetic resonance.



Jiang et al. Application of ASL and T1 mapping in renal allografts2418

© Quantitative Imaging in Medicine and Surgery. All rights reserved.   Quant Imaging Med Surg 2024;14(3):2415-2425 | https://dx.doi.org/10.21037/qims-23-1577

using the Bonferroni method. Non-normally distributed 
measurement data were represented as M (Q1, Q3), and 
between-group comparisons were conducted using the 
Kruskal-Wallis H test. Categorical variable comparisons 
were conducted using the Chi-squared test or Fisher’s 
exact probability method. The repeatability of MRI 
measurements among observers was assessed using the 
intraclass correlation coefficient (ICC). An independent 
sample t-test was used to test the corticomedullary 
differences of T1. The correlation between MRI parameters 
and eGFR was analyzed using Pearson’s correlation 
coefficient. The Spearman rank correlation coefficients 
were calculated to investigate the relationship between MRI 
parameters and Banff pathological scores. The performance 
of MRI parameters in detecting the degree of allograft 
impairment was assessed using the receiver operating 
characteristic (ROC) curve. Post-hoc pairwise comparisons 
were conducted using the DeLong test. A two-sided  
P value<0.05 was set to represent statistical significance.

Results 

Patient characteristics

Sixty-three patients were included in this study. A brief overview 
of the study characteristics is provided in Table 1. Detailed 
information on biopsy results is presented in Table S1.

Inter-observer reproducibility for MRI measurements

All the MRI parameters showed excellent agreement. The 
ICCs were 0.920, 0.943, and 0.920 for cortical RBF, cortical 
T1, and medullary T1, respectively.

Differences in MRI parameters between the groups

RBF tended to decrease with the decrease of eGFR, and 
this difference was statistically significant (P<0.001). It was 
higher in group A (221.2±52.1 mL/100 g/min) than that 
in groups B (172.0±63.8 mL/100 g/min, P=0.009) and C  
(122.6±46.5 mL/100 g/min, P<0.001). Additionally, RBF was 
higher in group B than that in group C (P=0.04). Cortical T1 
was shorter in group A (1,284.5±114.6 ms) than that in groups 
B (1,384.3±103.7 ms, P=0.008) and C (1,456.3±106.3 ms,  
P<0.001). The ΔT1 was larger in group A (39.5%±10.0%) 
than that in groups B (24.9%±9.2%, P<0.001) and C 
(23.9%±6.0%, P<0.001). No significant difference was 
observed in the medullary T1 among the three groups 
(P=0.09). In all three groups, medullary T1 was significantly 
longer than cortical T1 (P<0.001) (Table 1, Figure 2).

Relationships between MRI parameters, eGFR, and Banff 
histopathology scores

The RBF and ΔT1 were positively correlated with eGFR 

Table 1 Overview of study characteristics

Characteristics Group A Group B Group C Total P

Nnt (male/female) 30 (15/15) 20 (16/4) 13 (9/4) 63 (40/23) 0.17

Age (years), mean ± SD 42.4±8.0 41.6±9.1 48.4±10.2 43.4±9.1 0.08

eGFR (mL/min/1.73 m2), mean ± SD 82.2±17.5 46.1±8.3* 23.6±3.7*# 58.7±27.2 <0.001

SCr (μmol/L), mean ± SD 89.9±24.0 155.5±28.9* 254.9±58.5*# 144.8±72.3 <0.001

Hemoglobin (g/L), mean ± SD 137.6±19.2 121.5±15.5* 105.9±15.9*# 126.0±21.2 <0.001

CysC (mg/L), mean ± SD 1.24±0.24 1.96±0.51* 2.82±0.66*# 1.79±0.75 <0.001

Length (mm), mean ± SD 113.6±13.0 111.6±12.9 103.2±15.3 110.8±13.9 0.07

Transplanted time (months), M [Q1, Q3] 12 [8–36] 44 [25–62]* 72 [14–154]* 28 [11–60] 0.001

RBF (mL/100 g/min), mean ± SD 221.2±52.1 172.0±63.8* 122.6±46.5*# 185.2±66.6 <0.001

Cortical T1 (ms), mean ± SD 1,284.5±114.6 1,384.3±103.7* 1,456.3±106.3* 1,351.6±128.3 <0.001

Medullary T1 (ms), mean ± SD 1,784.1±102.8 1,723.4±120.0 1,800.3±112.5 1,768.2±113.0 0.09

ΔT1 (%), mean ± SD 39.5±10.0 24.9±9.2* 23.9±6.0* 31.7±11.7 <0.001

Group A, patients with normal to mildly reduced eGFR (eGFR ≥60 mL/min/1.73 m2); Group B, patients with moderately reduced eGFR (30≤ 
eGFR <60 mL/min/1.73 m2); and Group C, patients with severely reduced eGFR (eGFR <30 mL/min/1.73 m2). *, compared with Group A 
(*P<0.05); #, compared with Group B (#P<0.05). P denotes comparisons among the three groups. SD, standard deviation; eGFR, estimated 
glomerular filtration rate; SCr, serum creatinine; CysC, Cystatin C; RBF, renal blood flow; T1, longitudinal relaxation time; ΔT1, 100% × 
(cortical T1 − medullary T1)/cortical T1.

https://cdn.amegroups.cn/static/public/QIMS-23-1577-Supplementary.pdf
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Figure 2 mpMRI in a 42-year-old woman (Patient A, from group A) with normal eGFR (eGFR, 109.1 mL/min/1.73 m2), a 49-year-old man 
(Patient B, from group B) with moderately reduced eGFR (eGFR, 42.6 mL/min/1.73 m2), and a 63-year-old woman (Patient C, from group 
C) with severely reduced eGFR (eGFR, 26.9 mL/min/1.73 m2). Representative T2-weighted images (A,E,I), T1 maps (B,F,J), T1-weighted 
images (C,G,K), and RBF maps (D,H,L). The range of quantitative MRI parametric maps is displayed in the Figure, and the value of RBF 
and T1 are displayed at the bottom of the maps. Group A, patients with nor mal to mil dly reduced eGFR (e GFR ≥6 0 mL/min /1.73 m2); 
G roup B, patients with moderately reduced eGFR (30≤ eGFR <60 mL/min/1.73 m2); Group C, patients with severely reduced eGFR (eGFR
<30 mL/min/1.73 m2). mpMRI, multi-parametric magnetic resonance imaging; eGFR, estimated glomerular filtration rate; T1, longitudinal 
relaxation time; RBF, renal blood flow.

(r=0.569 and 0.672, respectively; P<0.001). Cortical T1 was 
negatively correlated with eGFR (r=−0.573, P<0.001). No 
significant correlation was found between medullary T1 and 
eGFR (P=0.68) (Figure 3).

Cortical T1 showed a positive correlation with the i and 
t scores (r=0.459 and 0.520, respectively; P=0.04 and 0.02, 
respectively). The ΔT1 was negatively correlated with the ci 
and ct scores (r=−0.502 and −0.452, respectively; P=0.02 and 
0.04, respectively). The RBF showed a negative correlation 
with the ptc scores (r=−0.485, P=0.03). No significant 
correlations were found between the MRI parameters and 
the other Banff scores (all P>0.05) (Figure 3).

Diagnostic performances of ASL and T1 mapping

The areas under the curve (AUCs) of the ASL parameters 
(RBF), T1 mapping parameters (cortical T1 + ΔT1), and 
multi-parameter (RBF + cortical T1 + ΔT1) to discriminate 
between groups A and B were 0.740, 0.873, and 0.892, 
respectively. The diagnostic performance of the multi-
parameter MRI was significantly better than that of ASL 
(P=0.03). While comparing groups B and C, RBF showed 
excellent diagnostic performance with an AUC of 0.729 
[95% confidence interval (CI): 0.546–0.868]. When 
using 88 mL/100 g/min as the cut-off value for eGFR, 
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Figure 3 Correlation of MRI parameters with eGFR and Banff pathological scores of the renal allograft. Correlation of MRI parameters 
with eGFR (A-C). Correlation of MRI parameters with i, t, ci, ct, and ptc scores [in patients (n=20) who underwent biopsies] (D-H). The 
RBF and ΔT1 show a moderately positive correlation with eGFR (P<0.001 for both). Cortical T1 shows a moderately negative correlation 
with eGFR (P<0.001). Cortical T1 shows a moderately positive correlation with the i and t scores (P=0.04 and 0.02, respectively). The ΔT1 
shows a moderately negative correlation with the ci and ct scores (P=0.02 and 0.05, respectively). The RBF shows a moderately negative 
correlation with ptc scores (P=0.03). MRI, magnetic resonance imaging; eGFR, estimated glomerular filtration rate; T1, longitudinal 
relaxation time; RBF, renal blood flow.

Table 2 Diagnostic efficiency of MRI parameters for distinguishing allografts with different renal functions

Parameters
Group A vs. Group B Group B vs. Group C Group A vs. Group C

AUC (95% CI) P AUC (95% CI) P AUC (95% CI) P

ASL 0.740 (0.597–0.854) 0.004 0.729 (0.546–0.868) 0.02 0.923 (0.800–0.982) <0.001

T1 mapping 0.873 (0.749–0.950) <0.001 – – 0.926 (0.803–0.983) <0.001

mpMRI 0.892 (0.771–0.962) <0.001 – – 0.956 (0.846–0.995) <0.001

The AUC, 95% CI, and P value is given. MRI, magnetic resonance imaging; AUC, area under the curve; CI, confidence interval; ASL, 
arterial spin labeling; ΔT1, 100% × (cortical T1 − medullary T1)/cortical T1; mpMRI, multi-parametric MRI (ASL + T1 mapping). Group A, 
patients with normal to mildly reduced eGFR (eGFR ≥60 mL/min/1.73 m2); Group B, patients with moderately reduced eGFR (30≤ eGFR 
<60 mL/min/1.73 m2); Group C, patients with severely reduced eGFR (eGFR <30 mL/min/1.73 m2).
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Figure 4 MRI quantitative parameters and multiple parameters (ASL combined with T1 mapping) distinguished allografts with different 
kidney functions. The AUC of ASL for distinguishing (A) Group A vs. Group B, (B) Group B vs. Group C, and (C) Group A vs. Group C 
are 0.740, 0.729, and 0.923, respectively. The AUC of T1 mapping for distinguishing (A) Group A vs. Group B, and (C) Group A vs. Group 
C are 0.873 and 0.926, respectively. The AUC of the multi-parameter for distinguishing (A) Group A vs. Group B, and (C) Group A vs. 
Group C is 0.892 and 0.956, respectively. Group A, patients with normal to mildly reduced eGFR (eGFR ≥60 mL/min/1.73 m2); Group 
B, patients with m oderately reduced eGFR (30≤ eGFR <60 mL/min/1.73 m2); Group C, patients with severely reduced eGFR (eGFR  
<30 mL/min/1.73 m2). ASL, arterial spin labeling; mpMRI, multi-parametric MRI; MRI, magnetic resonance imaging; AUC, area under  
the curve.

the sensitivity was 46.2% and the specificity was 100.0%. 
The AUCs of the ASL parameters (RBF), T1 mapping 
parameters (cortical T1, ΔT1), and multi-parameter (RBF 
+ cortical T1 + ΔT1) for identifying groups A and C were 
0.923, 0.926, and 0.956, respectively (Table 2, Figure 4).

Discussion

Renal allograft injury is usually accompanied by changes 
in renal blood perfusion and microstructure, which can 
be detected using ASL and T1 mapping. In this study, the 
RBF, cortical T1, and ΔT1 of transplanted kidneys were 
moderately correlated with eGFR, suggesting that these 
parameters can reflect kidney function to a certain extent. 
This strongly indicated the feasibility of the combined 
assessment of kidney function using ASL and T1 mapping. 
In addition, moderate correlations were observed between 
the MRI parameters and Banff pathology scores for 
the diagnosis of renal allograft rejection and chronicity, 
suggesting that ASL and T1 mapping can provide important 
information for the clinical management of renal allografts.

In patients with long-term renal transplant survival, RBF 
was positively correlated with eGFR. The ASL allowed 
for clear differentiation between the stages of impaired 
kidney function. The number of capillaries and tubules 
decreases with impaired kidney function, leading to reduced 
renal perfusion, which can be detected noninvasively using  

ASL (25). Animal study has shown that ASL detects changes 
in renal perfusion corresponding to the degree of ischemia 
induction and correlates significantly with histological injury 
and kidney function (26). Wang et al. showed that renal 
cortical perfusion was positively correlated with peritubular 
capillary density measured using ASL (r=0.77; P<0.001), 
which confirmed the reliability of ASL in detecting renal 
perfusion (27).

Prolonged cortical T1 in the group with moderately to 
severely reduced eGFR may be due to the accumulation of 
water in the interstitia of transplanted kidney, which can be 
caused by pathophysiological changes, such as interstitial 
fibrosis, edema, and inflammation (28). In addition, high 
renal oxygen levels may lead to a decrease in T1 values 
(29,30). Interstitial fibrosis may lead to a decrease in 
peritubular capillaries causing hypoxia in the kidney, which 
may be another reason for prolonged cortical T1 values 
in renal allografts with impaired function. Peperhove  
et al. studied the T1 values in 49 kidney transplant patients, 
52 lung transplant patients, and 14 healthy volunteers and 
observed a significant correlation between cortical T1 
values, corticomedullary difference, and transplanted kidney 
function (31). The three groups did not show significant 
differences in medullary T1 values, which is consistent 
with the study by Bane et al. (32). One possible reason is 
that the water content in the renal tubule decreases due 
to renal injury, but increases due to inflammation and 
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edema, resulting in insignificant changes in the medullary 
T1 value (31). In our study, T1 values (cortical/medullary: 
1,352±128/1,768±113 ms) were shorter than in those of 
patients, reported by Adams et al., who underwent kidney 
transplantation >3 months before the examination (cortical/
medullary: 1,615±47/2,004±68 ms) (33). The main reason 
for this difference was that they used a 3.0 T MRI in 
contrast to the 1.5 T MRI used by us. As B0 increases, T1 is 
usually lengthened (34).

Renal allograft rejection is one of the greatest issues 
for long-term allograft survival. Our study found a 
moderate correlation between MRI parameters and Banff 
histological scores in the diagnosis of renal allograft 
rejection. Cortical T1 was negatively correlated with both 
the i and t scores, and RBF was negatively correlated with 
the ptc scores. According to the 2012 Clinical Practice 
Guideline for the Care of Kidney Transplant Recipients 
(NKF-KDIGO), a biopsy should be performed when acute 
rejection of a transplanted kidney is highly suspected, 
and the anti-rejection treatment regimen should be 
adjusted according to the biopsy results (35,36). The 
Banff score directly impacts the clinical management of 
patients with transplanted kidneys. Therefore, multi-
parametric MRI associated with Banff pathology scores 
can provide, to a certain extent, critical information for 
the clinical management of transplanted kidneys. There 
are few studies regarding the correlation between MRI 
findings and renal allograft rejection pathologies. Li et al.  
investigated the correlation between MRI and renal 
allograft rejection pathology in pediatric patients with 
kidney transplants and found that fractional anisotropy 
(FA) from diffusion tensor imaging (DTI) was negatively 
correlated with the i, t, and ptc scores (37). 

Interstitial fibrosis and tubular atrophy are often 
accompanied by reduced kidney function and are 
unavoidable after kidney transplantation. In our study, 
ΔT1 was negatively correlated with the ci and ct scores, 
suggesting that the T1 mapping technique is sensitive and 
can be used to quantitatively assess changes in collagen 
deposition, tissue edema, and inflammation caused by 
interstitial fibrosis. Similarly, Friedli et al., who performed 
T1 mapping in patients and mice with transplanted kidneys, 
found a negative correlation between the corticomedullary 
difference of T1 and interstitial fibrosis, which can be used 
for the assessment of transplanted kidney fibrosis (38). 
We found no significant correlations between interstitial 
fibrosis and RBF, which was different from the results of 
previous study regarding ASL (39). We noticed that most 

of the participants who underwent biopsies showed mild 
to moderate fibrosis of the allografts, which might have a 
slight influence on renal perfusion. In addition, non-fibrotic 
factors, such as renal arteriosclerosis, caused by poorly 
controlled hypertension and hyperlipidemia may also affect 
renal perfusion.

The combined application of ASL and T1 mapping 
facilitates a detailed noninvasive assessment of renal graft 
function, perfusion, and tissue microstructure, and allows 
for longitudinal long-term follow-up. A functional MRI is 
not an ideal substitute for biopsy, because it is not highly 
specific to the type of transplanted kidney pathology. 
However, the functional MRI can help detect subclinical 
and slowly progressive pathological changes that are 
often difficult to detect using biochemical markers or 
ultrasonography. Hence, it can provide key information 
for early intervention in the clinical management of 
transplanted kidneys.

This study had several limitations. First, we did not 
investigate the relationship between the MRI parameters 
and the pathological scores of each patient, and only a 
subset of patients who underwent biopsy were selected 
for the study. Therefore, a larger sample size should be 
considered in future studies. Second, we did not perform 
a long-term follow-up to analyze the detailed prognostic 
value of multi-parametric MRI. Third, the underlying 
pathological conditions causing renal impairment were 
inconsistent; hence, the MRI’s differential diagnostic value 
for different diseases could not be determined.

In conclusion, the combined application of ASL and 
T1 mapping techniques can accurately assess the kidney 
function in patients with long-term renal transplant survival, 
and significant correlations were found between MRI 
parameters and Banff pathological scores. Therefore, it can 
serve as a new imaging biomarker for the comprehensive 
assessment of function and histological changes of 
transplanted kidneys and can provide reliable information 
for the clinical management of long-term surviving 
transplanted kidneys.
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Table S1 Indication for renal biopsy, biopsy result, and Banff scores for patients who underwent biopsy 

Indication for renal biopsy Biopsy results
Banff scores

i t g ptc ci ct

1 Surveillance biopsy IgA nephropathy 1 0 3 0 0 1

2 Elevated serum creatinine 
value

1. segmental glomerulosclerosis, arteriolar hyalinization
2. IgA nephropathy

1 0 0 0 2 2

3 Albuminuria IgA nephropathy 0 0 0 0 1 1

4 Elevated serum creatinine 
value

1. borderline change;
2. membranous nephropathy

1 1 0 1 1 1

5 Elevated serum creatinine 
value

1. acute T-cell-mediated rejection;
2. chronic antibody-mediated rejection

2 2 0 2 0 1

6 Albuminuria 1. focal segmental glomerulosclerosis;
2. mild chronic tubulointerstitial injury, arteriolar hyalinization

1 0 0 0 1 1

7 Elevated serum creatinine 
value; albuminuria

1. acute T-cell-mediated rejection;
2. antibody-mediated rejection

2 3 0 3 1 1

8 Elevated serum creatinine 
value

1. antibody-mediated rejection;
2. partial glomerulosclerosis, mild chronic tubulointerstitial injury

1 0 0 2 1 1

9 Surveillance biopsy 1. focal segmental glomerulosclerosis;
2. acute T-cell-mediated rejection

1 0 1 2 1 1

10 Recurrent diarrhea with fever partial and segmental glomerulosclerosis, moderate chronic tubulointerstitial 
injury, arteriolar hyalinization

1 0 0 0 2 2

11 Elevated serum creatinine 
value

1. acute T-cell-mediated rejection;
2. partial glomerulosclerosis with mild chronic tubulointerstitial injury, arteriolar 

hyalinization

2 2 0 1 1 1

12 Follow-up biopsy to evaluate 
for rejection

1. chronic antibody-mediated rejection;
2. mild chronic tubulointerstitial injury with partial glomerulosclerosis

2 1 0 1 2 2

13 Elevated serum creatinine 
value

antibody-mediated rejection 1 1 0 1 1 1

14 Elevated serum creatinine 
value

1. IgA nephropathy;
2. segmental glomerulosclerosis, severe chronic tubulointerstitial injury

1 0 0 0 3 3

15 Elevated serum creatinine 
value

1. acute T-cell-mediated rejection;
2. partial glomerulosclerosis with mild chronic tubulointerstitial injury

2 2 0 1 1 1

16 Elevated serum creatinine 
value

1. chronic antibody-mediated rejection;
2. IgA nephropathy;

3. segmental glomerulosclerosis, moderate chronic tubulointerstitial injury

0 0 2 1 2 2

17 Elevated serum creatinine 
value

BK virus nephropathy 2 1 0 0 1 1

18 Elevated serum creatinine 
value

1. chronic antibody-mediated rejection;
2. acute T-cell-mediated rejection

2 2 2 2 1 1

19 Elevated serum creatinine 
value

1. thrombotic microangiopathy;
2. moderate chronic tubulointerstitial injury with glomerulosclerosis

1 1 3 2 2 2

20 Elevated serum creatinine 
value

1. acute tubular necrosis;
2. antibody-mediated rejection;

3.focal segmental glomerulosclerosis;
4. mild chronic tubulointerstitial injury, arteriolar hyalinization

1 0 0 1 1 1
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