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Background: Efficiently and accurately detecting cerebral microbleeds (CMBs) is crucial for diagnosing 
dementia, stroke, and traumatic brain injury. Manual CMB detection, however, is time-consuming and error-
prone. This study evaluates a novel artificial intelligence (AI) software designed for the automated detection 
of CMBs using susceptibility weighted imaging (SWI).
Methods: The SWI data from 265 patients, 206 of whom had a history of stroke and others of whom 
presented a variety of other medical histories, including hypertension, diabetes, hyperlipidemia, cerebral 
hemorrhage, intracerebral vascular malformations, tumors, and inflammation, collected between January 
2015 and December 2018, were analyzed. Two independent radiologists initially reviewed the images to 
identify and count the number of CMBs. Subsequently, the images were processed using an automatic CMB 
detection software. The generated reports were then reviewed by the radiologists. A final consensus between 
the two radiologists, obtained after a second review of the images, was used to compare results obtained 
from the initial manual detection and those of the automatic CMB detection software. The differences of 
detection sensitivity and precision for patients with or without CMBs and for individual CMBs between the 
radiologist and the automatic CMB detection software were compared using Pearson chi-squared tests.
Results: A total of 1,738 CMBs were detected among 148 patients (71.4±10.7 years, 100 males) from the 
analyzed SWI data. While the radiologists identified 139 cases with CMBs, the automatic CMB detection 
software detected 145 cases. Nevertheless, there was no statistical difference in the sensitivity and specificity 
of the automatic CMB detection software compared to manual detection in determining patients with CMBs 
(P=0.656 and P=0.212, chi-square test). However, the radiologist identified 93 patients without CMBs, 
while the automatic CMB detection software detected 121 patients without CMBs, exhibiting a statistically 
significant difference (P=0.016, chi-square test). In terms of individual CMBs, the radiologists found 1,284, 
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Introduction

Cerebral microbleeds (CMBs) represent small accumulations 
of chronic blood products within the brain. They can be 
detected as small regions of signal loss in susceptibility 
weighted imaging (SWI) data (1), while their iron content 
can be assessed through quantitative susceptibility mapping 
(QSM) (2). The formation of CMBs is influenced by 
various factors such as age, hypertension, and the use of 
antidepressant drugs (3,4). Notably, the prevalence of CMBs 
naturally increases with age due to the gradual degeneration 
of the vascular system (5). CMBs have been associated with a 
myriad of neurovascular diseases including cerebral amyloid 
angiopathy (CAA) (6,7), Alzheimer’s disease (AD) and other 
forms of dementia (8), hypertensive arteriosclerosis, small 
vessel disease (9,10), stroke (11,12), and traumatic brain 
injury (TBI) (13). The distribution of CMBs within the brain 
appears to be contingent on the specific pathology, with 
hypertension primarily affecting basal ganglia and thalamus, 
vascular dementia impacting the temporal and visual cortex, 
and TBI leading to widespread CMB occurrence (14-16).

An increase in both the quantity and size of CMBs over 
time, especially concerning the spatial distribution range of 
lesions across the brain, has been associated with a decline 
in cognitive function and an increased risk of stroke (17,18), 
as well as the onset of dementia (19). Certain studies have 
explored the utility of CMB detection as a predictive tool 
for CAA-associated dementia (20,21), and radiation-induced 
brain damage in tumor patients (22,23). Additionally, SWI 
has been used for tumor grading based on the presence of 
CMBs (24). Research also indicates an association between 
the presence of CMBs and diffuse axonal injury in TBI (25). 
A recent study established a link between the detection of 
CMBs on SWI and the histological presence of iron-rich 

macrophages in the perivascular space, suggesting that the 
presence of CBMs is an independent predictor of disability 
following TBI, irrespective of CMB shape (26). The need 
for patient follow-up post-TBI is partly determined by the 
detection of CBMs (27). In summary, there are compelling 
indications that CMBs can serve as predictors of cognitive 
decline, intracerebral hemorrhage (ICH), and ischemic 
infarction. Thus, the quantity and distribution of CMBs are 
crucial in interpreting their clinical implications (16).

In clinical practice, the manual detection of CMBs can 
be both time consuming and error-prone. Over the past 
few years, numerous studies have reported varying degrees 
of success with artificial intelligence (AI)-based automatic 
CMB detection methodologies (1,28,29), however, their 
practical application in clinical settings remains largely 
untested. The main drawback of traditional machine 
learning models is their reliance on feature engineering. 
Due to the variations in shape and intensity of CMBs on 
SWI images, designing effective and robust features can be 
quite challenging. In addition, the contrast of SWI data may 
depend on imaging parameters, especially the field strength, 
echo time and image resolution.

In this study, our method employs a two-pronged AI 
strategy, initially leveraging a 3D fast radial symmetry 
algorithm, which is subsequently followed by a convolutional 
neural network (CNN) model for the elimination of false 
positives. The pipeline has outperformed single-channel 
models (28,30,31). Furthermore, using QSM reconstructed 
from SWI phase images, diamagnetic substances such as 
calcifications can be separated from paramagnetic blood 
products based on the sign of SWI phase or susceptibility. 
As the susceptibility of CMBs is much higher than the 
surrounding tissue or veins, QSM could provide valuable 
features for distinguishing CMBs from their mimics (28). 

whereas the automatic CMB detection software detected 1,677 CMBs. The detection sensitivity for human 
versus the automatic CMB detection software were 75.5% and 96.5% respectively (P<0.001, chi-square 
test), while the precision rates were 92.2% and 86.0% (P<0.001, chi-square test), respectively. Notably, the 
radiologists were more likely to overlook CMBs when the number of CMBs was high (above 30).
Conclusions: The automatic CMB detection software proved to be an effective tool for the detection 
and quantification of CMBs. It demonstrated higher sensitivity than the radiologists, especially in detecting 
minuscule CMBs and in cases with high CMB prevalence.
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Consequently, the primary objective of this study was to 
deploy a recently proposed automatic CMB detection 
software in a clinical environment, comparing its results with 
those of two experienced radiologists to verify its clinical 
viability (28). We present this article in accordance with 
the STARD reporting checklist (available at https://qims.
amegroups.com/article/view/10.21037/qims-23-1319/rc).

Methods

Subject

This retrospective study was conducted in accordance with 
the Declaration of Helsinki (as revised in 2013). This study 
was approved by the Institutional Review Board of Shanghai 
Fourth People’s Hospital and individual consent for this 
retrospective analysis was waived. All data used were obtained 
from previous clinical consultations. This research project did 
not involve personal interests and was run under the guidance 
of a faculty at Shanghai Fourth People’s Hospital. The 
facility is a specialized acute stroke center at which extensive 
and time-conscious magnetic resonance imaging (MRI) data 
are collected in addition to computed tomography (CT) data 
as standard of care. All patients underwent a further stroke 
specific workup (not related to this paper).

A total of 265 patients were selected from the data 
center of our institution within the time frame of January 
2015 to December 2018 (Figure 1). The inclusion criteria 

were: (I) all patients underwent both CT and magnetic 
resonance (MR) scans; and (II) the time interval between 
CT and MR scans was no more than 48 hours. The 
exclusion criteria were: (I) poor image quality due to the 
presence of motion artifacts that significantly compromised 
diagnostic integrity of either CT or MRI scans; and (II) 
lack of necessary clinical information. Eighty-five females 
(47–96 years old) and 180 males (53–91 years old) were 
finally enrolled in this study, with various medical histories 
including hypertension, diabetes, hyperlipidemia, ischemic 
stroke, ICH, intracranial vascular malformations, tumor, 
and inflammation. A total of 206 of these patients had a 
history of stroke, but they were not experiencing acute 
stroke at the time of the study (Table 1).

MRI protocol

The MRI was performed on a 1.5-T MR system (Magnetom 
Avanto, Siemens Healthineers, Erlangen, Germany) for 
each patient with a commercial 16-channel head/neck coil. 
All patients took a head first supine position in the MRI 
scanner. The MRI sequences included: T1-weighted (T1W) 
sequence, T2-weighted (T2W) sequence, fluid attenuation 
inversion recovery (FLAIR) imaging, diffusion-weighted 
imaging (DWI), and SWI. The parameters used for the 
different sequences were: T1W: repetition time =2,000 ms, 
echo time =9 ms, flip angle =150°, slice thickness =4 mm,  
slice number =24, field of view =220 mm × 220 mm, matrix 

Enrolled patients underwent CT and SWI (n=280)

Included for analysis patients (n=265)

CMBs positive (n=148) CMBs negative (n=117)

Excluded (n=15)
• The time interval between CT and MR more 

than 48 hours (n=8)
• Poor images (n=3)
• Lack of necessary clinical information (n=4)

Diagnosed by AI and radiologist

Figure 1 Patient selection flowchart. CT, computed tomography; SWI, susceptibility weighted imaging; MR, magnetic resonance; AI, 
artificial intelligence; CMB, cerebral microbleed.

https://qims.amegroups.com/article/view/10.21037/qims-23-1319/rc
https://qims.amegroups.com/article/view/10.21037/qims-23-1319/rc
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Table 1 Patient demographics

Variables All (n=265) CMBs positive (n=148) CMBs negative (n=117) P value

Age (years) 70.0±10.4 71.4±10.7 68.3±9.7 0.02

Female 85 (32.1) 48 (32.4) 37 (31.6) 0.98†

Hypertension 202 (76.2) 120 (81.1) 82 (70.1) 0.10†

Diabetes 107 (40.4) 64 (43.2) 43 (36.8) 0.39†

Hyperlipidemia 94 (35.5) 51 (34.5) 43 (36.8) 0.57†

Ischemic stroke 206 (77.7) 123 (83.1) 83 (70.9) 0.06†

ICH 27 (10.2) 19 (12.8) 8 (6.8) 0.13†

IVMs 10 (3.8) 8 (5.4) 2 (1.7) 0.13†

Tumor 2 (0.8) 2 (1.4) 0 –

Inflammation 2 (0.8) 1 (0.7) 1 (0.9) –

Data are presented as mean ± standard deviation or n (%). P values are for the t-test unless otherwise indicated. †, P values are for the 
Chi-squared test. CMB, cerebral microbleed; ICH, intracerebral hemorrhage; IVM, intracranial vascular malformation.

size =256×256; T2W: repetition time =3,000 ms, echo 
time =105 ms, flip angle =150°, slice thickness =4 mm,  
slice number =24, field of view =220 mm × 220 mm, matrix 
size =256×256, T2W-flair: repetition time =8,000 ms, echo 
time =80 ms, flip angle =150°, slice thickness =4 mm, slice 
number =30, field of view =240 mm × 240 mm, matrix 
size =320×320; DWI: repetition time =3,200 ms, echo 
time =54 ms, flip angle =180°, slice thickness =4 mm, slice 
number =24, field of view =220 mm × 220 mm, matrix size 
=256×256; SWI: repetition time =49 ms, echo time =40 ms,  
flip angle =15°, slice thickness =1.6 mm, field of view  
=220 mm × 220 mm, matrix size =256×256; and number of 
excitations =2. The total scan time for all MR sequences was 
12 minutes and 43 seconds. Magnitude images, SWI phase 
images, QSM images, and maximum intensity projection 
(MIP) SWI images were obtained from the SWI data. 
QSM images were automatically processed by the built-
in algorithms (version 3.2.5 of STAGE imaging software, 
SpinTech, Inc., Bingham Farms, MI, USA) on the vendor-
provided MR workstation.

CT acquisition

The CT scan was performed on a SOMATOM Definition 
AS system (Siemens Healthineers) for each patient within 
48 hours following the MRI scan. All patients were scanned 
axially in the supine position using the following imaging 
parameters: tube voltage =100 kV; tube current was 
determined by using Care Dose4D technology automatically; 

slice thickness =4.8 mm; field of view =220 mm × 220 mm; 
matrix size =512×512; window level =35 Hounsfield units 
(HU) and window width =80 HU.

Manual microbleed detection

A collection of multi-sequence images, including MRI 
(SWI, both magnitude and phase images, and QSM) and 
CT, were manually reviewed by two radiologists (observer 
1 and observer 2, with 10 and 12 years of MRI experience, 
respectively). The lesions were considered as potential 
CMBs if they were surrounded by normal parenchyma, 
with clear margins, ranging from 1 to 10 mm in size 
on SWI. CMBs were categorized as small, round, well-
defined hypointense lesions in the magnitude image and 
hyperintense lesions in SWI phase and QSM images, 
which showed a paramagnetic dipole effect (2) (Figure 2). 
The latter made it possible to differentiate CMBs from 
calcifications, which are diamagnetic, and were confirmed 
using the accompanying CT data. Both radiologists 
reviewed all the images and counted the number of CMBs. 
If they disagreed with the presence or absence of CMBs, 
discrepancies were resolved by consensus.

AI-based microbleed detection

The same MR images reviewed by the radiologists were then 
uploaded to the automatic CMB detection software (28)  
(SpinTech MRI), which returned a report providing the 
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number, location based on the microbleed anatomical 
rating scale (MARS) (32), and volume of the CMBs. The 
automatic detection process included preprocessing and 
two major CMB detection steps (28). The preprocessing 
provided a set of normalized bias field corrected SWI and 
QSM data. CMB candidate maps were generated through 
the following steps. First, an initial candidate map was 
generated by thresholding the SWI image transformed by a 
3D fast radial symmetry transform (FRST). Next, for each 
connected area in the candidate map, one or two candidates 
were generated based on the shape of that area. Then, the 
images underwent a 3D FRST followed by a deep residual 
neural network model using SWI and high pass filtered 
SWI phase images. Specifically, each CMB candidate was 
rotated around the Z-axis by 0° (i.e., the original sample), 
90°, 180°, and 270°, respectively. With each rotation, 
the three-dimensional volume was also flipped in the 
Z-direction. Using each model, a total of eight predictions 
were made for each CMB candidate, and the average of 
these predictions was used as the final prediction of that 
model. This model was trained using SWI data from 
multiple sites and diseases and achieved an overall sensitivity 
of 95.8% and 1.3 false positives per patient (33). A report 
regarding the number, location and volume of CMBs was 
generated for every patient (Figure 3).

Decision of ground truth

After both manual and automatic CMB detection software 

were used, the reports from the latter were reviewed by 
the radiologists. The disagreements between the automatic 
CMB detection software and manual results were picked 
out as a checklist. Finally, a second-round manual review of 
the images was performed with the presence of the check-
list, and the consensus of the two radiologists at this round 
were decided as the ground truth (Figure 4).

Statistical analysis

The difference of age between CMB positive and negative 
groups was reported as mean ± standard deviation and a 
t-test was used for comparison purposes. The difference 
of both sex and disease between the two groups were 
reported as frequency and percentage, and a Pearson chi-
squared test was used for significance. We compared the 
differences of detection sensitivity and precision for patients 
with or without CMB and for individual CMBs between 
the radiologist and the automatic CMB detection software 
using Pearson chi-squared tests. All statistical analyses were 
performed with IBM SPSS statistical software version 25. 
A two-tailed P value <0.05 was considered to indicate a 
significant difference.

Results

A total of 265 patients (70.0±10.4 years) were enrolled in 
this study of which 148 presented with CMBs based on 
the second review of the images (Figure 4). There was a 

A B C

Figure 2 Microbleeds appear dark in the original SWI data (white arrow, A) and demonstrate dipole characteristics in the SWI phase image (B). 
In a left-handed system, when the slice cuts through the top or bottom of the CMB, the SWI phase will be bright as shown here (black arrow, B). 
If the slice cuts through the center of the bleed it will appear dark or have a bright halo. To guarantee that the decision of calling this a CMB or 
calcification is correct, one needs to either view the data in another plane such as the sagittal plane (white arrow, C), or use QSM to determine 
the sign of the susceptibility. SWI, susceptibility weighted imaging; CMB, cerebral microbleed; QSM, quantitative susceptibility mapping.
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significant difference between the age of those with CMBs 
(71.4±10.7 years) versus those without (68.3±9.7 years, 
P=0.02) (Table 1). The automatic CMB detection software 
correctly detected 145 cases with CMBs and missed three 
cases with CMBs while it misjudged 27 patients as having 
CMBs but who did not. The two radiologists correctly 
found 139 cases with CMBs and missed nine cases with 
CMBs. They also misjudged five patients as having CMBs 
but who did not. Compared to the radiologists, there was no 
statistical difference in the sensitivity and specificity of the 
automatic CMB detection software in determining patients 
with CMBs (P=0.656 and P=0.212, Table 2). Based on the 

results of radiologist and the automatic CMB detection 
software, 90 patients did not have CMBs. Specifically, for 
the automatic CMB detection software 93 patients did 
not have CMBs, while the radiologists concluded that  
121 patients did not have CMBs, which was statistically 
different (P=0.016, Table 2).

A total of 1,738 CMBs were detected from all cases with 
CMBs. The automatic CMB detection software detected 
1,677 lesions, missing 61. There were 273 hypointense 
foci on SWI that were misjudged as CMBs (i.e., false 
positives) by the software, which included calcifications 
in the pineal gland and choroid plexus. Most other false 

Figure 4 The flowchart of the images analysis steps. CMB, cerebral microbleed.

Image data

Reviewed by radiologist (second time)
Based on the two results above

Final result

Reviewed by radiologist 
(first time)

Comparison with the  
first results of radiologist

Reviewed by the automatic  
CMB detection software

Comparison with the results of the 
automatic CMB detection software 

Table 2 Patients by the automatic CMB detection software versus human rater

Variables Automatic CMB detection software Radiologist P value

Total, n 265 265 –

True positive, n 145 139 –

False positive, n 27 5 –

False negative, n 3 9 –

True negative, n 90 112 –

Sensitivity (95% CI) (%) 98.0 (95.7–100.0) 93.9 (90.0–97.8) 0.656

Specificity (95% CI) (%) 76.9 (69.2–84.7) 95.7 (92.0–99.4) 0.212

Rule out patients without CMBs, n 93 117 0.016

P values are for the chi-squared test. CMB, cerebral microbleed; CI, confidence interval.
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positives were either edges or mineralization near the basal 
ganglia or veins appearing prominently on one axial slice. 
Meanwhile, two radiologists found 1,393 putative CMBs 
of which 1,284 CMBs were determined to be actual CMBs 
with 109 misjudged as CMBs but which were not and  
426 CMBs were missed. The sensitivity and precision of 
the automatic CMB detection software in detecting CMBs 
lesions were 96.5% and 86.0%, respectively, while those 
for the radiologists were 75.5% and 92.2%, respectively. 
Both the differences were statistically significant (P<0.001,  
Table 3). The false positive rate was 1.84 per case with 
CMBs (273/148) for the automatic CMB detection software, 
whereas the radiologists presented a lower rate of 0.74 per 
case with CMBs (109/148) but missed many CMBs. The 
automatic CMB detection software missed some of the 
CMBs in 26 cases in which were actually presence, while 
the radiologists missed some of the CMBs in 46 cases. 
Overall, the automatic CMB detection software was more 
sensitive than the radiologists in detecting CMBs. The 
automatic CMB detection software missed 61 CMBs, while 
the radiologists missed 426 CMBs, especially in cases with 
many microbleeds (more than 30 CMBs) (Table 4). More 

specifically, in cases with less than 30 CMBs, the radiologists 
missed a total of 74 lesions, while for cases with 30 or more 
CMBs, the raters missed 352 lesions. The small CMB 
lesions that were undetected by radiologists but identified 
by the automatic CMB detection software were generally 
less than 5 mm3 (cube of a micrometer) in volume, and 
in these patients, the automatic CMB detection software 
outperformed the radiologists. For example, the small CMB 
shown in Figure 5 was missed. However, the precision of 
the software was lower than that of the radiologists (Table 2). 
Further, the automatic CMB detection software incorrectly 
counted nine thromboses (Figure 6), 55 veins (Figure 7), and 
29 calcifications (Figure 8) as CMBs. There were 24 CMBs 
at the gray-white matter junction area (Figure 9A,9B) and 
14 CMBs at the edge of the brain (Figure 9C,9D) that were 
missed by the software.

Discussion

The results presented in this study confirm the practicality 
of an AI-driven CMB detection algorithm that operates 
with increased sensitivity in a clinical environment 

Table 3 CMBs by the automatic CMB detection software versus human rater

Variables Automatic CMB detection software Radiologist P value

Total, n 1,738 1,738 –

True positives, n 1,677 1,284 –

False positives, n 273 109 –

False negatives, n 61 426 –

Sensitivity (95% CI) (%) 96.5 (95.6–97.4) 75.5 (73.0–77.1) <0.001

Precision (95% CI) (%) 86.0 (84.5–87.5) 92.2 (90.8–93.6) <0.001

P values are for the chi-squared test. CMB, cerebral microbleed; CI, confidence interval.

Table 4 The automatic CMB detection software versus human rater missed CMBs

Variables
Total CMBs (%)/cases  

with CMBs (%)
Automatic CMB detection 
software missed CMBs, n

Radiologists  
missed CMBs, n

P value

1–4 CMBs 166 (9.55)/93 (62.84) 4 10 0.101

5–9 CMBs 76 (4.37)/11 (7.43) 8 6 0.576

10–19 CMBs 200 (11.51)/15 (10.14) 14 10 0.400

20 or more CMBs 1,296 (74.57)/29 (19.59) 35 400 <0.001

<30 CMBs per case with CMBs 700 (40.28)/132 (89.19) – 74 <0.001

≥30 CMBs per case with CMBs 1,038 (59.72)/16 (10.81) – 352

P values are for the chi-squared test. CMB, cerebral microbleed.
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A B C D

Figure 5 In cases with CMBs where there were many bleeds, it was more difficult for the human raters to capture all of them. The tiny 
CMB indicated by the arrows was missed by the radiologists. This CMB is shown in the SWI magnitude image (white arrow, A), SWI phase 
image (black arrow, B), SWI (white arrow, C), and QSM (white arrow, D). CMB, cerebral microbleed; SWI, susceptibility weighted imaging; 
QSM, quantitative susceptibility mapping.

Figure 6 The automatic CMB detection software misjudged a thrombosis as a CMB. This thrombus is shown in the SWI magnitude image 
(white arrow, A), SWI phase image (black arrow, B), SWI (white arrow, C), and QSM (white arrow, D). CMB, cerebral microbleed; SWI, 
susceptibility weighted imaging; QSM, quantitative susceptibility mapping.

A B C D

when compared to a radiologist. A detailed examination 
demonstrated that the sensitivity of the automated CMB 
detection software could match or even exceed that of 
human readers, supporting findings from previously 
published literature (28). The results of this study provide 
evidence supporting the claimed effectiveness of the 
automated CMB detection software when applied to clinical 
data. As anticipated, a greater prevalence of CMBs was 
observed in elderly patients. While previous studies have 
indicated that both age and hypertension are independent 
risk factors for CMBs (5). However, our study found 
that hypertension did not notably amplify the CMB risk, 
potentially due to the dominating role of aging and ischemic 

stroke as covariates.
Despite the promise shown by the automatic CMB 

detection software, it was not flawless. Our data revealed 
that the accuracy of the automatic CMB detection software 
in detecting microbleeds was marginally lower than that of 
human raters, albeit the disparity in specificity between the 
two methods was not statistically significant. However, it 
was particularly intriguing to note that the false positives 
identified by the radiologists and the automatic CMB 
detection software did not overlap, which suggests the 
automatic CMB detection software could provide findings 
compensatory to those found by a human rater. A few 
instances occurred in which the automatic CMB detection 
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A B C D

A B C D

Figure 8 The automatic CMB detection software misjudged the calcification of pineal gland as a CMB. The misjudged pineal gland is 
shown in the SWI magnitude image (white arrow, A), SWI phase image (black arrow, B), SWI (white arrow, C), and QSM (black arrow, D). 
CMB, cerebral microbleed; SWI, susceptibility weighted imaging; QSM, quantitative susceptibility mapping.

Figure 7 The automatic CMB detection software misjudged a vein as a CMB. This vein is shown in the SWI magnitude image (white arrow, 
A), SWI phase image (black arrow, B), SWI (white arrow, C), and QSM (black arrow, D). CMB, cerebral microbleed; SWI, susceptibility 
weighted imaging; QSM, quantitative susceptibility mapping.

A B C D

Figure 9 The automatic CMB detection software missed the CMBs at the edge of the putamen (A,B) and the edge of the brain (C,D). This 
CMB is shown in the SWI magnitude image (white arrow, A), SWI phase image (black arrow, B), SWI (white arrow, C), and QSM (black 
arrow, D). CMB, cerebral microbleed; SWI, susceptibility weighted imaging; QSM, quantitative susceptibility mapping.
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software inaccurately classified thrombosis and veins as 
CMBs. In contrast, the radiologists identified 14 CMBs 
in the superficial lobes of the brain and 24 in the gray-
white matter junction zone, which the automatic CMB 
detection software overlooked. Despite these oversights, 
the automatic CMB detection software outperformed the 
radiologists in detecting an increased number of CMBs 
and identifying smaller CMBs, highlighting its significant 
potential in advancing CMB detection technology.

Additionally, some CMB candidate lesions turned out to 
be shown as calcifications on QSM or SWI phase images, 
but not on CT images. It is possible that these lesions may 
undergo temporal changes, and the timing of imaging 
studies might have influenced the detection on CT images. 
This might explain why some of these small immature 
calcifications fail to show up as hyperdense foci on CT 
images but could be found on QSM. The application of 
QSM could eliminate the need for reviewing images in 
the sagittal plane to identify dipole effects. QSM has been 
utilized in numerous studies for quantifying in vivo iron 
content, calcifications, and alterations in venous oxygen 
saturation (2,28,34). However, it is important to note that 
QSM may fail to construct high-quality susceptibility maps if 
the calcium content is significantly high, leading to excessive 
SWI phase aliasing, particularly with longer echo times 
which are common in susceptibility-sensitive sequences. 
This issue can be mitigated using newer sequences that offer 
multi-echo versions of SWI employing shorter echoes (35).

Although the automatic CMB detection software in 
this study validated its potential as a valuable clinical tool, 
its efficiency could be further elevated if some of the false 
positives could be mitigated. False positives may arise from 
several factors unrelated to the disease, such as calcification, 
normal veins with high levels of deoxyhemoglobin such as 
in the circumstances of strokes, arteries with inadequate 
flow compensation, and susceptibility artifacts induced by 
air-tissue interfaces. In this current version of the software, 
the diagnosis of whether a lesion is a CMB was still based 
on signal changes. In our study, false positive lesions were 
mainly caused by three problems. Firstly, high levels 
of calcification could lead to the potential loss of phase 
information, limiting the accuracy of QSM reconstruction, 
and leading to strong streaking artifacts. Secondly, veins 
were misidentified as CMBs in some cases because of high 
levels of deoxyhemoglobin in the veins as occurs in stroke. 
In principle, with high enough resolution, these errors 
could be eliminated by using a vessel tracking algorithm. 
Radiologists, on the other hand, have knowledge of anatomy 

and past experience to draw on. Thirdly, iron deposition 
in the basal ganglia could mimic CMBs, which could be 
addressed by using a template approach to segment the 
basal ganglia and treat separately, reducing false positives.

Following the original training of this model, several 
automated CMB detection tools have been introduced. 
One such tool, rooted in AI, displayed tradeoffs in certain 
performance metrics, resulting in fewer false positives 
but at the cost of reduced sensitivity (1). A different 
approach employed an entirely geometric technique on 
SWI data, which however, produced a higher number of 
false positives (35). While it was not feasible to test every 
one of these pipelines in our dataset, the current tool has 
demonstrated consistency with the test data provided in 
the original seminal study (28). This suggests its potential 
reliability and applicability in real-world clinical settings.

While human raters overlooked 426 CMBs, it is 
unrealistic to expect radiologists to count beyond 30 CMBs, 
and an extensive number of CMBs is unlikely to affect the 
diagnosis substantially. However, knowing the accurate 
number of CMBs could still be useful in situations like long-
term monitoring or post-treatment evaluation. Basically, 
no change in clinical diagnosis is likely to be observed if 
there are 35 or 40 CMBs or in differentiating between 
two patients with slightly different numbers of CMBS. 
However, it would be informative if 35 CMBs changed to 
40 in a longitudinal follow-up. The assessment of CMBs in 
patients suffering from ischemic stroke carries significant 
importance as the presence of CMBs could potentially act 
as a biomarker indicating an elevated risk of bleeding and 
stroke recurrence. Research conducted by Shoamanesh 
et al. correlated the existence of CMBs with a 1.5 times 
higher risk of recurrent stroke, a four times greater risk 
of ICH, and a doubling in the risk of all-cause mortality. 
Furthermore, strictly lobar CMBs were associated with 
approximately a 2.5 times higher risk of ischemic stroke (33). 
Additional studies suggest that CMBs are indicative of small 
asymptomatic local hemorrhages and are associated with an 
increased risk for symptomatic ICH (36). A higher number 
of microbleeds was associated with lower Mini-Mental State 
Examination (MMSE) score and worse performance on 
tests of information processing speed and motor speed (37).  
Risk and mortality of ICH increased with quantity of 
CMBs. For larger numbers of CMBs in stroke patients, 
extra precautions should be taken to minimize risk of ICH 
during anticoagulation (38).

A noteworthy advantage of the automated CMB detection 
program, especially in cases with CMBs with a high 
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prevalence of bleeds, is its ability to provide comprehensive 
data on lesion load (number and volume). The vast majority 
of lesions missed by the automatic CMB detection software 
were usually clustered together or at the edge of the cortex. 
The automatic CMB detection software would recognize 
multiple lesions clustered together as one CMB or ignored 
lesions that were very close to veins. These lesions can be 
detected by the radiologist. The lesions that are missed 
manually are mainly due to the size of the lesions, the 
vast majority of which are tiny and have no relation to the 
distribution of the lesions. There was no overlap between 
them. Ideally, integrating the anatomical position into the 
detection process could significantly reduce the number of 
false positives.

While the central aim of this paper was to evaluate the 
automated detection of CMBs in a clinical setting, rather 
than their specific etiology, a detailed statistical analysis 
for these clinical implications extends beyond the scope of 
current study. Regardless, accurate identification of patients 
featuring CMBs holds considerable value in a stroke center. 
CMBs also play a crucial role in evaluating other conditions, 
such as TBI. A study by Griffin et al. identified the presence 
of traumatic microbleeds as an independent predictor of 
disability, with an odds ratio of 2.5 (26). This finding was 
grounded in the observation of either punctate or linear 
appearing bleeds. Other research has indicated that the 
prevalence of TBI-induced CMBs may be similar to CAA-
related CMBs, even though the causative factors differ (39). 
Considering their relative rarity in large 3D datasets and 
the challenge they pose for identification, the detection of 
CMBs exemplifies the potential benefits of incorporating AI 
into clinical practice.

Falsely categorizing patients without CMBs as CMB-
positive can lead to unnecessary patient anxiety, inappropriate 
treatments, and increased healthcare costs. High false 
positive rates in the automatic CMB detection software stem 
from sensitivity-specificity trade-offs, data quality issues, 
algorithm complexity, and training dataset biases. Addressing 
these issues will require collaboration between clinicians 
and software developers, implementing feedback loops for 
continuous improvement, and promoting the use of AI as 
a decision support tool rather than a standalone diagnostic 
tool. This approach would ensure better alignment with 
clinical reality, reduces false positives, and enhances overall 
patient care. Significantly, while the human review process 
is lengthy, averaging 15 minutes per patient, the automatic 
CMB detection software currently requires only 5 minutes 
and simultaneously produces a detailed report outlining the 

location and volumes of the lesions.
There are several limitations to this study. Firstly, it is 

a single-center investigation, with varying resolutions and 
echo times employed by different manufacturers for SWI. 
Practically, this should not pose an issue as this algorithm 
was originally tested on a range of long echo time data with 
varying resolutions (28). However, a multi-site study could 
further validate its effectiveness. Secondly, the absence 
of a definitive gold standard for detecting CMBs poses a 
challenge. It is easy for radiologists to overlook small lesions 
during manually counting, hence we adopted the second 
round of consensus data as the gold standard. There is a 
certain probability that the radiologist and the automatic 
CMB detection software may miss the same lesion, which 
suggests the need for further improvement and training 
for the automatic CMB detection software to avoid this. 
Thirdly, the data for this study were exclusively acquired 
from a 1.5-T MR scanner, and the count of detected 
CMBs could potentially have been higher with the use of 
a 3-T MR scanner. This variation might have influenced 
certain outcomes. Nevertheless, the use of this software 
would alleviate the radiologist’s workload, highlighting the 
increased utility of AI software assistance. Despite these 
limitations, the findings from this study are promising, 
particularly for the potential of AI in automating the 
detection of CMBs in clinical settings.

Conclusions

The automated detection of CMBs presented in this 
study offers a robust method for their identification and 
quantification. The automatic CMB detection software 
proved more sensitive than the radiologists, particularly 
in detecting smaller CMBs and in cases with a high 
prevalence of CMBs. The positions of the lesions and 
overall lesion load were consolidated into an exhaustive 
report, allowing for post-analysis data review. This study 
underscores the potential of the automatic CMB detection 
software based on AI in equipping radiologists with crucial 
quantitative and spatial information regarding CMBs, 
thereby optimizing the time-efficiency of data review 
processes. The demonstrated efficacy of this automatic 
CMB detection software approach heralds a significant 
advancement in the clinical handling of CMBs.
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