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Background and Objective: As one of the main treatment modalities, radiotherapy (RT) (also known
as radiation therapy) plays an increasingly important role in the treatment of cancer. RT could benefit
greatly from the accurate localization of the gross tumor volume and circumambient organs at risk (OARs).
Modern linear accelerators (LINACs) are typically equipped with either gantry-mounted or room-mounted
X-ray imaging systems, which provide possibilities for marker-less tracking with two-dimensional (2D) kV
X-ray images. However, due to organ overlapping and poor soft tissue contrast, it is challenging to track the
target directly and precisely with 2D kV X-ray images. With the flourishing development of deep learning
in the field of image processing, it is possible to achieve real-time marker-less tracking of targets with 2D
kV X-ray images in RT using advanced deep-learning frameworks. This article sought to review the current
development of deep learning-based target tracking with 2D kV X-ray images and discuss the existing
limitations and potential solutions. Finally, it also discusses some common challenges and potential future
developments.

Methods: Manual searches of the Web of Science, and PubMed, and Google Scholar were carried out
to retrieve English-language articles. The keywords used in the searches included “radiotherapy, radiation
therapy, motion tracking, target tracking, motion estimation, motion monitoring, X-ray images, digitally
reconstructed radiographs, deep learning, convolutional neural network, and deep neural network”. Only
articles that met the predetermined eligibility criteria were included in the review. Ultimately, 23 articles
published between March 2019 and December 2023 were included in the review.

Key Content and Findings: In this article, we narratively reviewed deep learning-based target tracking
with 2D kV X-ray images in RT. The existing limitations, common challenges, possible solutions, and
future directions of deep learning-based target tracking were also discussed. The use of deep learning-based
methods has been shown to be feasible in marker-less target tracking and real-time motion management.

However, it is still quite challenging to directly locate tumor and OARs in real-time with 2D kV X-ray
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images, and more technical and clinical efforts are needed.

Conclusions: Deep learning-based target tracking with 2D kV X-ray images is a promising method in

motion management during RT. It has the potential to track the target in real time, recognize motion, reduce

the extended margin, and better spare the normal tissue. However, it still has many issues that demand

prompt attention, and further development before it can be put into clinical practice.
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management; image-guided radiotherapy (image-guided RT)
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Introduction

Cancer is becoming the dominant cause of human death and
the most prominent barrier to a longer life worldwide (1).
According to GLOBOCAN, an online database that
provides global cancer statistics and estimates of morbidity
and mortality for 36 types of cancers in 185 countries,
approximately 19.3 million new cancer cases and 9.96 million
cancer deaths occurred in 2020 (1).

To control the progression of malignant tumors and
increase the survival rate and life quality of cancer patients,
in addition to surgical resection (2-4), radiotherapy (RT)
(also known as radiation therapy) has become a routine
treatment method (5-7). In the course of treatment, it is
crucial to ensure that the prescribed dose is deposited in
the gross tumor volume (GTV). Meanwhile, the fewer
organs at risk (OARs) irradiated, the better. Thus, it is of
vital importance that the GTV and OARs are localized in a
precise and timely manner.

To ensure that the patient treatment set up follows the
planning computed tomography (CT) scan, modern linear
accelerators (LINACs) are typically equipped with gantry-
mounted kV imaging systems (e.g., the On-Board Imager
system) that provide submillimeter resolution X-ray images
of the patient’s anatomy. This enables the continuous capture
of two-dimensional (2D) kV X-ray images for cone beam
CT reconstruction, as well as imaging during irradiation (8).
Unlike most modern LINACs, the CyberKnife® (9)
employs room-mounted dual X-ray imagers and in-floor
built detectors (10). Before irradiating the GTV, the
CyberKnife® system captures kV images to verify the real-
time tumor spatial location and then adjusts the robot to
precisely irradiate the region of the tumor. These imaging
systems open up possibilities for using commercially
available equipment to realize the marker-less tracking of
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targets with 2D kV X-ray images.

X-ray target tracking refers to the process of continuously
monitoring and accurately tracking the position and motion
of the target in an X-ray image or sequence of X-ray
images (11). X-ray target tracking typically involves the
following steps: image acquisition, pre-processing, target
localization, motion estimation, tracking, and updating.
First, the target object is exposed to X-ray radiation, and
the resulting image is captured in the subsequent steps.
The acquired X-ray image may need to be pre-processed
later to enhance the image quality and reduce noise. Next,
the target is located in the X-ray image. This can involve
techniques such as image automatic segmentation (12),
edge detection (13), and template matching (14). This
step aims to identify the target’s boundaries and estimate
the target’s position accurately. Once the target has been
localized in the X-ray image, a sequence of X-ray images
can be analyzed to estimate the target’s motion. Finally, the
target’s position is continuously updated with new X-ray
images acquired, providing real-time information on target’s
displacement. X-ray target tracking is commonly used in
various applications, including medical imaging, industrial
inspection, security systems, etc. (11,15,16).

However, it is still challenging to perform tumor tracking
with 2D kV X-ray images due to poor soft tissue contrast,
organ overlapping, and organ motion. In such cases, metal
fiducials are implanted into or near the tumor to provide
a more precise spatial location of the GTV (14,17,18).
The use of metal fiducials has been proven to be effective;
however, some potential issues have also been noted. First,
the implementation of metal fiducials is invasive and carries
risks for the patient (e.g., bleeding and inflammation).
Second, metal fiducials may lead to metal artifacts in the
planning CT scan, resulting in a decrease in image quality.
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Third, it can still be difficult to track the OARs when
mental fiducials have been implanted, as the OARs may
have different shift compared with the GTV. Therefore,
marker-less target tracking is urgently needed.

Some optical surface imaging systems have been
developed and applied in the clinic, including Align RT® (19)
and C-Rad® Catalyst (19). These monitoring systems
provide real-time monitoring of the patient’s surface
posture and enable non-invasive positioning; however,
these systems cannot directly track soft tissues and tumors.
Once the geometric relationship between the tumor and
the skin surface changes, such methods may face the issue
of inaccurate positioning. Thus, the question of how to
track the soft tissues and tumors directly during treatment
requires investigation.

Further, various motions and uncertainties may occur
during irradiation, such as respiration-induced motion,
cardiac-induced motion, and residual set-up errors.
Several methods have been proposed to control respiratory
movement (20), of which, the commonly employed
approaches are abdominal compression (21), respiratory-
gating (22), breath-holding (23), etc. However, even
with the employment of respiratory-gating, the re-setup
accuracy sometimes still exceeds 5 mm (with an average of
1.5 mm) (24). The use of respiratory-gating technology also
increases the time of the intervention and the discomfort
of the patient. Additionally, the heartbeat-induced motion
amplitude ranges from 0.2 to 2.6 mm (25). Due to frequency
and phase discrepancies, cardiac motion cannot be captured
even with respiration-correlated four-dimensional (4D)-CT.
Thus, cardiac motion cannot be addressed in the design of
treatment plans. If both tumors and OARs could be tracked
directly and in a timely manner in the daily verification
images or during treatment, then adaptive RT could be
applied to provide more precise dose delivery.

Deep learning is an essential branch of machine learning
that focuses on training neural networks with multiple
layers to extract complex features from the data and
perform tasks automatically. It is inspired by the structure
and function of the human brain. The frameworks of deep-
learning networks differ depending on the application
scenario. Convolutional neural networks (CNNs) (26)
are one of the most commonly used architectures. CNNs
consist of the following key components: an initial input
layer, hidden layers, and a final output layer. Hidden
layers usually include batch normalization, convolutional,
pooling, and activation layers. CNNSs significantly reduce
the parameters of the hidden layer by sharing kernels. The
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encoder-decoder architecture is widely used in CNNs for
medical imaging applications, such as image registration
(27-29), image segmentation (30-33), and image synthesis
(34-306).

U-Net (37) (see Figure 1A) is a typical example of an
encoder-decoder architecture. The encoder gradually
down-samples the input image, while extracting high-
level context and abstract features. The decoder, which
is symmetric to the encoder, gradually up-samples the
feature maps to make accurate predictions. Primarily, skip
connections are employed to establish direct links between
corresponding encoder and decoder layers, mitigating
information loss during propagation and aiding in precise
predictions. However, U-Net also has some limitations.
Notably, U-Net primarily focuses on local features and
may have limited capability in capturing global context or
long-range dependencies. This limitation can affect model
performance in cases in which a broader understanding
of the entire image is necessary. In addition, U-Net may
have relatively high memory requirements, especially for
deeper and wider architectures. This can pose challenges
when deploying U-Net on resource-constrained devices or
working with large-scale datasets.

The generative adversarial network (GAN) is another
popular model in deep-learning methods. The GAN
(see Figure 1B) (38) consists of two main components:
a generator and a discriminator. The generator takes
random noise as input to generate fake samples, and the
discriminator aims to distinguish between real and fake
samples synthesized by the generator. The generator and
discriminator are trained concurrently in a competitive
manner, whereby the generator strives to synthesize more
realistic samples, while the discriminator endeavors to
improve its capability to differentiate between real and fake
samples. The GAN excels at generating new data samples
that resemble the training data distribution that could be
applied to data augmentation. GANs can generate high-
quality synthetic images under unsupervised learning,
which makes them particularly useful when labeled data
is scarce or expensive. However, GANs also have some
limitations. GAN training can be challenging and unstable.
The generator and discriminator are trained iteratively
and balancing these two components may not be easy.
The network architecture and training strategies must be
carefully designed. Additionally, the GAN training process
typically requires substantial computational resources,
including powerful graphics processing units (GPUs) with

large amounts of memory. It can also be time consuming,
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Figure 1 The basic architecture of U-Net and a GAN. (A) U-Net. U-Net is a typical encoder-decoder architecture. The encoder gradually

extracts complex features, and the decoder up-samples the feature maps to output predictions. Skip connections are established between

corresponding encoder and decoder layers to mitigate information loss and to accelerate training process. (B) GAN. The GAN is composed

of a generator and a discriminator. The generator and the discriminator are trained simultaneously. The generator aims to synthesize more

realistic samples, and the discriminator strives to differentiate synthetic samples from real samples. ReLU, rectified linear unit; GAN,

generative adversarial network.

especially for complex datasets. In addition to U-Net and
the GAN, more advanced models, such as the recurrent
neural network (RNN) (39), region-based convolutional
neural network (R-CNN) (40), graph neural network
(GCN) (41), and you only look once (YOLO) (42), are
also being successfully applied to address diverse medical
imaging tasks.

In recent years, a few novel methods based on deep
learning have been proposed for real-time target tracking
with 2D kV X-ray images (43-48) to help perform online
adaptive RT. To the best of our knowledge, to date, no
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review has sought to summarize the latest developments
and the overall situation of deep learning-based real-time
target tracking with 2D kV X-ray images. Mylonas et a/. (49),
Zhao er al. (50), and Salari er al. (51) reviewed the topic of
artificial intelligence (AI)-based motion tracking. However,
their reviews focused on Al-based methods for target
tracking, including machine-learning and deep-learning
methods, and considered diverse image modalities, such as
magnetic resonance imaging, CT, ultrasound, and X-ray.
Conversely, the present article sought to briefly review the
progress made in deep learning-based target tracking with
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Table 1 The summary of the predetermined search strategy

ltems Specification

Dates of searches
Databases and other sources searched

Search terms used

June 29th, 2023; December 4th, 2023
Web of Science, PubMed, and Google Scholar
“Radiotherapy” OR “radiation therapy” AND “motion tracking” OR “target tracking” OR

“motion estimation” OR “motion monitoring” AND “X-ray images” OR “digitally reconstructed
radiograph” AND “deep learning” OR “convolutional neural network” OR “deep neural network”

Timeframe

Inclusion and exclusion criteria

March 2019 to December 2023

Inclusion: articles closely related to deep learning-based target tracking with two-dimensional

kV X-ray images (or other similar descriptive words, such as motion tracking, and motion

management)

Exclusion: unpublished articles, non-English articles, and/or articles using other modality images
(e.g., cone beam computed tomography and magnetic resonance imaging)

Selection process

The literature search and selection were conducted by X.L., and the selection process was

discussed by all authors. Differences were resolved by consensus

2D kV X-ray images. Unlike previous reviews on similar
topics, we focused on applying deep-learning methods to
perform real-time marker-less target tracking with 2D
X-ray images only. The existing limitations, the application
challenges, possible solutions, and future developments of
real-time marker-less target tracking were also considered.
We present this article in accordance with the Narrative
Review reporting checklist (available at https://qims.
amegroups.com/article/view/10.21037/qims-23-1489/rc).

Methods

Studies on deep learning-based target tracking have been
published constantly in recent years. To ensure as many
relevant studies were included in this review as possible,
a range of keywords were employed in our searches. The
keywords used to search for English-language studies
included the following terms: “radiotherapy, radiation
therapy, motion tracking, target tracking, motion
estimation, motion monitoring, X-ray images, digitally
reconstructed radiographs, deep learning, convolutional
neural network, and deep neural network”. First, manual
searches of the Web of Science, and PubMed, and Google
Scholar were carried out. Next, the abstract of each article
was reviewed, and any irrelevant articles were excluded.
Ultimately, 23 articles that were closely relevant to deep
learning-based target tracking with 2D kV X-ray images
were included in this review. 7able 1 provides details of our
predetermined search strategy. Figure 2 shows the results of
the statistical analysis of the included articles.
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Deep learning-based target tracking

At present, target tracking is indirect in clinical practice, as
it is based on the assumption that the geometric correlation
between the target and bony structures or metal fiducials
during the course of irradiation is consistent with the
planning CT scan (51). Unfortunately, it is difficult to
maintain the invariance of geometric correlation due
to respiratory movement, etc. The question of how to
instantaneously and precisely localize the tumor and OARs
on poor-quality images is a challenging problem that
continues to be of concern in RT. In this part of the article,
we focus on the development of deep learning-based target
tracking with 2D kV X-ray images for RT.

"To better elucidate and compare the relevant studies, we
categorized the retrieved studies into the following four
subgroups: U-Net, GANs, deep CNNs, and other neural
networks. Give that U-Net and GANs were the most
commonly used models in previous studies, we separated
them from the subgroup of deep CNNs to facilitate the
performance of the comparison. Each study was allocated to
one subgroup only. If a study used a deep CNN as its basic
model, it was categorized under the deep CNN subgroup if
it was unclear whether it was a U-Net or GAN. The “other
neural network” subgroup mainly included studies that used
GCNs or RNNs as their basic models.

U-Net-based target tracking

Liang et al. (52) designed a U-Net-based scheme to
automatically localize the fiducial marker and evaluate intra-
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Figure 2 Statistical analysis of selected deep learning-based target tracking studies with 2D kV X-ray images. (A) Number of studies

over recent years. (B) The percentage of different tracking targets. (C) The percentage of different deep-learning models. (D) Statistical

analysis of dataset availability for selected studies. (E) Statistical analysis of code availability for selected studies. (F) Statistical analysis of

implementation environments for selected studies. GAN, generative adversarial network; R-CNN, region-based convolutional neural

network; DCNN, deep convolutional neural network; 2D, two-dimensional.

fraction motion with orthogonal kV X-ray images acquired
by the CyberKnife® system. First, U-net was trained to
automatically detect the bounding boxes of the fiducial
marker, and the central coordinates of the bounding boxes
from two orthogonal projections were then obtained and
used to derive the three-dimensional (3D) coordinates of
the fiducial marker. Finally, the intra-fraction motion was
evaluated by rigidly registering the floating fiducial cohort
with the reference fiducial cohort.

Shao er al. (53) also tried to improve the accuracy of
automatic liver tumor tracking using U-Net. Their method
can be divided into three steps: initial 2D-3D deformable
registration, liver boundary deformation vector field (DVF)
optimization, and intra-liver tumor motion tracking. In
their method, U-net was used as a tool to learn the motion
correlation between cranial and caudal liver boundaries and
then to optimize the liver boundary DVFs. Subsequently,
after optimization, the liver boundary DVFs were fed into
a biomechanical model to obtain the intra-liver DVFs for
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liver tumor tracking using the finite element method.

Kim ez al. (54) employed U-Net to automatically detect
and segment the lumbar vertebrae on X-ray images.
Their method comprised three steps: spine localization,
segmentation of lumbar vertebra, and fine-tuning
segmentation. First, a CNN-based Pose-net was employed
to automatically localize the center of five lumbar vertebrae,
and the bounding boxes of the five lumbar vertebrae were
then extracted as the input for the next step according to
their center positions predicted by the Pose-net. Next,
a M-net designed on the basis of U-net was trained to
segment the five lumbar vertebrae. Finally, a level-set
method was used to fine-tune the segmentation.

Terunuma ez al. (43) applied U-Net to transform kV X-ray
fluoroscopic images into projected clinical target volume
(CTV) images, and then identify the position of the tumor
for real-time tracking. They attempted to focus the model’s
attention on soft tissues instead of bones through the
artificial difference of co-occurrence probability, so that the
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model could accurately identify the projected CTV on X-ray
images.

Recently, Grama er a/. (44) used Siamese networks,
comprising twin subnetworks, to track lung tumors. Each
subnetwork shared the same weights and processed images
with different time frames. In their methods, U-Net was
used as the backbone of the subnetworks to extract tumor
features separately from two input images; that is, the target
image and the search image. By comparing the tumor
features and measuring the similarities between the target
image and the search image consecutively, the model could
estimate the tumor’s position in the search image and track
its motion over time.

U-Net is a deep-learning network frequently used for
image segmentation tasks, but it also has the potential
to be applied to target tracking tasks after modification
or combination with other methods. U-Net can capture
contextual information in an image through the use
of skip connections. This architecture can help to
accurately locate and track the targets, especially when
the distinction between the target and the background is
not clear. However, the pooling operations used in the
U-Net may potentially blur the boundaries of the tracked
target, resulting in less clear contours. This issue poses
challenges for target tracking tasks that require precise
boundaries. Therefore, it is crucial to thoroughly consider
the advantages and disadvantages and make appropriate
modifications to enhance the suitability of U-Net for target
tracking tasks.

GAN-based target tracking

Lei et al. (45) translated the target tracking task into a
2D-to-3D image synthesis task. If high-quality volumetric
images can be generated from 2D images, it is possible that
the task of target tracking would become simpler, as the
overlapping or occlusion of organs or structures would be
alleviated in the volumetric images. Similar to most image
generation tasks, they employed a generative adversarial
learning strategy to enable more realistic 2D-to-3D
transformation, showing the potential for real-time tumor
tracking during treatment. The 2D-to-3D transformation
network (named TransNet) comprised three parts: the
encoding module, transformation module, and decoding
module. To improve the performance of the model, they
devised the conventional loss function of the GAN by
introducing the perceptual loss.

He et al. (55) tried to accomplish the target tracking
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task by extracting single spine images from 2D kV X-ray
images. They introduced residual network (ResNet) GAN
(ResNetGAN) to automatically decompose the spine images
from the 2D kV X-ray images. As the name suggests,
ResNetGAN included seven ResNet blocks in its generator
to learn the discrepancy between the input and the actual
distribution. As for the loss function, it consisted of four
terms calculated in two domains; that is, the image domain
and the feature domain. In the image domain, the following
three terms were considered: the mean squared error and
the Pearson correlation between the decomposed spine
images generated by the network and the reference spine
digitally reconstructed radiographs (DRRs), and the Pearson
correlation of the soft tissue. The fourth term of the loss
function was the difference between the decomposed spine
image and the ground truth in the feature domain.

Peng et al. (56) considered the tumor tracking task in
the 2D fluoroscopic projection images as a video object
segmentation task. In their scheme, a GAN was also
adopted. In the generator, two U-nets were cascaded to
predict the tumor location from coarse to fine. Specifically,
convolutional long short-term memory modules were
introduced in the skip connection of the first U-Net and
in the bottom layer of two U-nets to assist the model to
capture temporal information in the 2D fluoroscopic image
sequence. Additionally, a convolutional long short-term
memory module was introduced before the fully connected
layer in the discriminator. In terms of the loss function, they
adopted a multiscale hybrid loss function that combined
the generative adversarial loss, L1 loss, structural similarity
index loss, and intersection over union loss.

Recently, Fu er 4l. (46) tried to perform tumor tracking
by enhancing the visibility of the target on the X-ray
images. They employed a conditional GAN to learn the
mapping between the onboard X-ray images to target
specific DRRs generated from the planning CT scan. U-Net
was used as the generator to synthesize target specific DRRs
with enhanced visibility. Comparing the target specific
DRRs and real-time kV X-ray images, the intra-fractional
tumor motion could be estimated and managed.

GAN is a deep-learning network commonly used
for image synthesis tasks, but its performance in target
tracking tasks has also been explored. When applied to
target tracking tasks, it can be broadly divided into two
categories. The first category involves the direct processing
of 2D images, using a GAN to generate visually enhanced
2D images, thereby enabling target segmentation and then
target tracking on the 2D images. The second category
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involves using a GAN to generate 3D images from 2D
images, enabling image registration and object tracking in
the 3D domain. GANs are capable of synthesizing pseudo
images that closely resemble real images, but the training
can be challenging and unstable. Further, mode collapse
may occur when a generator fails to capture the diversity
of the target data distribution, limiting the overall quality
of the generated images. It is important to address the
challenges and limitations associated with GANs when
using them to solve ill-posed problems. One common
method is modifying the loss function to further improve
their effectiveness and reliability.

Deep CNN-based target tracking

In addition to using U-Net or GANSs as basic models, some
studies have also attempted to use other deep CNNs to
address target tracking. Hirai ez al. (57) developed a tracking
algorithm based on an encoder-decoder structure to
perform marker-less tumor tracking on fluoroscopic images.
Sub-images of fluoroscopic images were fed into the model
and a target probability map was generated to calculate the
target position. Finally, the linear regression model was
used to correct the tumor position in the lateral direction.
Wei et al. (58) attempted to predict the DVF relative
to the planning CT scan from a single X-ray projection.
In their method, a principal component analysis (PCA)
was first conducted on 4D-CT, after which, any DVF
could be linearly represented as the average motion vector
field plus the combination of three PCA eigenvectors and
their corresponding PCA coefficients. A CNN was used
to predict the corresponding PCA coefficients from the
input X-ray projection. Thereafter, the DVF could be
calculated and the tumor location could then be estimated.
Subsequently, they modified their model to address the
issue of tumor localization at arbitrary gantry angles (59).
The first modification was that an angle-dependent binary
region of interest mask was applied on each extracted
feature map, which addressed the issue of modeling the
intricate mapping between the X-ray projection and tumor
motion. The second modification was the use of a gantry
angle-dependent fully connection layer, which was applied
to recover the specific mapping from the extracted features
maps to the tumor motion for each projection angle.
Takahashi er 4/. (60) tried to perform real-time tumor
tracking using a variant of a fully convolutional network.
They replaced the original deconvolution layers with a
pixel shuffle layer to speed up the processing and perform
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real-time tracking. Motley ez a/. (61) first applied a YOLO
framework to automatically detect fiducial markers in pelvis
kV projection images. In their framework, the input image
was first divided into grid regions. Each grid region was
then input into the CNN to generate several bounding
boxes with a confidence score. Finally, the bounding boxes
with a confidence score above the set threshold was selected,
and the central coordinates of these bounding boxes were
considered as the marker position coordinates.

Lei e al. (62) designed a center-ness matching network to
localize tumor position with two orthogonal 2D projections.
They constructed feature extractors with CNNs and used
them to extract features representing the probability map
of the tumor’s center-of-mass. Next, the extracted feature
maps were fused through 3D rotating back to 3D space,
and the center-ness map was then generated. Thereafter,
the rotated feature maps were re-sampled to match the size
of 3D volume via a tensor re-sizing operator. Finally, the
CNN-based detection module was used to predict the 3D
location of the tumor’s center-of-mass with the center-ness
map as the network input.

Zhou et al. (47) also investigated the feasibility of deep
learning-based real-time tumor tracking. Their method
used a ResNet and a feature pyramid network to extract
features to predict the contour of the GTV on X-ray
images. Next, the 3D position of the GTV was calculated
according to the centroids of the predicted contours in two
orthogonal images.

Ahmed et al. (63) used a CNN for automatic fiducial
marker tracking. In their study, a sliding window technique
was employed to determine the search area from the input
kV images, and the sub-images cropped from the search
area were then input into the CNN to classify them as
either fiducial markers or background. Finally, the central
position of the markers was estimated by aggregating the
positions of all the sub-images classified as fiducial markers.
They also investigated the performance of a pre-trained
YOLO framework and a hybrid CNN-YOLO. In the
hybrid framework, the CNN was first used to detect the
markers. In cases in which the CNN failed to detect the
markers, the YOLO would take over the detection process.

Recently, Dai et al. (64) attempted to address the issue
of tumor tracking via 2D to 3D elastic registration. The
2D projection image was first fed into the ResNet to form
a 3D feature map for subsequent image registration. Next,
the 3D feature map was cropped into patches that served
as inputs for the registration network. The registration
network integrated Swin transformer blocks into its encoder
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path to effectively capture features with an attention
mechanism, significantly reducing the computational
complexity. Skip connections were also introduced between
the corresponding encoder and decoder layers. Finally, a
3D DVF was predicted by the registration network, and it
was then used to generate a 3D warped image for tumor
tracking.

Researchers have also introduced the region proposal
strategy in models to assist in target tracking. Zhao et 4l. (65)
used a pre-trained CNN (VGG16) combined with a region
proposal network (RPN) to perform marker-less tumor
tracking in pancreatic cancer. The VGG16 was used to
extract high-dimensional features, and the features were then
selected by the RPN to generate proposals for later region-
based target detection. Subsequently, they investigated its
performance in prostate cancer with the same deep-learning
framework (66). Roggen et al. (67) used the ResNet as the
backbone to construct the mask R-CNN model to track
the vertebrae. They optimized their network weighting
parameters by pre-training the network using the Common
Object in Context (COCO) dataset (68). Zhou et al. (48)
also constructed a mask R-CNN model to perform real-
time pancreatic tumor tracking. In their method, the
ResNet and a feature pyramid network were used as the
backbone to extract features, and the model was also pre-
trained using the COCO dataset.

The use of CNNs has been widely explored in target
tracking tasks. CNNs can automatically learn hierarchical
feature representations of a target through successive
convolutional layers, which enables CNNs to improve the
accuracy of target recognition and tracking. Additionally,
CNNs can effectively leverage contextual information
around a target by expanding the receptive field and
extracting features at multiple levels. However, deep CNNs
may require high computational resources, which limits the
use of CNNs in real-time target tracking. In complex target
tracking scenarios, it may be necessary to combine a CNN
with other strategies and methods to improve tracking
efficiency and accuracy.

Other neural network-based target tracking

The use of RNN-based models has also been explored in
target tracking tasks. Wang et al. (69) designed an RNN-
based framework to localize lung tumors. Their model
comprised three main parts: a CNN, an RNN; and a flexible
calibration mechanism. According to their design, a series
of delta images that represented the difference between a
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current projection and a previous projection were calculated
to act as the input of the CNN. Extracted features related
to tumor motion by the CNN were combined with gantry
and time-stamp information to generate motion feature
vectors that served as input for the following RNN. The
RNN predicted the 3D tumor locations by parsing the
feature vectors and calculating the motion amplitude
along the anteroposterior, lateral, and superior-inferior
directions. Finally, to improve the performance, the output
of the RNN in superior-inferior direction was frequently
corrected using the cross-correlation registration technique.

Finally, GCNs have also been used to perform target
tracking tasks. Shao et a/. (70) used a GCN to directly
predict liver boundary DVFs. The ResNet-50 combined
with a perceptual feature pooling layer was employed as
a feature extraction subnetwork to extract hidden image
features from onboard X-ray projections. Pooled image
features were subsequently fed into the GCN to predict the
liver boundary DVFs. Just like in their previous work (53),
the predicted liver boundary DVFs were finally fed into a
biomechanical model to obtain the intra-liver DVFs for
liver tumor localization.

RNN’s are suitable for undertaking target tracking tasks
with temporal structures, as they can leverage the temporal
evolution and dynamic changes of the tracking target.
However, RNNs may suffer from long-term dependency.
Further, the computation of RNNs proceeds in a step-
by-step manner, which may limit their ability to handle
real-time target tracking, especially in longer sequences.
GCNs can capture inter-target relationships by performing
information propagation and aggregation among nodes
in the graph structure, thus improving the accuracy of
target tracking. However, it is more complex to construct
and define graph structures with GCNs than CNNs. In
applying GCNs to target tracking tasks, it is necessary
to accurately model and define the relationships between
targets. Similarly, GCNs usually entail high computational
complexity, especially for large-scale images, which
limits their application in real-time target tracking tasks.
Compared to CNN-based models, fewer studies have
used RNNs or GCNs to perform target tracking tasks.
We expect that more studies using various state-of-the-art
models will be conducted in the future.

Table 2 provides a detailed summary of the
aforementioned works related to deep learning-based target
tracking with 2D kV X-ray images, and includes details
related to the dataset, network, input, tracking targets,
equipment, results, and research highlights.
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Table 2 Selected studies on deep learning-based target tracking

Liu et al. Deep learning-based target tracking with X-ray images

References Datasets Network Input ;I'::;Ia(tlzg Equipment  Results Research highlights
Liang et al. 5,927 real U-Net Real X-ray Fiducial CyberKnife  The mean centroid error Using a fully convolutional
(52) images and images marker between the predictions network to predict the
13 patients and the ground truth was fiducial marker bounding
0.25+0.47 pixels for the boxes and reconstructing the
test data. A precision rate 3D positions of the fiducial
of 98.6%, and a recall rate marker with the prediction
of 95.6% was achieved by
the fiducial marker detection
model
Shao et al. 34 patients U-Net 3D DVFs Liver Unknown The tumor center-of-mass- Developing U-Net-based
(53) tumor error was 1.7+0.4 mm for the  network to optimize the liver
model, and the mean HD and  boundary DVFs to improve
DSC were 4.5+1.3 mm and the accuracy of subsequent
0.78+0.03, respectively biomechanical modeling
and automatic liver tumor
localization
Kimetal. 797 real U-Net DRorCR  Lumbar FCR5000 The model achieved a DSC Using a CNN-based Pose-
(54) images X-ray images vertebrae  (Fujifilm) and of 91.60%+2.22%, and a net to localize the center
Discovery mean center position error of five lumbar vertebrae,
XR656 (GE  of 5.07+2.17 mm for lumbar and a U-Net-based M-net
Healthcare) vertebra identification, when to segment the five lumbar
compared the predictions vertebrae
with the labels created by
radiologists
Terunuma 10 patients U-Net DRRs CTV of Optima The model had a 3D 95 Using the artificial difference
et al. (43) or X-ray lung 580W (GE percentile tracking error of of co-occurrence probability
fluoroscopic cancer Healthcare) 1.3-3.9 mm, a Jaccard index  to assist U-Net to focus on
images of 0.85-0.94, and a HD of soft tissues, and accurately
0.6-4.9 mm synthesizing projected CTV
images from original X-ray
fluoroscopic image for tumor
tracking
Grama 6 patients U-Net 2D DRRs Lung Discovery The MAE was 0.57-0.79 mm  Using Siamese networks to
etal. (44) and athorax or 2D kV tumor CT590 RT compared to the ground truth  capture tumor features, and
phantom images Scanner (GE when tested with the phantom estimating the position of the
Healthcare) data. As for the patient data,  lung tumor by comparing,

a correlation coefficient of
0.71-0.98 was achieved when
compared the tumor location
predicted by the model with
the records of Respiratory
Motion System

and measuring the similarity
between consecutive
volumes

Table 2 (continued)
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References Datasets Network Input ;r;?gggg Equipment  Results Research highlights
Leietal. 24 patients GAN 2D Lung SOMATOM  The MAE, PSNR, and SSIM Developing a novel GAN,
(45) projections tumor Definition AS between the 3D images named TransNet, to
from 3D CT CT scanner generated by the model transform the 2D projections
(Siemens) and the ground truth were into 3D images, providing the
99.3+14.1 HU, 15.4+2.5 dB, potential for real-time tumor
and 0.839+0.090, respectively, tracking during treatment
and the mean center of the
mass distance of the tumor
was 1.26 mm
Heetal. 24 patients GAN 2D kV imagesSpine TrueBeam The decomposed spine Proposing a novel GAN,
(55) from raw structure  LINAC images generated by the introducing ResNet
CBCT data (Varian model obtained a mean PSNR  blocks in the generator
Medical of 60.08 dB, an SSIM of 0.99, and constraining the loss
Systems) and a mean error of 0.13 and  function in two domains (i.e.,
0.12 mm in the X- and the image domain and the
Y-directions, respectively, feature domain)
when matched with the
reference spine DRRs
Peng et al. X-CAT GAN 2D Lung N/A For the group-based model, Using a GAN combined with
(56) phantom fluoroscopic tumor an average |OU of 0.93 and convolutional long short-
images an average DSC of 0.96 were  term memory modules, a
achieved by the model when  cascaded U-Net structure,
evaluating the overlapping and hybrid loss to capture
between the tracked region of temporal and spatial
the tumor by the model and information to predict tumor
the ground truth. The tumor’s  location
average center-of-mass
difference was 1.6 and 0.7 mm
for the Sl and LR directions,
respectively
The patient-specific model
achieved an average IOU of
0.98, an average DSC of 0.99,
and an average center-of-
mass difference of 3 and 1 mm
for the Sl and LR directions,
respectively
Fuetal. LUNGMAN GAN 2D DRRs Lung TrueBeam  The MAE of tumor tracking Using a conditional GAN to
(46) phantom tumor LINAC in X direction was 0.11+0.05 synthesize target specific
and 2 or spine (Varian and 0.1+0.3 mm for spine DRRs from kV X-ray images
patients tumor Medical phantom and lung phantom, to enhance target visibility
Systems) respectively, and in Y direction, and then track tumors

the MAE was 0.25+0.08
and 0.1+£0.3 mm for spine
phantom and lung phantom,
respectively

Table 2 (continued)
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Table 2 (continued)

Liu et al. Deep learning-based target tracking with X-ray images

References Datasets Network Input ;I:;:(Ie(tlgg Equipment  Results Research highlights
Hirai et al. 10 patients CNN 2D sub- Lung PaxScan The average tracking Employing a CNN to
(57) images of  tumoror 3030 (Varian accuracy was 1.90+0.65 and  generate target probability
fluoroscopic liver tumor Medical 1.37+0.81 mm for lung cases map and then calculating the
images Systems) and liver cases, respectively target position according to
the target probability map
Weietal. 3 patients CNN 2D DRRs Lung VersaHD The model could locate the Combining a principal
(58) and X-CAT tumor LINAC tumor with a 3D mean error component analysis and
phantom (Elekta) of less than 0.13 mm at three  CNN to predict the DVF
different projection angles (0°, from input 2D projection to
45°, and 90°) estimate tumor location
Weietal. 15 patients CNN 2D DRRs Lung TrueBeam The mean error of tumor Applying an angle-dependent
(59) tumor LINAC localization was under 1.8 binary region of interest
(Varian and 1.0 mm in the Sland LR mask on every extracted
Medical directions, respectively feature map, and introducing
Systems) a gantry angle-dependent
fully connection layer to
address the issue of tumor
localization at arbitrary
angles
Takahashi X-CAT CNN 2D DRRs Lung N/A The mean tracking error was Using a pixel shuffle layer to
etal. (60) phantom tumor less than 0.2 mm for X-CAT replace deconvolution layers
digital phantom and less than  to reduce calculation time,
1 mm for epoxy phantom and introducing random
translation and noise to
DRRs to simulate X-ray
images
Motley 14 patients CNN 2D Fiducial XVI system  The detection model achieved Applying a YOLO framework
etal. (61) projections marker (Elekta) a mean accuracy of 97.8% to predict the position of the
from 3D when applied to compute marker for image-guiding
CBCT displacements, and an average radiotherapy and inter-
deviation of 2.0+0.9 mm was  fraction motion tracking
found for inter-fraction marker
migration
Lei et al. 10 patients CNN 2D Lung SOMATOM A mean 3D position error of Proposing a center-ness
(62) projections  tumor Definition AS 2.6+0.7 mm was obtained matching network to predict
from 3D CT CT scanner when compared the center of the 3D location of the tumor’s
(Siemens) mass of the tumor predicted center-of-mass using the
by the model with the ground 