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Background: Dual-energy computed tomography (CT) can provide a range of image information beyond 
conventional CT through virtual monoenergetic images (VMIs). The purpose of this study was to investigate 
the impact of material decomposition in detector-based spectral CT on radiomics features and effectiveness 
of using deep learning-based image synthesis to improve the reproducibility of radiomics features.
Methods: In this paper, spectral CT image data from 45 esophageal cancer patients were collected for 
investigation retrospectively. First, we computed the correlation coefficient of radiomics features between 
conventional kilovoltage peak (kVp) CT images and VMI. Then, a wavelet loss-enhanced CycleGAN (WLL-
CycleGAN) with paired loss terms was developed to synthesize virtual monoenergetic CT images from the 
corresponding conventional single-energy CT (SECT) images for improving radiomics reproducibility. 
Finally, the radiomic features in 6 different categories, including gray-level co-occurrence matrix (GLCM), 
gray-level difference matrix (GLDM), gray-level run-length matrix (GLRLM), gray-level size-zone matrix 
(GLSZM), neighborhood gray-tone difference matrix (NGTDM), and wavelet, were extracted from the 
gross tumor volumes from conventional single energy CT, synthetic virtual monoenergetic CT images, 
and virtual monoenergetic CT images. Comparison between errors in the VMI and synthetic VMI (sVMI) 
suggested that the performance of our proposed deep learning method improved the radiomic feature 
accuracy.
Results: Material decomposition of dual-layer dual-energy CT (DECT) can substantially influence 
the reproducibility of the radiomic features, and the degree of impact is feature dependent. The average 
reduction of radiomics errors for 15 patients in testing sets was 96.9% for first-order, 12.1% for GLCM, 
12.9% for GLDM, 15.7% for GLRLM, 50.3% for GLSZM, 53.4% for NGTDM, and 6% for wavelet 
features.
Conclusions: The work revealed that material decomposition has a significant effect on the radiomic 
feature values. The deep learning-based method reduced the influence of material decomposition in VMIs 
and might improve the robustness and reproducibility of radiomic features in esophageal cancer. Quantitative 
results demonstrated that our proposed wavelet loss-enhanced paired CycleGAN outperforms the original 
CycleGAN.
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Introduction

Radiomics has been applied to extract information from 
image data as biomarkers for outcome prediction and 
treatment assessment (1-3). Morphological, intensity-based, 
textural features, and wavelets features can be extracted and 
assessed to uncover imaging patterns exceeding the ordinary 
visual image interpretation by the naked eye (1,4).

In recent years, due to the widespread applications of 
deep learning in the field of medical imaging, the latest 
achievements have been incorporated into medical image 
synthesis and translation involving computed tomography 
(CT). These works were categorized into 2 main groups: 
synthesis of CT from other modalities (5-8) and intra-
modality synthesis (9-11). Many works have indicated 
that image quality or construction configuration have a 
significant influence on radiomic feature values (12,13). 
The reproducibility of radiomics is sensitive to scanning 
parameters such as kilovoltage (kV), tube current (mAs), 
slice thickness, spatial resolution, and image reconstruction 
algorithm. The standardization of imaging protocols is 
a solution to overcome the challenge of reproducibility 
in radiomics (13). However, this idea requires more 
manual intervention and has not yet provided widely-used 
guidelines for the clinical applications of scanning protocols. 
Recently, several works have suggested the promising 
effectiveness of image synthesis or conversion through 
deep learning methods to improve the reproducibility 
and accuracy of radiomic features. A convolutional neural 
network (CNN) was employed to convert CT images with 
different reconstruction kernels for improving radiomics 
reproducibility (14). Generative adversarial networks 
(GAN) have been applied to standardize radiomics features 
extracted from images obtained from imaging devices 
produced by different manufacturers (15) or devices of 
different hospitals (16). The influence of 4-dimensional 
cone beam CT (4D-CBCT) image quality on radiomics 
has been investigated and the temporally coherent GANs 
for video super-resolution (TecoGAN) has been applied to 
enhance 4D-CBCT for improving radiomics accuracy (17). 
In addition, the impact of CT image slice thickness on the 

radiomic features’ reproducibility has also been studied (18). 
A super-resolution approach based on a CNN model was 
proposed to synthesize the CT images with slice thickness 
of 1 mm from that of 3 and 5 mm.

Dual-energy CT (DECT), also known as spectral, 
multi-energy, or polychromatic CT, employs dual image 
acquisition at different kV levels of the same scan volume 
to enable material separation (19). Virtual monoenergetic 
images (VMIs) from DECT are incrementally used in 
routine clinical practice (20). Recently, DECT images have 
been used to produce imaging features for radiomics analysis 
in several publications (21,22). Due to the difference of 
reconstruction approaches and parameters, conventional 
CT images and VMI may have distinct pixel distributions. 
Distributions of pixels in various VMI may also differ 
from one another. The VMI produced by the DECT can 
provide different image contrasts: low energy (40–60 keV) 
for high soft tissue contrast and iodine attenuation; high 
energy (120–200 keV) to depress beam hardening and 
metal artifacts (23-25). Therefore, different levels of VMI 
obtained from 1 scan may provide different values of the 
same radiomics feature by DECT device. This facilitates 
the extraction of different dimensions of information from 
the same image, thus contributing to radiomics analysis. 
Existing DECT acquisition techniques include dual-source, 
fast voltage switching, dual-layer, and dual-spiral (25).

Several deep learning approaches have been employed 
to address VMI of DECT. ResNet was used to produce 
virtual monoenergetic CT from polyenergetic (single-
spectrum) CT (26). Conditional generative adversarial 
networks (cGAN) can synthesize pseudo low monoenergetic 
CT images from a single-tube voltage CT scanner (27). 
Material decomposition in DECT from a kilovoltage 
CT could be performed through deep convolutional 
generative adversarial networks (DCGAN) (28). CNN has 
been used to estimate DECT images from single-energy  
CT (SECT) (29).

In  th i s  s tudy,  we  compared radiomics  feature 
reproducibility between ground-truth VMI, conventional 
SECT, and our generated synthetic VMI (sVMI). sVMIs 
were generated from SECT using our proposed wavelet 
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loss-enhanced CycleGAN approach and evaluated against 
ground-truth VMI for improvement in precision of 
radiomics analysis. Our main contributions of this work are 
the following:

(I) The impact of VMI on radiomics features was 
investigated. Radiomics feature values were 
extracted from the region of interest (ROI) 

of conventional CT images and VMIs. The 
concordance correlation coefficient was used to 
evaluate the difference.

(II) The CycleGAN model was employed to improve 
radiomics reproducibility against virtual mono 
energy. The conventional CT images were fed to 
the network and then monoenergetic images were 
synthesized.

(III) We defined the wavelet loss of 2 images to 
evaluate the high-frequency detailed differences. 
The proposed wavelet loss was incorporated into 
the CycleGAN model to enhance the synthesis 
performance.

Methods

Datasets

We retrospectively collected image data from 45 patients 
obtained using detector-based dual-layer DECT scanner 
of the IQon Spectral CT System (Philips Healthcare, 
Cleveland, OH, USA). For each patient, we obtained 
pretreatment  VMIs at  var ious  energy levels  and 
conventional CT images under the standard tube-voltage 
setting. The following CT protocols were used for all image 
acquisitions: tube voltage, 120 kilovoltage peak (kVp); slice 
thickness, 3 mm; pixel spacing, 0.8 mm; protocol name, 
Chest + ABD + C/Thorax. The collected data is described 
in Table 1.

The ROIs were segmented and delineated manually by 
the physician using the open-source medical image software 
3D Slicer (version 4.10.2) (30).

VMIs are produced from the original projection images 
using the material decomposition algorithm. Therefore, 
VMIs at various keV levels and conventional CT images 
are pixel-wise corresponding for each patient and image 
registration is not required as a preprocessing operation.

The study was conducted in accordance with the 
Declaration of Helsinki (as revised in 2013). The study was 
approved by the Ethics Committee of Shandong Cancer 
Hospital and Institute, and the requirement for individual 
consent for this retrospective analysis was waived.

Deep learning system/pipeline

The basic purpose was to evaluate the effectiveness of 
deep learning model for improving feature reproducibility 
between VMIs (kVp images) and conventional CT images. 

Table 1 Characteristics of study patients

Variables Values (n=45)

Sex

Men 37 (82.2)

Women 8 (17.8)

Age (years) 67.4±9.2

ROI volume (mm3) 22.9±18.1

ROI surface area (mm2) 53.5±28.0

Primary site

Upper thoracic 16

Middle thoracic 23

Lower thoracic 11

Clinical stage

II 4

III 38

IV 3

T stage

T1 1

T2 4

T3 12

T4 28

N stage

N0 15

N1 13

N2 16

N3 1

M stage

M0 43

M1 2

Unless otherwise stated, data are the number of patients; data 
in parentheses are percentages. ROI, region of interest.
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We trained the CycleGAN-based deep learning model to 
convert conventional CT images to VMIs, and vice versa.

The workflow of the study consists of 5 steps (see  
Figure 1):

(I) Data collection: acquire detector-based dual-layer 
spectral CT images including conventional kVp 
images and VMIs.

(II) The correlation coefficients of radiomics features 
between conventional CT images and VMIs at 
various energy levels were computed to investigate 
the impact of material decomposition in detector-
based dual-energy spectral CT on radiomic features.

(III) Image  convers ion  employing  CycleGAN: 
conventional CT images were served as input, and 
the corresponding VMIs were served as output. 

(IV) Radiomics extraction: radiomic features were 
extracted from the ROI of each patient.

(V) Performance evaluation: intensity histograms, 
difference image, and sVMIs were compared to 
radiomic features extracted from VMIs.

CycleGAN-based deep learning network

The network architecture
A classical GAN model uses the generator and discriminator 
networks competing with each other. In a study (31), 
researchers developed the CycleGAN model to perform 
translation in 2 directions between 2 image domains. In 
this work, we leveraged the CycleGAN with paired loss 
proposed in previous research (32,33) as our benchmark 
model to learn the mapping between images with different 
energetic configurations. Furthermore, we defined the 
wavelet loss of 2 images and the proposed wavelet loss item 
was incorporated into the benchmark model to enhance the 
effect.

Energy-spec t rum CT images ,  inc lud ing  both 
conventional CT images and VMIs, are reconstructed from 
the same projection data acquired from a single scan (34). 
Unlike conventional CT images, the reconstruction process 
of VMIs requires material decomposition algorithms 
(35,36). There is a pixel-wise correspondence between a 
series of VMIs and conventional (kVp) images. Therefore, 

Conventional CT image Synthetic virtual 
monoenergetic image

Virtual monoenergetic image 
(Ground-truth)

Extract radiomics features 
and analyze correlations

Delineate ROIs

Data collection

WLL-CycleGAN

Figure 1 The workflow of the whole study. CT, computed tomography; WLL, wavelet loss; GAN, generative adversarial network; ROI, 
region of interest.
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paired data training is available in our work.

The cycle and synthesis loss
The total cycle and synthetic consistency loss function 
L(cyc+syn) used in the proposed model is represented as:

( ) ( ) ( )( )
( ) ( )( )
( ) ( )( )

- -

- -

- -

,

,

,

con VM con VM con VMcyc syn

MPL con VM con VM con VM

GML con VM con VM con VM

L G I G I

MPL G I G I

GML G I G I

λ

λ

+

=

+

 
[1]

where Gcon-VM is the generator converting conventional CT 
images to VMIs, GVM−con denotes the generator converting 
VMIs to conventional CT images, Icon denotes conventional 
CT images, IVM denotes VMIs, λMPL is the weighting 
coefficient of mean pixel loss (MPL), and λGML is the 
coefficient of gradient magnitude loss (GML) (32) item.

The losses in equation (1) are defined as follows:
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where Icon is conventional CT images, IVM is VMIs; gradient 
magnitude distance (GMD) (32) denotes the Euclidean 
distance of image gradients.

The wavelet loss
The wavelet domain images produced by wavelet transform 
can depict the details multi-level frequency components of 
the original images. We proposed the wavelet loss (WLL) 
to improve the performance of the model.

First of all, the sub bands are computed by the discrete 
wavelet transformation (DWT). 

( ) { } ( ), , , 2SB I A V H D dDWT I= =
 

[4]

where I denote the original image, A, V, H and D denote 
the sub-bands containing wavelet coefficients for average, 
vertical, horizontal, and diagonal details, respectively.

The wavelet loss between 2 images is defined as:
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where Ir denotes the real image, Is denotes the synthetic 
image, SBi(Ir) denotes the sub-brand of the real image, 
SBi(Is) denotes the sub-brand of the synthetic image, MSE 
denotes the mean square error operator of 2 images, and 
BatNor is the batch normalization operator using the min-
max method, defined as follows:
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where A and B are the images to be normalized, A’ and 
B’ are the normalized images. The normalization process 
including the following steps:
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where pmax denotes the maximal pixel value of the 2 input 
images, pmin denotes the minimal pixel value of the 2 input 
images, and i and j denote the coordinates of the pixels in 
the image.

The computation of wavelet loss includes 5 steps:
(I) Discrete wavelet transform is applied on the real 

images and synthetic images to generate 4 wavelet 
sub-bands images.

(II) The images of the same sub-band are grouped in  
1 group.

(III) Normalization is performed on intragroup images 
in each group. Pixel values in different sub-bands 
groups have large difference. For optimizing 
loss from each sub-band uniformly, intragroup 
normalization is performed. Meanwhile, intragroup 
normalization can reserve the difference between 
the sub-bands image deduced from real and 
synthetic images.

(IV) The mean square error is computed for normalized 
intragroup images.

(V) The sum of all 4 sub-bands groups is obtained 
as the wavelet loss item. The overall process of obtaining 
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WLL is revealed in Figure 2.
The wavelet loss is incorporated into the framework of 

synthetic consistency and cycle consistency.
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where WLLs denotes the synthetic consistency of WLL, 
WLLc denotes the cycle consistency of WLL, and WLLs+c 
denotes the sum of WLLs and WLLc.

The total cycle and synthetic consistency loss function in 
equation 1 will be extended to the new form as:
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The adversarial loss
The adversarial loss function, depending on the output 
of the discriminators, applies to both the Con-to-VMI 
generator and the VMI-to-Con generator. The adversarial 
loss for both directions is represented as follows:

 
[13]
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where MSE[•, 1] is the mean square error between the 
discriminator map of the sVMI and a unit mask.

The total loss
The total loss function of the model consists of the 
generator loss and the discriminator loss, defined as:
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LL

LH

HL

HH

VMI sVMI

Normalization

Normalization

Normalization

Normalization

MSE

MSE

MSE

MSE

DWT

Wavelet loss

Figure 2 The workflow for computing the wavelet loss. VMI, virtual monoenergetic image; sVMI, synthetic virtual monoenergetic image; 
DWT, discrete wavelet transformation; LL, low pass filter for each row and column (average details); LH, low pass filter for each row and 
high pass filter for each column (vertical details); HL, high pass filter for each row and low pass filter for each column (horizontal details); 
HH, high pass filter for each row and column (diagonal details); MSE, mean square error; Normalization, min-max normalization is used in 
the framework.
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where λ(cyc+syn) is the coefficient of the cycle and synthetic 
consistency loss. We aim to solve:
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GSECT−VMI, GVMI-SECT are updated to minimize this 
objective, whereas DVMI, DSECT attempt to maximize it.

Implementation and configuration of parameters

The model was implemented in Python 3.6 (37) and Tensorflow 
r1.3 (38) framework. The version of used CUDA was 10.0. 

Hyperparameter values in the loss function were set as 

10 for cyc
lossλ , 1 for syn

lossλ , 1 for syn
distλ , 1 for cyc

distλ , 1 for λMPL, 1 

for λGML, 1 for λWLL, and 1 for λ(cyc+syn). The initial learning 
rate was set to be 0.0002 for both the generator and the 
descriminator. The Adam optimizer with beta1=0.5 and 
beta2=0.999 was employed to optimize both the generator 
and the descriminator.

Experiment design

Radiomics feature extraction
In this study, radiomics extraction included 4 steps: (I) 

collect the images; (II) delineate and segment the ROIs; (III) 
preprocessing; (IV) feature extraction.

All radiomics features were extracted using the 
PyRadiomics package (39). For each patient, conventional CT 
images and various VMIs were reconstructed and obtained. 
The extracted features included 18 first order features,  
22 gray-level co-occurrence matrix (GLCM) features (40),  
14 gray-level difference matrix (GLDM) features, 16 gray-level 
run-length matrix (GLRLM) features (41), 16 gray-level size-
zone matrix (GLSZM) features (42), and 5 neighborhood 
gray-tone difference matrix (NGTDM) features (43). Since 
ROI contour in various monoenergetic images for each 
patient is the same, the shape features were not considered. 
The settings of imaging for radiomics extraction are listed 
as Table 2.

Figure 3 shows the concordance correlation coefficient 
between conventional CT images and different VMIs. 
Each cell represents the concordance correlation coefficient 
between radiomics features of conventional CT images and 
VMIs.

Evaluation metrics
Our proposed method was compared with the pix2pix (44) 
model and the CycleGAN model using several evaluation 
metrics. After training, we evaluated the performance of 

Table 2 Settings for radiomic features extracted

Setting item Value

Scanner type IQon Spectral CT System (Vendor: Philips Healthcare, Cleveland)

Acquisition protocol SD Chest + ABD + C/Thorax

Tube voltage, kVp 120 

Tube current, mA 359 

Pixel spacing, mm 0.86 

Image slice thickness, mm 3 

Convolution kernel B

Exposure, ms 493 

Interpolation method BSpline

Discretization: width of the bins, gray level 25

CM symmetry Symmetry

CM distance, pixel 1

SZM linkage distance, pixel 1

NGTDM distance, pixel 1

Software availability PyRadiomics version: 3.0.1

CM, co-occurrence matrix; SZM, size-zone matrix; NGTDM, neighborhood gray-tone difference matrix; kVp, kilovoltage peak.
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Figure 3 Correlation between conventional CT images (i.e., conventional 120 kVp image) and different VMIs. Each cell represents the 
concordance correlation coefficient between radiomics features of conventional CT images and VMIs. CT, computed tomography; kVp, 
kilovoltage peak; VMIs, virtual monoenergetic images.

the model through comparing the radiomics feature values 
extracted of synthetic images and source images. The first 
order, GLCM, GLDM, GLRLM, GLSZM, NGTDM, 
and wavelet from the whole body and ROI of conventional 
CT images, VMIs, and synthetic virtual monoenergetic CT 
images were compared.

For quantitative evaluation, the error of each feature was 
defined as:

Synthetic image feature Groundtruth image feature
Error

Groundtruth image feature
−

=  [16]

The concordance correlation coefficient (CCC) was 
defined as:

( )22 2

2 x y

x y x y

C
ρσ σ

σ σ µ µ
=

+ + −
 [17]

where µx and µy are the means for the two variables and σx
2 

and σy
2 are the corresponding variances. ρ is the correlation 

coefficient between the 2 variables.

Results

Image evaluation

Convent ional  CT image,  synthet ic  40 keV VMI 
s, and 40 keV monoenergetic images are displayed in 
Figure 4. The results indicate that the CycleGAN model 
can synthesize approximately 40 keV monoenergetic 
images with high contrast and less streak artifacts from 
corresponding conventional kVp images. The difference 
images of conventional CT image versus 40 keV image and 
synthetic 40 keV image versus 40 keV image are displayed 
in Figure 5. The top line shows the result of the whole body, 
whereas the bottom line shows the result of the ROI of the 
tumor. These results suggests that the deep learning model 
converts original conventional CT image pixel values to  
40 keV pixel values in both ROI and whole body accurately. 

Standard evaluation measures were produced for 
image quality comparison with within ROIs and entire 
body contour. The results, including the mean values and 
standard deviations of measures, were shown in Table 3 
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and Table 4. The synthetic 40 keV VMIs generated from 
the 120 kVp conventional CT images using the proposed 
CycleGAN-based method were similar to the 40-keV VMIs 
obtained from the DECT device. Our proposed wavelet 
loss enhancement significantly improved the quality of the 
VMIs synthesized by the CycleGAN model.

The line intensity histograms of conventional CT 
images, VMI, and sVMIs using various methods are shown 
in Figure 6. The results suggested that the CycleGAN 
model can calibrate the Hounsfield unit (HU) values 
distribution in conventional CT images nearing that 
of actual 40 keV monoenergetic images. The CT HU 
distribution of VMI synthesized by the proposed method 
closely reflects the actual VMI. The histogram line of our 
method is closer to that of the 40 keV VMI than other 
methods.

Quantitative evaluation for the comparison of histograms 
was also produced. We used the root mean square error to 

evaluate the difference between 2 histograms. The results 
(Table 5) indicated that the proposed method produced the 
best effect among all models to improve the reproducibility 
of radiomics features.

Radiomics evaluations

The results of CCC passing rate comparison are shown in 
Table 6. Alternative CCC thresholds were configured as 0.8 
and 0.85. The proposed WLL-CycleGAN produced the 
best results in 4 feature classes (GLCM, GLDM, GLRLM, 
and wavelet) at both thresholds, whereas CycleGAN 
obtained the best result in GLSZM at both thresholds 
and in the first-order feature class at a threshold of 0.85. 
The heatmap for CCC passing rate comparison is shown 
in Figure 7. The results suggest that our proposed WLL-
CycleGAN outperforms other models. 

The comparisons of feature value error were revealed in 

Conventional image 40 keV VMI

s40 keV VMI 
(pix2pix)

s40 keV VMI 
(CycleGAN)

s40 keV VMI 
(WLL-CycleGAN)

Figure 4 Image and ROI comparison: top row, column 1: conventional CT image; top row, column 2: 40 keV VMI; bottom row, column 1: 
synthetic 40 keV virtual monoenergetic image via pix2pix model; bottom row, column 2: synthetic 40 keV virtual monoenergetic image via 
CycleGAN; bottom row, column 3: synthetic 40 keV virtual monoenergetic image via proposed WLL-CycleGAN. All images are from the 
same slice of one patient. VMI, virtual monoenergetic image; s40 keV VMI, synthetic 40 keV VMI; GAN, generative adversarial network; 
WLL, wavelet loss; ROI, region of interest; CT, computed tomography. 
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Convention vs. 40 keV VMI
s40 keV VMI (pix2pix) vs.

40 keV VMI
s40 keV VMI (CycleGAN) vs.

40 keV VMI
s40 keV VMI (WLL-CycleGAN) vs.

40 keV VMI

1000

–1000

Figure 5 Image difference comparison among all methods. The images represent the distinction between synthetic virtual monoenergetic 
images and the virtual monoenergetic image. Top row: whole body comparison; bottom row: ROI comparison. Column 1: the difference 
between conventional CT images and 40 keV VMI. Column 2: the difference between synthetic 40 keV VMIs using pix2pix model and 
VMIs. Column 3: the difference between synthetic 40 keV VMIs using CycleGAN and 40 keV VMIs. Column 4: the difference between 
synthetic 40 keV VMIs using proposed WLL-CycleGAN and 40 keV VMIs. VMI, virtual monoenergetic image; s40 keV VMI, synthetic  
40 keV VMI; GAN, generative adversarial network; WLL, wavelet loss; ROI, region of interest; CT, computed tomography. 

Table 3 Image comparison (region of interest) with standard evaluation measures (from conventional CT image to 40 keV VMI)

Comparison item RMSE PSNR SSIM

Conv image vs. 40 keV 54.75±11.9 12.94±2.1 0.625±8.3

s40 keV (pix2pix) vs. 40 keV 43.61±6.1 13.58±1.1 0.716±4.5

s40 keV (CycleGAN) vs. 40 keV 38.46±4.8 30.41±1.1 0.831±2.6

s40 keV (WLL-CycleGAN) vs. 40 keV 32.03±4.7 32.03±1.4 0.906±3.1

Data format: mean ± standard deviation. CT, computed tomography; VMI, virtual monoenergetic CT images; RMSE, root mean square 
error; PSNR, peak signal-to-noise ratio; SSIM, structure similarity index measure; s40 keV, synthetic 40 keV; GAN, generative adversarial 
network; WLL, wavelet loss. 

Table 4 Image comparison (entire body contour) with standard evaluation measures (from conventional CT image to 40 keV VMI)

Comparison item RMSE PSNR SSIM

Conv image vs. 40 keV 92.67±36.1 23.78±4.9 0.994±0.1

s40 keV (pix2pix) vs. 40 keV 36.74±3.5 30.77±0.8 0.997±0.2

s40 keV (CycleGAN) vs. 40 keV 23.12±1.3 34.77±0.5 0.998±0.1

s40 keV (WLL-CycleGAN) vs. 40 keV 21.90±0.7 35.23±0.3 0.999±0.1

Data format: mean ± standard deviation. CT, computed tomography; VMI, virtual monoenergetic CT images; RMSE, root mean square 
error; PSNR, peak signal-to-noise ratio; SSIM, structure similarity index measure; s40 keV, synthetic 40 keV; GAN, generative adversarial 
network; WLL, wavelet loss. 
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tables and figures. Figure 8 represents the error comparison 
of low-level texture features and Figure 9 represents error 
comparison of wavelet-based features. The magnitude of the 
errors is significantly dependent on the feature. The results of 
various methods including pix2pix, CycleGAN, and proposed 
WLL-CycleGAN are displayed in these figures.

Evaluations for the conversion from conventional CT 
image to VMIs

Inverse  convers ion,  which involves  synthes iz ing 
conventional CT images from VMIs, was also conducted in 
this work. The same image evaluation and radiomics feature 
evaluation were employed in this scheme.

The standard image evaluations of results of different 
methods were shown in several tables and figures. Image 
comparisons with standard evaluation measures are 
displayed in Table 7. Image and ROI comparison are 
displayed in Figure 10. Figure 11 shows the image difference 
comparison among all methods. Histograms of HU values 
for each case for comparison are displayed in Figure 12 
and Table 8 shows the quantitively metrics of the intensity 
histogram.

The radiomics evaluations are also represented in tables 
and figures. Figure 13 represents the error comparison of 
low-level texture features, whereas Figure 14 represents 
the comparison of wavelet-based features. Table 9 shows 
the CCC passing rate comparison among methods. The 
proposed WLL-CycleGAN produced the best results in 3 
feature classes (first order, GLCM, and GLSZM) at both 
thresholds, whereas CycleGAN obtained the best result 
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Figure 6 Histograms of HU values for each case for comparison. 
s40 keV VMI, synthetic 40 keV VMI; VMI, virtual monoenergetic 
image; WLL, wavelet loss; HU, Hounsfield unit.

Table 5 Quantitative metrics of intensity histogram

Conventional vs. VMI s40 keV VMI pix2pix s40 keV VMI CycleGAN s40 keV VMI WLL-CycleGAN

RMSE 58.59 83.49 28.59 28.32

GAN, generative adversarial network; s40 keV VMI, synthetic 40 keV virtual monoenergetic image; WLL, wavelet loss; RMSE, root mean 
square errors.

Table 6 Number of radiomic features meeting criteria of reproducibility before and after image conversion

Feature class
Conv-40 keV 40 keV-s40 keV (pix2pix) 40 keV-s40 keV (CycleGAN) 40 keV-s40 keV (WLL-CycleGAN)

0.8 0.85 0.8 0.85 0.8 0.85 0.8 0.85

First order 1 [5.6] 1 [5.6] 3 [16.7] 1 [5.6] 6 [33.3] 4 [22] 6 [33.3] 2 [11.1]

GLCM 2 [9] 2 [9] 3 [13.6] 1 [4.5] 7 [31.8] 3 [13] 9 [40.9] 8 [36.4]

GLDM 2 [14.3] 2 [14.3] 0 [0] 0 [0] 5 [35.7] 4 [28.6] 7 [50] 7 [50]

GLRLM 8 [50] 5 [31.2] 0 [0] 0 [0] 6 [37.5] 5 [31.2] 8 [50] 7 [43.8]

GLSZM 4 [25] 3 [18.8] 5 [31.25] 3 [18.8] 7 [43.8] 4 [25] 4 [25] 3 [18.8]

NGTDM 0 [0] 0 [0] 0 [0] 0 [0] 1 [20] 1 [20] 1 [20] 1 [20]

Wavelet 268 [36.8] 225 [31] 130 [17.9] 123[16.9] 274 [37.6] 203 [27.9] 324 [44.5] 277 [38]

(I) Numbers are count of radiomic features. Numbers in square brackets are percentages; (II) CCC are used as thresholds. s40 keV, 
synthetic 40 keV; GAN, generative adversarial network; WLL, wavelet loss; GLCM, gray-level co-occurrence matrix; GLDM, gray-level 
difference matrix; GLRLM, gray-level run-length matrix; GLSZM, gray-level size-zone matrix; NGTDM, neighborhood gray-tone difference 
matrix; CCC, concordance correlation coefficient. 
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Figure 7 The heatmap shows the CCC comparison of radiomics features extracted from original images. Row 1 indicates the CCC between 
conventional CT images and virtual monoenergetic images. Row 2 indicates the CCC between synthetic virtual monoenergetic images 
using CycleGAN and virtual monoenergetic images. Row 3 indicates the CCC between synthetic VMIs using WLL-CycleGAN and virtual 
monoenergetic images. WLL, wavelet loss; CCC, concordance correlation coefficient; CT, computed tomography; GAN, generative 
adversarial network; VMIs, virtual monoenergetic images.

in GLDM at a threshold of 0.8. All methods performed 
worse than the baseline level in GLRLM and wavelet at a 
threshold of 0.8.

Discussion

Radiomic analysis has been widely applied to diagnosis 
and outcome prediction for cancers. Robustness and 
reproducibility of radiomic features is crucial in radiomics 
and has attracted the attention of researchers recently.

To address the issue of radiomics reproducibility, several 
compensation methods have been proposed to improve 
reproducibility of individual radiomics features (45,46). 
In contrast, the advantage of deep learning-based image 
synthesis is to work at an image level. This method can 
directly correct biases for original pixels. GAN-based deep 
learning methods are potential techniques for generating 
medical images from existing ones. Recently, many medical 
image translation studies have been reported: positron 
emission tomography (PET)-CT translation, correction 
of magnetic resonance motion artifacts, CBCT-to-CT 
translation, PET denoising, metal artifact reduction, and 
noise reduction from low dose CT (47-51).

In clinical practice, improved contrast attenuation with 

virtual monoenergetic (VM) imaging at lower kiloelectron 
volt levels enables better delineation and diagnostic 
accuracy in the detection of various vascular or oncologic 
abnormalities. Since providing more information of tissue 
than single polyenergetic image, monoenergetic images 
have been employed for radiomics analysis for diagnosis and 
outcome prediction recently (20-22).

The VMIs produced by DECT can provide different 
image contrasts: low energy (40–60 keV) for high soft 
tissue contrast and iodine attenuation; high energy (120–
200 keV) to depress beam-hardening and metal artifacts 
(23-25). Therefore, different levels of VMIs obtained from 
1 scan may provide different values of the same radiomics 
feature from conventional CT images. This facilitates the 
extraction of different dimensions of information from the 
same image, thus contributing to radiomics analysis. In 
other hand, data missing and inconsistency have become 
barriers in retrospective, longitudinal, or multicenter 
clinical studies. Deep learning-based image synthesis 
(translation or conversion) approaches may help to alleviate 
the above problems.

Conventional CT images, namely, kVp images, are 
reconstructed from the acquired project data by DECT 
devices using the conventional reconstruction algorithm. 
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Meanwhile, VMIs are reconstructed from the same 
project data using the reconstruction algorithm with 
material decomposition (34). Since the difference between 
conventional CT images and VMIs is generated by the 
reconstruction algorithm with material decomposition, 
different parameters will result in VMIs at varying energy 
levels.

All VMIs are reconstructed from one dual-energy 
project data by the 2-layer detector in the same way as the 
conventional CT image through material decomposition. 
Therefore, all VMIs and conventional CT images are 
pixel-wise consistent without position shift. The image 
registration is not necessary before feeding data into the 
network (23,52-54). Therefore, the CycleGAN-based 
model is suitable for these data since the paired reference 
images are ready-made.
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Figure 9 Comparison of errors in wavelet-based features. Each 
point represents errors of radiomics features obtained from 
conventional CT images or synthetic VMIs and VMIs. GAN, 
generative adversarial network; CT, computed tomography; WLL, 
wavelet loss; VMIs, virtual monoenergetic images.
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In this paper, we first investigated the impact of VMIs on 
radiomics features. The radiomics features extracted from 
both conventional CT images and VMIs were compared. 
Secondly, we defined the wavelet loss of 2 images to 
evaluate the high-frequency detailed differences. The 
proposed wavelet loss was incorporated into the CycleGAN 
model to synthesize VMIs from conventional CT images. 

Finally, we evaluated the performance of image conversion 
using the proposed method and assessed whether it could 
improve the reproducibility of radiomic features between 
conventional CT images and VMIs.

Radiomics analysis can obtain internal features of 
images, whereas DWT can provide structure information 
of multi-level frequency in original images. The results 

Table 7 Image comparison with standard evaluation measures (from 40 keV to conventional CT image) 

Comparison item RMSE PSNR SSIM

40 keV vs. Conv image 54.75±11.9 12.94±2.1 0.625±8.3

sConv (pix2pix) vs. Conv image 47.80±41.9 31.17±6.4 0.703±3.1

sConv (CycleGAN) vs. Conv image 30.44±0.5 32.37±0.1 0.850±4.5

sConv (WLL-CycleGAN) vs. Conv image 23.66±0.5 34.56±0.2 0.894±2.3

Data format: mean ± standard deviation. CT, computed tomography; RMSE, root mean square error; PSNR, peak signal-to-noise ratio; 
SSIM, structure similarity index measure; sConv, synthetic conventional CT image; GAN, generative adversarial network; WLL, wavelet 
loss.

sConv (pix2pix) sConv (CycleGAN) sConv (WLL-CycleGAN)

Conventional image 40 keV VMI

Figure 10 Image and ROI comparison: top row, column 1: conventional CT image; top row, column 2: 40 keV virtual monoenergetic 
image; bottom row, column 1: synthetic conventional CT image via pix2pix model; bottom row, column 2: synthetic conventional CT image 
via CycleGAN; bottom row, column 3: synthetic conventional CT image via proposed WLL-CycleGAN. All images are from the same slice 
of one patient. VMI, virtual monoenergetic image; sConv, synthetic conventional CT image; GAN, generative adversarial network; WLL, 
wavelet loss; ROI, region of interest; CT, computed tomography. 
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indicate that the proposed model reduces errors for 84% 
of low-level features, whereas the original CycleGAN 
reduces errors for 73% of low-level features, and the 
pix2pix model reduces errors for 20%. The proposed 
model reduces errors for 72% of wavelet features, whereas 
the original CycleGAN reduces errors for 40%, and the 
pix2pix model reduces errors for 6%. Due to the limitation 
of computational resource, a 2-dimensional (2D) network 
model and 2D-DWT were employed for image translating. 
With the improvement of the image quality of each slice, 
the robustness of 3D radiomics features are improved. In 
the future, we can try to use a 3D network model with 
3D-DWT to translate image blocks directly.

Although the CycleGAN network was originally 
designed for unpaired data and unsupervised learning 
tasks, in several studies, training images are still paired by 
registration to preserve quantitative pixel values and remove 

Convention vs. 40 keV VMI sConv (pix2pix) vs.Conv sConv (CycleGAN) vs.Conv sConv (WLL-CycleGAN) vs.Conv

1000

–1000

Figure 11 Comparison of image differences among all methods. The images represent the distinction between synthetic virtual 
monoenergetic images and the virtual monoenergetic images. Top row: whole body comparison; bottom row: ROI comparison. Column 
1: the difference between conventional CT images and 40 keV VMI. Column 2: the difference between synthetic conventional CT images 
using pix2pix model and conventional CT images. Column 3: the difference between synthetic conventional CT images using CycleGAN 
and conventional CT images. Column 4: the difference between synthetic conventional CT images using proposed WLL-CycleGAN 
and conventional CT images. VMI, virtual monoenergetic image; sConv, synthetic conventional CT image; GAN, generative adversarial 
network; WLL, wavelet loss; ROI, region of interest; CT, computed tomography.
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image; GAN, generative adversarial network; WLL, wavelet loss; 
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Table 8 Quantitative Metrics of Intensity histogram (from 40 keV to conventional)

Conventional vs. VMI sConv VMI pix2pix sConv VMI CycleGAN sConv VMI WLL-CycleGAN

RMSE 58.59 98.71 70.16 42.04

VMI, virtual monoenergetic image; sConv, synthetic conventional CT image; GAN, generative adversarial network; WLL, wavelet loss; CT, 
computed tomography; RMSE, root mean square errors.
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large geometric mismatch to allow the network to focus 
on mapping details and accelerate training (32,55). Due 
to the inverse path favoring a one-to-one correspondence 
between the input and output, the training of the GAN is 
less affected by mode collapse (55). The cycle consistency 
may help to reduce the space of possible mapping functions 
and allows for higher accuracy because the model is 
doubly constrained (31,32). The above reasons may help 
to understand the result that the CycleGAN-based model 

outperforms pix2pix-GAN model.
As shown in Figures 4,5, CycleGAN produces artifacts 

in synthetic images such as streaking lines, possibly due to 
the cyclic loss term and some form of mode collapse. Our 
proposed WLL-CycleGAN method avoids these artifacts 
by incorporating paired loss terms in addition to the cycle-
consistency loss.

There are a few of limitations of this work. First, only 
the dual-layer spectral DECT of 1 manufacturer (Philips) 
was considered. Different mechanisms for obtaining VMIs 
may affect the reproducibility of radiomics features, and the 
influence should be studied. Second, only the conversion 
between conventional CT images and VMIs were 
performed. In the future, the performance for improving 
radiomics features’ reproducibility of deep learning models 
translating CT images at any monoenergetic level to 
another can be evaluated. Third, the effectiveness of the 
deep learning model for improving radiomics features was 
validated through only value errors and CCC. The actual 
effect of synthetic images for radiomics analysis tasks, such 
as disease prognosis and outcome prediction, should be 
evaluated.

In the future, we can also investigate the performance of 
the deep learning model for improving radiomics feature 
reproducibility in other types of images, such as multi-
sequence MRI or PET. We can extend our proposed 
wavelet-based loss paired CycleGAN to a 3D model.
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Figure 14 Error comparison of wavelet-based features (from 
40 keV to conventional). sConv, synthetic conventional CT image; 
GAN, generative adversarial network; WLL, wavelet loss; CT, 
computed tomography.

Table 9 Number of radiomic features meeting criteria of reproducibility before and after image conversion (from 40 keV to conventional) 

Feature class
Conv-40 keV Conv-sConv (pix2pix) Conv-sConv (CycleGAN) Conv-sConv (WLL-CycleGAN)

0.8 0.85 0.8 0.85 0.8 0.85 0.8 0.85

First order 1 [5.6] 1 [5.6] 2 [11.1] 2 [11.1] 1 [5.6] 1 [5.5] 8 [44.4] 6 [33.3]

GLCM 2 [9] 2 [9] 3 [13.6] 2 [9] 3 [13.6] 1 [4.5] 7 [31.8] 4 [18.2]

GLDM 2 [14.3] 2 [14.3] 2 [14.3] 2 [14.3] 6 [42.9] 4 [28.6] 4 [28.6] 3 [21.4]

GLRLM 8 [50] 5 [31.2] 4 [25] 4 [25] 3 [18.8] 3 [18.8] 5 [31.2] 5 [31.3]

GLSZM 4 [25] 3 [18.8] 4 [25] 4 [25] 4 [25] 3 [18.8] 7 [43.8] 6 [37.5]

NGTDM 0 [0] 0 [0] 0[0] 0[0] 1 [20] 0 [0] 2 [40] 0 [0]

Wavelet 268 [36.8] 225 [31] 20 [8] 13 [6] 212 [30] 196 [26.9] 249 [34.2] 229 [1.5]

(I) Numbers are count of radiomic features. Numbers in square brackets are percentages; (II) CCC are used as thresholds. sConv, synthetic 
conventional CT images; GAN, generative adversarial network; WLL, wavelet loss; GLCM, gray level co-occurrence matrix; GLDM, gray-
level difference matrix; GLRLM, gray-level run-length matrix; GLSZM, gray-level size-zone matrix; NGTDM, neighborhood gray-tone 
difference matrix; CCC, concordance correlation coefficient; CT, computed tomography.
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Conclusions

In this paper, we first explored the reproducibility of 
radiomic features extracted from conventional CT images 
and VMIs. The results indicated that radiomics features 
obtained from VMIs may differ from those obtained 
from conventional CT images. Secondly, by exploiting 
the wavelet loss to evaluate the high-frequency detailed 
differences, the WLL-CycleGAN based deep learning 
method was developed to translate conventional CT 
images to VMIs for improving the reproducibility of 
radiomics features. Our proposed method was shown to 
be effective for this addressing issue. Compared to pix2pix 
and CycleGAN, our proposed WLL-CycleGAN produced 
better performance.
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