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Background: Marathon training can reverse bone marrow conversion; however, little is known about the 
normal bone marrow whole-body diffusion-weighted imaging (WB-DWI) signal characteristics of amateur 
marathon runners. If marathon training can cause diffuse hyperintensity of bone marrow on WB-DWI is 
essential for correctly interpreting the diffusion-weighted (DW) images. This study sought to evaluate the 
WB-DWI signal characteristics of normal bone marrow in amateur marathon runners.
Methods: In this prospective cross-sectional study, 30 amateur marathon runners who had trained for over 
3 years for regular or half-marathon races and had a running frequency of more than 20 days a month at a 
distance of more than 100 km per month from the Chengde Marathon Outdoor Sports Association in Hebei, 
China, and 30 age- and gender-matched, healthy volunteers (the control group) who had no long-term 
heavy-load sports history were recruited between April 2021 to September 2021. All the subjects underwent 
WB-DWI (b-value: 0, 800 s/mm2) and lumbar vertebral transverse relaxation time (T2) mapping. The bone 
marrow WB-DWI signal characteristics were analyzed visually and statistically by chi-square (χ2) tests. 
The apparent diffusion coefficient (ADC), DWI signal intensity, and T2 values of the bone marrow were 
quantitatively and statistically analyzed by the independent sample t-test and Mann-Whitney U test.
Results: No subjects were excluded from the study. The bone marrow of 30 of the 60 subjects (aged 
30–50 years) showed diffuse hyperintensity in the DW images. However, in all 60 subjects, the humeral 
heads, femoral heads, and great trochanters had low signals. The frequency of diffuse bone marrow DWI 
hyperintensity was significantly higher in the male amateur marathon runners (50%) than the male controls 
(5%, P=0.003), but no such significant difference was found between the female amateur marathon runners 
(100%) and female controls (90%, P>0.99). The DW signal intensity ratios of bone marrow to muscle 
(SIRBM-muscle) were significantly higher in the male amateur marathon runners than the male controls in 
the thoracic vertebrae (4.68 vs. 3.57, P=0.021), lumbar vertebrae (4.49 vs. 3.01, P<0.001), sacrum (3.67 vs. 
2.62, P=0.002), and hip (3.45 vs. 2.50, P=0.002), but were only significantly higher in the female amateur 
marathon runners than the female controls in the thoracic vertebrae (7.69 vs. 5.87, P=0.029) and hip (4.76 vs. 
3.92, P=0.004). The mean T2 values of the lumbar vertebrae were significantly higher in the male amateur 
marathon runners than the male controls (116.76 vs. 97.63 ms, P=0.001), but no such significant difference 
was observed between the female amateur marathon runners and the corresponding controls (118.58 vs. 
124.10 ms, P=0.386).
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Introduction

In the literature, the sensitivity of whole-body diffusion-
weighted imaging (WB-DWI) (1) for detecting bone 
marrow infiltrating diseases is higher than that of 
conventional magnetic resonance imaging (MRI) and bone 
scintigraphy, and at least equivalent to that of fluorine-18-
fluorodeoxy-glucose positron emission tomography (2-5). 
Thus, in terms of functional imaging, WB-DWI is a good 
method for screening bone marrow infiltrating lesions 
[e.g., multiple myeloma (MM), bone marrow metastasis, 
leukemia, and lymphoma] (6-9), as it has no radiation 
and high sensitivity (10-12). Many cancers, such as breast 
cancer and lung cancer, are prone to bone metastasis. In 
2020, breast cancer and lung cancer were the first (11.7%) 
and second (11.4%) most commonly diagnosed cancers 
worldwide (13). Among individuals newly diagnosed with 
advanced breast cancer, 50% have bone metastases (14), 
and about 17–43.8% of women patients with breast cancer 
are diagnosed before the age of 50 years (15,16). Very 
little research has been conducted on breast cancer and 
lung cancer patients with diffuse bone marrow infiltration  
(17-19). Approximately 10% of MM patients are diagnosed 
when they are aged less than 50 years old, and 25% of 
MM patients present with diffuse bone marrow infiltration 
(20,21). About 10–20% of leukemia patients are aged 
30–50 years old at the time of onset (22), and a portion of 
leukemia patients show diffuse bone marrow infiltration 
(19,23). After the diagnosis and treatment of the above-
mentioned cancers, regular screening for bone marrow 
lesions is required (10,11). Some people aged 30–50 years, 
including early-onset cancer patients after surgery, engage 
in marathon, or long-distance running for exercise (24).

WB-DWI is an important method for predicting tumor 
responses to therapy in the Myeloma Response Assessment 
and Diagnosis System (10). In any pathologic process, 
including focal or diffuse infiltration, increased signal 

intensity on diffusion-weighted imaging (DWI) indicates 
the replacement of the normal bone marrow (21,25-27).  
However, not all diffuse hyperintensities in the high 
b-value diffusion-weighted (DW) images of bone marrow 
indicate lesions; normal bone marrow can also display 
diffuse hyperintensity, which indicates a higher portion of 
red bone marrow (28,29). Ording Müller et al. (30) visually 
evaluated the WB-DWI (b=1,000 s/mm2) signal features of 
bone marrow in the normal lumbar spines and pelvises of 
42 children (24 male and 18 female; age range, 2 months 
to 16 years) and found diffuse high signal intensities in 
both the vertebral bodies and pelvic skeletons of all the 
children. In a previous assessment of the bone marrow DW 
signal intensities of 98 healthy volunteers aged 21–81 years 
based on WB-DWI (31), diffuse bone marrow signal 
hyperintensity was more common in Chinese females aged 
21–50 years (68.4%) than those aged 51–81 years (15.4%). 
Further research indicated that the proportion of DWI 
bone marrow hyperintensity was significantly higher in 
premenopausal (91%) women than perimenopausal (75%) 
and postmenopausal (8%) women (32).

Numerous studies have shown that high altitude (33), 
the use of granulocyte colony-stimulating factors (10,34), 
chronic anemia (29), and heavy smoking can stimulate 
marrow hyperplasia (21,35), which also produces DWI 
hyperintensities. Aerobic training, such as marathon 
training, can reverse bone marrow conversion, which 
manifests as focal or diffuse hypointense regions on the T1-
weighted sequence, and hyperintensity in the corresponding 
region on the fat-suppressed T2-weighted sequence (36-38).  
However, the WB-DWI signal characteristics of bone 
marrow in marathon runners had not previously been 
examined.

We hypothesized that marathon running would cause 
diffuse hyperintensity of bone marrow on WB-DWI. In 
this study, we compared the bone marrow DWI signal 
characteristics of normal adult amateur marathon runners 

Conclusions: Marathon training resulted in diffuse hyperintensity in the bone marrow based on WB-DWI 
in 50% of the male amateur marathon runners aged 30–50 years. Thus, when WB-DWI is used for bone 
marrow disease screening, marathon training history should be considered to avoid false-positive diagnoses.
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with those of healthy volunteers who did not engage in 
any heavy-load training. The results provide valuable 
reference information for the screening of whole-body bone 
marrow diseases using WB-DWI. We present this article in 
accordance with the STROBE reporting checklist (available 
at https://qims.amegroups.com/article/view/10.21037/
qims-23-1006/rc).

Methods

Subject selection

This prospective study was conducted in accordance with 
the Declaration of Helsinki (as revised in 2013) and was 
approved by the Ethics Committee of The Third Hospital 
of Hebei Medical University. All the participants included 
in this study signed an informed consent form before 
undergoing the MRI examination.

Amateur marathon runners were randomly recruited 
from the Chengde Marathon Outdoor Sports Association in 
Hebei, China, from April 2021 to September 2021. Amateur 
marathon runners were defined as those who had not 
participated in formal training as occupational runners (39).  
To be eligible for inclusion in this study, the amateur 
marathon runners had to meet the following inclusion 
criteria: (I) have engaged in over 3 years of training 
for regular or half-marathon races; (II) have a running 
frequency of more than 20 days a month with a distance of 
more than 100 km per month; and (III) meet the common 
inclusion criteria for the two groups.

The age- and gender-matched healthy volunteers were 
recruited from friends and colleagues as controls during 
the same period. To be eligible for inclusion in this study, 
the controls had to meet the following inclusion criteria:  
(I) have never participated in any marathon activities or 
other long-term heavy-load sports (e.g., swimming, cycling, 
and aerobics); and (II) meet the common inclusion criteria 
for the two groups.

The common inclusion criteria for the two groups were 
as follows: (I) normal blood routine laboratory examination 
results; (II) no known clinical or imaging evidence of any 
bone disease (e.g., tumors, metastases, and metabolic 
disorders); (III) no history of hormone and granulocyte 
colony-stimulating factor use (34); (IV) no history of heavy 
smoking (≥20 cigarettes per day) or obesity [body mass 
index (BMI) ≥28 kg/m2] (40); (V) regular menstruation for 
female volunteers; and (VI) no contraindication to the MRI 
examination.

The exclusion criteria for the two groups were as follows: 
(I) Modic changes involving more than half of the vertebral 
body; and/or (II) suboptimal image quality.

Based on the above criteria, 30 amateur marathon 
runners (20 males and 10 females, aged 30–50 years) were 
recruited in the amateur marathon runners group. Of them, 
one male amateur marathon runner had a history of lumbar 
vertebrae minor trauma 20 years ago, which presented 
normally in the current MRI, one male amateur marathon 
runner had a history of a cruciate ligament tear 20 years ago, 
and another had a history of a medial collateral ligament 
5 years ago in the right knee, which fell outside the scope 
of the WB-DWI in this study. Thirty healthy volunteers 
(20 males and 10 females) were recruited as controls. No 
subjects were excluded from the study.

The following clinical information was recorded for 
each subject: age, sex, BMI [defined as BMI = weight (kg)/
height (m)2], white blood cell count (WBC, 109/L), red 
blood cell count (RBC, 1012/L), platelet count (PLT, 109/L),  
hemoglobin (HGB, g/L), and red blood cell distribution 
width-coefficient of variation (RDW-CV, %).

MRI examination

MRI was performed using a 1.5-Tesla scanner (Magnetom 
Avanto, Siemens, Erlangen, Germany) equipped with a 
12-element head matrix coil, a four-element neck matrix 
coil, a 24-element spine matrix coil, and four six-element 
body matrix coils. The parameters of the DWI sequence 
were as follows: repetition time/echo time (TR/TE), 
8,000/83 ms; field of view (FOV), 50×50 cm2; slice/gap, 
4/0 mm; matrix, 192×148; number of excitation (NEX), 6; 
and b-values, 0 and 800 s/mm2. The chemical shift selective 
saturation technique was used in the DWI sequence for 
fat suppression. Axial slices were acquired from the head 
to the middle femur using the 4–5 station approach. 
Coronal maximal intensity projections of the DW images 
were reconstructed using the original axial images and the 
inverted images for background suppression. Quantitative 
apparent diffusion coefficient (ADC) maps were calculated 
by two b values, 0 and 800 s/mm2, automatically generated 
by the MRI system for measurement.

T2 values were measured by a multi-echo spin-
echo sequence and calculated with an exponential decay 
model. The parameters of the T2 mapping sequence for 
the lumbar spine were as follows: TR, 2,000 ms; TE, 
10.4/20.8/31.2/41.6/52.0/62.4 ms; slice/gap, 4/0.8 mm; 
FOV, 25×24 cm2; matrix, 256×174; and NEX, 2.

https://qims.amegroups.com/article/view/10.21037/qims-23-1006/rc
https://qims.amegroups.com/article/view/10.21037/qims-23-1006/rc
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Visual evaluation of bone marrow WB-DWI signal 
intensity

The signal intensity of the bone marrow on the DW 
images (b-value of 800 s/mm2) was visually evaluated 
independently by two radiologists (H.C. and Yongzhong 
Chen, MD, with 15 and 3 years of clinical experience 
interpreting musculoskeletal MRI scans, respectively) 
using the same criteria. Bone marrow signal hyperintensity 
(Figure 1A,1B) was defined as an intensity higher than that 
of the surrounding muscles, while hypointensity (Figure 
1C,1D) was defined as an intensity lower than or equal to 
that of the surrounding muscles (31,32). To assess the intra-
observer agreement, H.C. re-evaluated the DW images for 
all participants following the procedure used in the first 
evaluation one month later without knowledge of the results 
of the first reading.

Quantitative image analysis

The signal intensity of the bone marrow (SIBM) and 

surrounding muscles (SImuscle) in the DW images (b-value = 
800 s/mm2) was measured on the workstation. A circular 
or elliptical region of interest (ROI) was drawn manually 
on the DW images (1.5–2.5 cm2; as large as possible, while 
avoiding the basivertebral vessels, cortex, and artifacts) 
and then automatically copied onto the corresponding 
ADC map (Figure 2); the ADC values of the ROIs were 
read from the screen directly. In the muscles, the ROIs 
(1.5–2.5 cm2) were placed on the erector spinae and 
multifidus muscle for the thoracolumbar vertebrae and 
the gluteal muscle for the sacrum and hip (Figure 2A).  
In the thoracolumbar vertebrae, one ROI was placed 
by identifying a central slice in each of the five thoracic 
vertebrae (T8 through T12) and each of the five lumbar 
vertebrae (L1 through L5). In the sacrum, ROIs were 
placed on five consecutive slices with the maximum area of 
the cancellous bone. In the hip, ROIs were placed on five 
slices of the sacroiliac joint and symphysis pubis level of 
each side with the maximum area of the cancellous bone. 
The ROIs of the same part were the same to the greatest 

A B C D

Figure 1 Visual evaluation criteria for defining hyperintensity and hypointensity of bone marrow on WB-DW images (b=800 s/mm2).  
(A,C) WB-DW images; (B,D) inverted images. Diffuse hyperintensity of bone marrow in WB-DW images was defined as those signals that 
were higher than the signals of muscles (A,B); diffuse hypointensity of bone marrow in WB-DW images was defined as those signals that 
were lower than or equal to the signals of muscles (C,D). WB-DW, whole-body diffusion-weighted.
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extent possible. The average measurements of five vertebrae 
bodies or slices were used for further analysis.

To measure the T2 value of the lumbar vertebrae, a 
circular ROI (2.0 cm2) was manually drawn at the center of 
the first to the fifth vertebral body (L1–L5) on the middle 
sagittal T2 mapping images. The average T2 values of the 
five vertebrae bodies were used for further analysis.

For inter-observer reliability testing, the SIBM, SImuscle, 
ADC, and T2 values were measured by H.C. and 
Yongzhong Chen, MD using the same criteria. One month 
later, to test the intra-observer reliability, the measurements 
were repeated by H.C. using the same methods as above 
without reference to the previously determined values. Only 
the H.C. measurements were used for the overall statistical 
analysis (29).

The DW SIRBM-muscle was defined as (10,29,41):

BM-muscle BM muscleSIR SI SI=  [1]

Statistical analysis

All the statistical analyses were performed using commercial 
SPSS 22.0 software (SPSS Inc., Chicago, IL, USA). All the 
tests were two-sided with a significance level of P<0.05. The 
chi-square (χ2) test was used to compare the frequency of 
hyperintense bone marrow in the DW images between each 
group. Fisher’s exact test was used if the sample size was less 
than 40.

To compare the differences in the SIRBM-muscle, ADC, 
and T2 values between the amateur marathon runner and 
control groups, the independent sample t-test and Mann-
Whitney U test were used for normally and non-normally 
distributed data, respectively.

Intra- and inter-observer agreement for the visual 
assessment of the bone marrow signal intensity in the 
DW images was analyzed using the k statistic suggested 
by Laborie et al. (42) and adapted from Landis and Koch 
in 1977 (43). The k values were interpreted as follows:  
k=0–0.20, poor agreement; k=0.21–0.40, fair agreement; 
k=0.41–0.60, moderate agreement; k=0.61–0.80, good 
agreement; and k=0.81–1.00, very good agreement.

The intra- and inter-observer reliability for the SIBM, 
SImuscle, ADC, and T2 measurements was determined based 
on the intraclass correlation coefficient (ICC). The ICC 
values were interpreted as follows: 0.41–0.60, moderate 
reliability; 0.61–0.80, good reliability; and ≥0.81, very good  
reliability (31,44).

Results

Subject demographics

The demographic characteristics of the amateur marathon 
runner and control groups are set out in Table 1. The mean 
age, BMI, WBC, RDW-CV, PLT, RBC, and HGB did not 
differ significantly between the two groups (all P>0.05).

A B

Figure 2 A schematic diagram showing the drawing of the ROI. (A) ROI 1 for SIBM and ROI 2 for SImuscle were manually drawn on the axial 
DW image (b=800 s/mm2). (B) ROI 1 in the DW image was automatically copied onto the corresponding ADC map, and defined as ROI 3.  
SD, standard deviation; ROI, region of interest; SIBM, signal intensity of bone marrow; SImuscle, signal intensity of muscle; DW, diffusion-
weighted; ADC, apparent diffusion coefficient. 
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Visualization of bone marrow signal intensity in DW 
images (b=800 s/mm2)

The frequency of bone marrow DWI hyperintense 
signals was significantly higher in the amateur marathon 
runners [66.67% (20/30)] than the controls [33.33% 
(10/30); P=0.01, Figure 3A]. Meanwhile, the frequency was 
significantly higher in the male amateur marathon runners 
[50% (10/20)] than the male controls [5% (1/20), P=0.003, 
Figure 3B]. However, no statistically significant difference 
was observed in the frequency of DWI hyperintense signals 
between the female amateur marathon runners [100% 
(10/10)] and the female controls [90% (9/10), P>0.99, 
Figure 3C).

The bone marrow of 30 of the 60 participants showed 
diffuse DWI hyperintensity, and all the 60 subjects’ 
humeral heads, femoral heads, and great trochanters 
showed hypointensity (Figure 4). The frequency of diffuse 
hyperintensity in the metaphysis and proximal humerus 
was 60% (6/10) in the female amateur marathon runners 
compared to 40% (4/10) in the female controls, while 
that in the male amateur marathon runners was 10% 
(2/20) compared to 0% (0/20) in the male controls, but 
the difference was not significant (P=0.656 and 0.487, 
respectively). In the metaphysis and proximal femur, the 
frequency of diffuse hyperintensity was significantly higher 
in both the female amateur marathon runners [100% 

Table 1 Demographic characteristics of the amateur marathon runners and controls

Characteristic Controls (n=30) Amateur marathon runners (n=30) P value

Age (years) 38.43±5.78 40.73±5.91 0.133

BMI (kg/m2) 24.37±3.26 23.01±2.01 0.057

WBC (109/L) 6.27±2.04 6.38±1.22 0.801

RDW-CV (%) 12.78 (12.10, 13.10) 12.95 (12.48, 13.63) 0.081

PLT (109/L) 234.02±46.66 211.15±52.77 0.081

RBC (1012/L) 4.65±0.52 4.67±0.33 0.809

HGB (g/L) 144.50 (132.00, 153.25) 142.50 (134.50, 151.78) 0.745 

Data are presented as the mean ± standard deviation, or median (M) and quartile (Q1, Q3). BMI, body mass index; WBC, white blood cell; 
RDW-CV, red blood cell distribution width-coefficient of variation; PLT, platelet; RBC, red blood cell; HGB, hemoglobin.

P
er

ce
nt

ag
e,

 %

P
er

ce
nt

ag
e,

 %

P
er

ce
nt

ag
e,

 %

100 

50 

0

100 

50 

0

100 

50 

0

P=0.01 P>0.99
Hyperintense Hypointense

P=0.003

Control Marathon Control Marathon Control Marathon

A B C

Figure 3 Stacked bar chart comparing the frequency of diffuse hyperintensity of the bone marrow on DW images (b=800 s/mm2) between 
the amateur marathon runners and controls. (A) All subjects; (B) male subjects; (C) female subjects. DW, diffusion-weighted.
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(10/10)] than the female controls [50% (5/10), P=0.033], 
and the male amateur marathon runners [30% (6/20)] than 
the male controls [0% (0/20), P=0.027].

Bone marrow DWI signal intensity and ADC and T2 
measurements

The SIRBM-muscle values were significantly higher in the male 
amateur marathon runners than the male controls in the 
thoracic vertebrae (4.68 vs. 3.57, P=0.021), lumbar vertebrae 
(4.49 vs. 3.01, P<0.001), sacrum (3.67 vs. 2.62, P=0.002), 
and hip (3.45 vs. 2.50, P=0.002); however, the SIRBM-muscle 
values were only significantly higher in the female amateur 
marathon runners than the female controls in thoracic 
vertebrae (7.69 vs. 5.87, P=0.029) and hip (4.76 vs. 3.92, 
P=0.004) (see Table 2).

The mean T2 values of the lumbar vertebrae were 
significantly higher in the amateur marathon runners than 
the controls [116.96 (105.18, 125.51) vs. 106.41 (90.52, 
121.41) ms, P=0.041]. The mean T2 values of the lumbar 
vertebrae were significantly higher in the male amateur 
marathon runners than the male controls [116.76 (104.89, 
124.24) vs. 97.63 (89.37, 107.91) ms, P=0.001]. The mean 
T2 values of lumbar vertebrae were not significantly 
different between the female amateur marathon runners 
and the corresponding controls (118.58±15.02 vs. 
124.10±12.68 ms, P=0.386).

The mean ADC of the hip was significantly higher 
in the amateur marathon runners than the controls 
(592.69×10−6 vs. 525.02×10−6 mm2/s, P=0.002); however, 
the ADCs of the other sites did not differ significantly 
between the two groups (P>0.05). The mean ADCs of the 
sacrum (569.89×10−6 vs. 523.81×10−6 mm2/s, P=0.03) and 
hip (577.36×10−6 vs. 481.16×10−6 mm2/s, P<0.001) were 
significantly higher in the male amateur marathon runners 
than the male controls; however, the ADCs of the other 
sites did not differ significantly between the male amateur 
marathon runners and the male controls (P>0.05). In terms 
of the thoracic vertebrae, lumbar vertebrae, sacrum, and 
hip, the mean ADCs did not differ significantly between the 
female amateur marathon runners and the female controls 
(P>0.05) (see Table 3).

The mean age, BMI, yearly running distance, running 
years, WBC, RDW-CV, PLT, RBC, and HGB in the male 
amateur marathon runners with bone marrow hypointensity 
(10 subjects) did not differ significantly from those with 
hyperintensity (10 subjects) (see Table 4).

Intra- and inter-observer agreement for visual evaluation 
of the signal intensity of the DW images

The inter-observer agreement (k=0.900) and intra-
observer agreement (k=0.833) were very good for the visual 
evaluation of DWI signal intensity.

Intra- and interobserver reliability of the quantitative 
measurements

In the quantitative ROI assessments, the inter-observer 
reliability between the two investigators for the SIBM, 
SImuscle, ADC, and T2 measurements ranged from good 
to very good {ICC =0.969 [95% confidence interval (CI): 
0.953–0.978], 0.799 (95% CI: 0.735–0.848), 0.889 (95% 

A

B

C

Figure 4 The maximal intensity projection image of the WB-DWI 
(b=800 s/mm2) of a 48-year-old male amateur marathon runner. 
The bone marrow in the bilateral humeral head (A), femoral 
head and great trochanter (B,C) was hypointense, while the bone 
marrow in the metaphysis and proximal of the humerus (A) and 
femur (B,C) was hyperintense. WB-DWI, whole-body diffusion-
weighted imaging.
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Table 2 Comparison of the SIRBM-muscle values of bone marrow between the amateur marathon runners and controls at various bone sites

Region

All subjects Male Female

Amateur 
marathon

Control P
Amateur 
marathon

Control P
Amateur 
marathon

Control P

Thoracic 
vertebrae

5.51  
(4.46, 8.13)

4.93  
(3.19, 5.68)

0.022 4.68  
(4.15, 5.68)

3.57  
(2.84, 5.18)

0.021 7.69  
(6.23, 8.93)

5.87  
(5.24, 7.35)

0.029

Lumbar 
vertebrae

5.10±1.64 3.68±1.48 0.001 4.49±1.38 3.01±1.02 <0.001 6.31±1.48 5.03±1.35 0.058

Sacrum 4.42  
(3.37, 4.80)

2.98  
(2.27, 3.78)

0.003 3.67±1.17 2.62±0.72 0.002 4.50  
(4.27, 5.67)

4.46  
(2.82, 5.43)

0.529

Hip 4.02±1.37 2.93±1.00 0.001 3.45±1.08 2.50±0.72 0.002 4.76  
(4.42, 5.41)

3.92  
(3.04, 4.34)

0.004

Data are presented as the mean ± standard deviation, or median (M) and quartile (Q1, Q3). SIRBM-muscle, signal intensity ratio of bone 
marrow to muscle.

Table 3 Comparison of the ADC values (×10−6 mm2/s) of bone marrow between the amateur marathon runners and controls at various bone sites

Region

All subjects Male Female

Amateur 
marathon

Control P
Amateur 
marathon

Control P
Amateur 
marathon

Control P

Thoracic 
vertebrae

497.75±69.83 498.04±80.45 0.988 474.71  
(448.00, 485.34)

472.09  
(427.21, 491.33)

0.758 553.09±70.07 579.45±50.30 0.347

Lumbar 
vertebrae

531.41±65.43 515.69±90.45 0.444 508.27±55.77 476.83±77.61 0.149 577.68±60.50 593.42±59.81 0.566

Sacrum 574.67±48.66 546.03±78.11 0.094 569.89±49.02 523.81±77.25 0.03 584.21±49.04 590.47±61.38 0.804

Hip 592.69±51.24 525.02±99.03 0.002 577.36±42.06 481.16±87.29 <0.001 623.35±56.19 612.75±51.84 0.666

Data are presented as the mean ± standard deviation, or median (M) and quartile (Q1, Q3). ADC, apparent diffusion coefficient.

Table 4 Demographic characteristics of the DWI hyper- and hypo-intense male amateur marathon groups

Characteristic Hypointense Hyperintense P value

Age (years) 41.6±5.211 41.40±6.00 0.937

The yearly running distance (km) 2,520±578.89 2,280±484.88 0.328

Running years (years) 6.00 (3.75, 7.75) 5.00 (3.38, 5.25) 0.247

BMI (kg/m2) 23.88±1.20 23.95±2.31 0.933

WBC (109/L) 5.81±0.93 6.38±1.07 0.221

RDW-CV (%) 12.91±1.79 13.26±1.07 0.597

PLT (109/L) 218.44±60.87 192.4±45.14 0.291

RBC (1012/L) 4.82 (4.69, 5.17) 4.62 (4.55, 4.80) 0.123

HGB (g/L) 152.86 (142.75, 159.75) 143.00 (138.38, 154.50) 0.218

Data are presented as the mean ± standard deviation, or median (M) and quartile (Q1, Q3). DWI, diffusion-weighted imaging; BMI, body 
mass index; WBC, white blood cell; RDW-CV, red blood cell distribution width-coefficient of variation; PLT, platelet; RBC, red blood cell; 
HGB, hemoglobin.
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CI: 0.834–0.923), and 0.930 (95% CI: 0.884–0.958), 
respectively}. The intra-observer reliability for the SIBM, 
SImuscle, ADC, and T2 measurements ranged from good to 
very good [ICC =0.938 (95% CI: 0.917–0.953), 0.733 (95% 
CI: 0.612–0.812), 0.865 (95% CI: 0.801–0.905), and 0.882 
(95% CI: 0.770–0.936), respectively].

Discussion

In this study, we compared the WB-DWI bone marrow 
signal characteristics of 30 healthy adult amateur marathon 
runners (aged 30–50 years) with those of 30 healthy age- 
and gender-matched volunteers who had not engaged in any 
long-term sports training. The frequency difference of the 
bone marrow DWI (b=800 s/mm2) hyperintensity between 
the male amateur marathon runners and controls (50% 
vs. 5%) was much greater than that of the females (100% 
vs. 90%). These results indicate that marathon training 
increases the likelihood of bone marrow hyperintensity in 
DW images. Thus, when WB-DWI is used to screen bone 
marrow diseases, the patient’s marathon training history 
should be considered to avoid false-positive diagnoses. The 
further signal quantitative study showed that the SIRBM-muscle  
values were significantly higher in the male amateur 
marathon runners than the male controls in the thoracic 
vertebrae (4.68 vs. 3.57), lumbar vertebrae (4.49 vs. 3.01), 
sacrum (3.67 vs. 2.62), and hip (3.45 vs. 2.50), which further 
supports the visual assessment results.

At birth, the entire skeleton is filled with red bone 
marrow, and the physiological conversion of red marrow 
into yellow marrow occurs with aging. The adult 
distribution of red bone marrow, which appears at age 25,  
is characterized by the presence of red bone marrow in the 
axial skeleton (vertebral bodies, sacral bone, and medial 
parts of hip bones) and articular ends of humeral and 
femoral bones (45,46). In this study, hypointensity was 
observed in the images of the humeral heads, femoral heads, 
and great trochanters of the 30 subjects who showed diffuse 
bone marrow hyperintensity in the DW images of the 
thoracolumbar vertebrae, sacrum, hips, ribs, sternum, and 
scapula (100%). Thus, we speculate that the bone marrow 
DWI hyperintensities caused by marathon training will 
not involve epiphyseal sites; however, further research is 
needed.

In the current study, 100% of the femoral metaphysis 
and proximal segments showed bone marrow DWI 
hyperintensity in the female amateur marathon runners, 

compared with only 50% in the controls. Meanwhile, 
60% of the humeral metaphysis and proximal segments 
showed hyperintensity in the female amateur marathon 
runners, compared with 40% in the controls. In the male 
amateur marathon runners, 30% of the femoral metaphysis 
and proximal segments showed hyperintensity, while the 
frequency for humeral metaphysis and proximal segments 
was 10% (compared to 0% in the controls for both). These 
results indicate that the change in bone marrow signal 
intensity caused by marathon training was more obvious in 
the femur than the humerus. We speculate that the increase 
in DWI bone marrow signal intensity might be related to 
the impact force on bones during marathon training, which 
explains why the signal change was much more pronounced 
in the femur than the humerus.

In our previous study, we found diffuse DWI hyperintensities 
of the bone marrow in 91% of premenopausal, 75% of 
perimenopausal, and 8% of postmenopausal women (32). In 
our current study, all the females were in the premenopausal 
period. The frequency of DWI bone marrow hyperintensity 
in the female controls was 90%, which is consistent with 
the findings of our previous study (32), while the frequency 
in the female marathon runners was 100%. There was no 
significant difference in the frequency between the female 
marathon runners and controls in the current study.

Fifty percent (10/20) of the male amateur marathon 
runners showed bone marrow DWI hyperintensity in 
current study. In our previous study (31), we found that only 
3.3% of the males aged 21–50 years showed bone marrow 
DWI hyperintensity. These results indicate that marathon 
exercise increases the frequency of bone marrow high DWI 
signals; however, the reason for this needs to be further 
investigated.

Based on previous studies, bone marrow hyperintensity 
in DW images is related to the increased water content 
of the bone marrow, resulting from the T2 shine-through 
effect (31,32,47). In this study, the T2 values of the lumbar 
vertebrae were significantly higher in the male amateur 
marathon runners than the male controls (116.76 vs.  
97.63 ms), which is consistent with the SIRBM-muscle results 
(see Table 2), which could be one reason for the increasing 
frequency of the high bone marrow DWI signal in male 
marathon runners. One reason for the increased water 
content of the bone marrow might be marrow hyperplasia 
stimulated by the impact force on bone created by long-
term marathon training (31). No significant difference 
between the female amateur marathon runners and the 



Cao et al. Evaluation of amateur marathon runners’ bone marrow2330

© Quantitative Imaging in Medicine and Surgery. All rights reserved.   Quant Imaging Med Surg 2024;14(3):2321-2333 | https://dx.doi.org/10.21037/qims-23-1006

corresponding controls (118.58 vs. 124.10 ms) was found, 
which is similar to the SIRBM-muscle results (see Table 2). 
According to our previous study, the frequency of bone 
marrow DWI hyperintensity in reproductive-age women 
(91%) was higher than that in men (3.3%) (21–50 years old)  
(31,32), indicating that in reproductive-age women, 
menstruation and sex hormones could maintain red bone 
marrow status (48). There was no significant difference 
in the frequency of the bone marrow high DWI signal 
found between postmenopausal women (8%) and men aged  
21–50 years (3.3%), P=0.40 (31,32), which may indicate that 
women’s marrow transfers to yellow marrow after the loss 
of menstruation and sex hormones.

Finally, significant differences in the bone marrow 
ADC values between the amateur marathon runners and 
the controls were only observed in the male’s sacrum 
(569.89×10−6 vs. 523.81×10−6 mm2/s) and hips (577.36×10−6 
vs. 481.16×10−6 mm2/s) (see Table 3), which indicates that the 
ADC values are not important factors of the bone marrow 
high DWI signal. Further studies need to be conducted to 
clarify the underlying complex mechanism (49).

The current study had several limitations. First, the 
age range of the amateur marathon runners was narrow 
(30–50 years). Runners of other age ranges, particularly 
postmenopausal women, should be studied in future, as 
the bone marrow only shows a high signal visually in WB-
DWI in 3.3–5.9% of 21–81 years old males (31) and 8% 
of postmenopausal women (32). If marathon training can 
increase the diffuse high signal frequency of bone marrow in 
DWI in other age ranges, further study is needed. Second, 
no histological analysis of bone marrow was performed. 
Third, the effects of other factors, such as the effect of 
running pace on the bone marrow DWI signal were not 
analyzed.

Conclusions

Marathon training resulted in bone marrow diffuse 
hyperintensity on WB-DWI, especially in male marathon 
runners. In the present study, bone marrow hyperintensity 
was observed in 50% of the male amateur marathon runners 
aged 30–50 years. However, bone marrow hyperintensity 
does not affect the humeral head, femoral head, and femoral 
trochanteric epiphysis. Our results suggest that when WB-
DWI is used to screen bone marrow diseases, marathon 
training history should be considered to avoid false-positive 
diagnoses.
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