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Background: Osteoporosis, a disease stemming from bone metabolism irregularities, affects approximately 
200 million people worldwide. Timely detection of osteoporosis is pivotal in grappling with this public 
health challenge. Deep learning (DL), emerging as a promising methodology in the field of medical imaging, 
holds considerable potential for the assessment of bone mineral density (BMD). This study aimed to propose 
an automated DL framework for BMD assessment that integrates localization, segmentation, and ternary 
classification using various dominant convolutional neural networks (CNNs).
Methods: In this retrospective study, a cohort of 2,274 patients underwent chest computed tomography 
(CT) was enrolled from January 2022 to June 2023 for the development of the integrated DL system. The 
study unfolded in 2 phases. Initially, 1,025 patients were selected based on specific criteria to develop an 
automated segmentation model, utilizing 2 VB-Net networks. Subsequently, a distinct cohort of 902 patients 
was employed for the development and testing of classification models for BMD assessment. Then, 3 distinct 
DL network architectures, specifically DenseNet, ResNet-18, and ResNet-50, were applied to formulate 
the 3-classification BMD assessment model. The performance of both phases was evaluated using an 
independent test set consisting of 347 individuals. Segmentation performance was evaluated using the Dice 
similarity coefficient; classification performance was appraised using the receiver operating characteristic 
(ROC) curve. Furthermore, metrics such as the area under the curve (AUC), accuracy, and precision were 
meticulously calculated.
Results: In the first stage, the automatic segmentation model demonstrated excellent segmentation 
performance, with mean Dice surpassing 0.93 in the independent test set. In the second stage, both the 
DenseNet and ResNet-18 demonstrated excellent diagnostic performance in detecting bone status. For 
osteoporosis, and osteopenia, the AUCs were as follows: DenseNet achieved 0.94 [95% confidence interval 
(CI): 0.91–0.97], and 0.91 (95% CI: 0.87–0.94), respectively; ResNet-18 attained 0.96 (95% CI: 0.92–0.98), 
and 0.91 (95% CI: 0.87–0.94), respectively. However, the ResNet-50 model exhibited suboptimal diagnostic 
performance for osteopenia, with an AUC value of only 0.76 (95% CI: 0.69–0.80). Alterations in tube voltage 
had a more pronounced impact on the performance of the DenseNet. In the independent test set with tube 
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Introduction

Osteoporosis, a disease of bone metabolism, affects 
approximately 200 million individuals globally (1). The 
pathology is characterized by a reduction in bone mineral 
density (BMD) and degeneration of bone trabeculae, 
leading to an increased risk of fractures (2). In China, the 
incidence of osteoporotic fractures is projected to rise 
from 3.5 million in 2010 to 4.5 million in 2025 with the 
aging population, representing a 28% surge (3). These 
fractures not only contribute to morbidity, dysfunction, 
and diminished quality of life but also impose a substantial 
burden on the healthcare system (4). Early detection of 
osteoporosis is pivotal in addressing this public health 
challenge. Currently, BMD is measured using dual-energy 
X-ray absorptiometry (DXA) and quantitative computed 
tomography (QCT) in clinical practice (5-7). However, both 
methods are underutilized due to intricate post-processing 
techniques, high equipment costs, and a shortage of skilled 
operators. Only 19–37% of eligible Medicare beneficiaries 
in the United States undergo BMD testing (8,9). 

In contrast, the utilization of CT scans, particularly 
for chest imaging, is consistently high and on the rise. 
Chest CT scans are frequently recommended for detecting 
emphysema and screening for lung cancer, with more than 
20 million chest CT examinations performed annually in the 
United States alone (10,11). The comprehensive integration 
and utilization of BMD information from extensive chest 
CT data is an appealing prospect, offering the potential 
to facilitate opportunistic osteoporosis screening without 
incurring additional exposure and high costs.

In recent years, deep learning (DL) has emerged as a 
highly effective machine learning technique for improving 
computerized image recognition through the utilization of 
multilayer neural networks (12). Consequently, numerous 

research groups have proposed methods for opportunistic 
osteoporosis screening by leveraging pre-existing images, 
achieving commendable performance (13-15). However, 
these approaches have predominantly concentrated on 
osteoporosis detection, overlooking the crucial aspects of 
vertebral body location and segmentation, thereby imposing 
a significant burden on radiologists. Furthermore, existing 
methods treat osteoporosis as a binary problem, neglecting 
the urgent need and strong incentive to transform it into a 
trinomial problem encompassing osteoporosis, osteopenia, 
and normal BMD (16). Although the classification of these 
3 categories is more challenging, the inclusion of osteopenia 
can enhance predictability in the prevention and treatment 
of osteoporosis (15). To address these issues, we propose 
a comprehensive DL framework for BMD assessment 
that integrates localization, segmentation, and ternary 
classification using various state-of-the-art convolutional 
neural networks (CNNs). We present this article in 
accordance with the TRIPOD reporting checklist (available 
at https://qims.amegroups.com/article/view/10.21037/
qims-23-1617/rc).

Methods 

Participants

The study was conducted in accordance with the 
Declaration of Helsinki (as revised in 2013). Prior to 
the commencement of this retrospective study, ethical 
approval was secured from the Ethics Committee of the 
First Affiliated Hospital of Dalian Medical University (No. 
PJ-KS-KY-2023-276), and the requirement for individual 
consent for this retrospective analysis was waived. Patients 
who underwent chest CT scans between January 2022 and 
March 2023 were retrieved from the picture archiving and 

voltage at 100 kVp images, the accuracy and precision of DenseNet decreased on average by approximately 
14.29% and 18.82%, respectively, whereas the accuracy and precision of ResNet-18 decreased by about 8.33% 
and 7.14%, respectively.
Conclusions: The state-of-the-art DL framework model offers an effective and efficient approach 
for opportunistic osteoporosis screening using chest CT, without incurring additional costs or radiation 
exposure.
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communication system. Exclusions were made for cases with 
incomplete coverage of the 10th–12th thoracic vertebrae in 
the chest CT scans, as well as for those with compression 
fractures, metal implants, severe degenerative changes, 
deformities, spinal tumors, or bone metastases. Bone status 
remains relatively stable within 3 months, so patients who 
underwent a BMD examination within 3 months before or 
after the chest CT scan were allocated to Dataset 1, and 
further divided into a training set and an internal test set at 
an 8:2 ratio for constructing and validating a DL system for 
comprehensive BMD assessment. The remaining patients 
were incorporated into Dataset 2 for training an automatic 
segmentation model. Additionally, patients who underwent 
individualized low-dose chest scans and BMD examinations 
(physical examination item) from March to June 2023 
were included, labeled as an independent test to evaluate 
the performance of the DL system in segmentation and 
classification. Figure 1 provides a detailed illustration of the 
inclusion process. 

CT image acquisition

All participants underwent a chest CT scan using a 256-
row detector CT system (Revolution CT; GE, Waukesha, 
WI, USA) covering the range from the apical lung to 2 cm 

below the diaphragm. The standard chest CT scan followed 
a standard scanning protocol with a fixed tube voltage of 
120 kVp and Smart mA. For the individualized low-dose 
chest scan, automatic tube voltage selection technology was 
utilized, whereas the remaining scanning parameters were 
maintained consistently: a tube rotation time of 0.5 s/r,  
a pitch of 0.992:1, a matrix size of 512×512, and a slice 
thickness and interval of 5 mm. Image reconstruction was 
performed with a slice thickness and interval of 1.25 mm, 
employing a standard convolution kernel (stnd).

BMD examination and measurement

All BMD examinations adhered to the standardized protocol 
recommended by Mindways software (Mindways Software, 
Austin, TX, USA). Calibration phantoms underwent 
asynchronous scanning once a week to ensure quality 
control and measurement accuracy. Detailed information 
on the BMD measurement method can be found in the 
supplementary material (Appendix 1). In accordance 
with the BMD diagnostic guidelines set forth by the 
American College of Radiology (17), BMD values below 
80 mg/cm3 indicate osteoporosis, values ranging from 
80 to 120 mg/cm3 indicate osteopenia, and BMD values 
exceeding 120 mg/cm3 indicate normal BMD.

Figure 1 Flowchart of patient recruitment. CT, computed tomography; BMD, bone mineral density.
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Development of a fully automated DL system

The development of this fully automated DL network for 
osteoporosis diagnosis comprised 2 primary components. 
Firs t ly,  VB-Net  network  underwent  t ra in ing  to 
automatically segment trabecular vertebral cancellous bone 
(TVCB) in the T10–T12 vertebrae. Subsequently, a ternary 
model for BMD assessment was trained utilizing DenseNet, 
ResNet-18, and ResNet-50 network architectures. All 
procedures in this study were executed on the uAI Research 
Portal V1.1 (Shanghai United Imaging Intelligence, Co., 
Ltd., Shanghai, China). Figure 2 illustrates the workflow of 
the entire study.

Construction of an automatic segmentation model

The TVCB in the T10–T12 vertebrae of Dataset 2 was 
manually delineated and labeled by 2 experienced 

radiologists, M. Hu and W. Wei, with 3 and 6 years of 
expertise in musculoskeletal radiology, respectively. The 
identification of target vertebrae occurred on the mid-
sagittal plane, and a layer-by-layer delineation of the region 
of interest within TVCB was conducted on the transverse 
images. Special care was taken to exclude areas of abnormal 
density, such as cortical bone, bone islands, and vertebral 
venous plexus during the delineation process. To assess 
inter-observer consistency, 100 cases were randomly 
selected and simultaneously delineated by both observers.

The VB-Net network architecture was employed to 
train the fully automated segmentation model. It adopts 
a bottleneck structure, instead of the convolutional layers 
used in the traditional V-Net, reducing the model size 
and inference time. Prior studies have showcased the 
superior segmentation accuracy of VB-Net across various 
tissues, including thoracic organs, the brain, and the spine 

Figure 2 The overall pipeline of this study. BMD, bone mineral density.
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(18-20). A multi-scale strategy was employed for model 
training. Initially, images were resampled to a resolution 
of 3×3×3 mm to train a VB-Net coarse-scale network 
for the localization and coarse segmentation of TVCB. 
Subsequently, images were further resampled to a resolution 
of 1×1×1 mm isotropic voxel to enable the VB-Net fine-
scale network to precisely recognize the TVCB boundary. 
Finally, a cascading approach was utilized to combine the 
outputs of the 2 VB-Nets, adhering to the principle of 
coarse-to-fine segmentation. The entire training process 
utilized a learning rate of 1e-4, a batch size of 8, 1,001 
epochs, Adam optimizer, and Focal loss as the loss function. 
The performance of the automated segmentation model 
was evaluated using the Dice similarity coefficient between 
manual and automatic segmentation.

Construction of a ternary BMD assessment model

In Dataset 1, a ternary BMD assessment model was 
developed utilizing 3 distinct DL network architectures: 
DenseNet, ResNet-18, and ResNet-50. DenseNet employs 
a dense connectivity mechanism, where each layer receives 
input from all preceding layers, facilitating efficient 
gradient backpropagation and enhancing training efficiency. 
ResNet-18 and ResNet-50 are part of the ResNet learning 
network, incorporating skip connections to weakly link 
layers at intervals and mitigate strong dependencies between 
layers. The primary distinction between the 2 lies in their 
network depth and parameters. ResNet-18 comprises  
2 3'3 convolutional networks connected as a ResNet block, 
whereas ResNet-50 is composed of bottleneck structures 
(1'1, 3'3, and 1'1) connected in sequence. During the 
training of the ternary DL network, all images undergo 
preprocessing steps involving 1 mm isotropic resampling 
and grayscale normalization. The learning rate is set to 
1e−4, the batch size is fixed at 8, and the number of epochs 
is set to 101. To monitor model convergence, the Focal loss 
function and Adam optimizer are employed.

Statistical analysis

Statistical analyses were conducted using SPSS 24.0 
(IBM Corp., Armonk, NY, USA) and MedCalc version 
20.022 (MedCalc Ltd., Ostend, Belgium). Differences 
in categorical data among various groups were assessed 
using the chi-square test. One-way analysis of variance or 
the Kruskal-Wallis H test was employed to analyze the 
differences in continuous variables among groups, according 

to normality. The diagnostic performance of the model was 
evaluated by constructing a receiver operating characteristic 
(ROC) curve, calculating metrics such as the area under 
the curve (AUC), F1 score, recall, precision, and accuracy. 
A significance level of P<0.05 was considered statistically 
significant.

Results

Participant characteristics

The study included a total of 2,274 patients. Dataset 2, used 
for training the automatic segmentation model, comprised 
1,025 participants [median age 64 years, interquartile range 
(IQR): 56–70 years; 576 males and 449 females]. Dataset 1, 
utilized for both training and testing the 3 DL classification 
BMD assessment models, included 902 patients [median 
age 64 years (IQR, 56–70 years); 480 males and 422 
females]. The independent test set, aimed at evaluating 
the performance of the DL system, involved 347 patients 
[median age 65 years (IQR, 57–70 years); 209 males and 138 
females]. Among them, 120 used a tube voltage of 120 kVp, 
106 used a tube voltage of 100 kVp, and 121 used a tube 
voltage of 80 kVp. No statistically significant differences 
were observed in gender distribution, bone status, and age 
among the various cohorts. Table 1 provides a summary of 
the BMD distribution as well as demographic characteristics 
for Dataset 1 and the independent test set.

Overall performance of the automatic DL system

Segmentation
The inter-observer consistency in manual segmentation 
exhibited a superior mean Dice coefficient of 0.92. The 
automated segmentation model demonstrated exceptional 
accuracy in identifying and segmenting TVCB, as evidenced 
by its outstanding performance in the independent test 
set [median Dice values: 0.95 (IQR, 0.93–0.97), with 
approximately 94% of participants achieving Dice values 
above 0.9]. The mean Dice coefficients for the segmentation 
model in 80, 100, and 120 kVp images of the independent 
test set were 0.93, 0.95, and 0.96, respectively. Figure 3 
illustrates the detailed Dice distribution. 

Classification
The DL models based on DenseNet and ResNet-18 
exhibited remarkable diagnostic performance in the 
internal test set. For osteoporosis, osteopenia, and normal 
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BMD, the AUCs were as follows: DenseNet achieved 0.94 
[95% confidence interval (CI): 0.91–0.97], 0.91 (95% CI: 
0.87–0.94), and 0.98 (95% CI: 0.96–0.99), respectively; 
ResNet-18 attained 0.96 (95% CI: 0.92–0.98), 0.91 (95% 
CI: 0.87–0.94), and 0.97 (95% CI: 0.94–0.99), respectively. 
The accuracy, F1 score, and recall rates for both models 
were 0.84 and 0.83, while the precision rates were 0.85 
and 0.83. Conversely, the DL model based on ResNet-50 
showed inferior diagnostic  performance in BMD 
assessment, particularly in predicting osteopenia, with an 
AUC value of 0.76 (95% CI: 0.69–0.80). The accuracy, F1 
score, recall rate and precision of this model were 0.67, 0.68, 
0.69, and 0.71, respectively. Detailed results are presented 
in Table 2 and Figure 4.
Gender-stratified analysis
In the internal test set, both the DL models based on 
DenseNet and ResNet-18 achieved AUC values exceeding 
0.90 and accuracy surpassing 0.80 for males and females. 

In contrast, the DL models based on ResNet-50 had 
AUC values of 0.90 for males and 0.87 for females, with 
corresponding accuracies of 0.73 and 0.61, respectively. 
Specific advantages of the diagnostic performance are 
outlined in Table 3.
Tube voltage analysis
Variations in tube voltage had a discernible impact on 
the BMD evaluation across all 3 DL models. Setting the 
tube voltage to 100 kVp resulted in an average decline 
in accuracy and precision of approximately 14.29% and 
18.82%, respectively, for the DenseNet, and 8.33% and 
7.14%, respectively, for ResNet-18. Employing 80 kVp 
images significantly degraded the performance of the 
DenseNet model, with an average decrease in accuracy and 
precision of 39.29% and 31.76%, respectively, compared 
to the use of 120 kVp images. Similarly, the ResNet-18 
model exhibited an average decrease in accuracy and 
precision of 35.71% and 26.19%, respectively, compared 

Table 1 The bone mineral density distribution as well as demographic characteristics for Dataset 1 and the independent test set

Characteristic Training set (n=635) Internal test set (n=267) Independent test set (n=347) P value

Gender, n (%) 0.063

Male 343 (54.02) 137 (51.31) 209 (60.23)

Female 292 (45.98) 130 (48.69) 138 (39.77)

Age, years, median [IQR] 64 [56–70] 63 [56–70] 65 [57–70] 0.491

Bone status, n (%) 0.335

Osteoporosis 190 (29.92) 77 (28.84) 82 (23.63)

Osteopenia 217 (34.17) 93 (34.83) 128 (36.89)

Normal BMD 228 (35.91) 97 (36.33) 137 (39.48)

The gender and bone status are expressed as number (frequency). BMD, bone mineral density; IQR, interquartile range.
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Figure 3 The Dice histograms of the independent test set with 80, 100, and 120 kVp. The mean Dice coefficients of three independent test 
sets of 80, 100, and 120 kVp were 0.93, 0.95, and 0.96, respectively, indicating excellent segmentation performance.
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to using 120 kVp images. Conversely, the diagnostic 
performance of the ResNet-50 model was also influenced 
by the image tube voltage, but its overall performance 
was poorer, with accuracy values of 0.66, 0.77, and 0.66 
for 80, 100, and 120 kVp images, respectively. Detailed 
diagnostic performance results for each model are 
presented in Table 2 and Figure 5.

Discussion

This study endeavored to automate opportunistic 
osteoporosis screening through chest CT scanning, 
leveraging recent strides in DL within medical imaging (21).  
Initially, a rapid and precise automatic segmentation of 
TVCB was achieved using a VB-Net network, yielding 
a mean Dice coefficient of 0.95. This methodology 

Table 2 The diagnostic performance of the constructed models for bone mineral density assessment

Sets Images Model AUC 95% CI Accuracy F1 score Recall Precision

Internal test set 120 kVp Model-DenseNet 0.95 0.93–0.97 0.84 0.84 0.84 0.85

Model-ResNet-18 0.95 0.91–0.97 0.83 0.83 0.83 0.83

Model-ResNet-50 0.89 0.85–0.92 0.67 0.68 0.69 0.71

Independent test set 120 kVp Model-DenseNet 0.97 0.91–0.99 0.84 0.85 0.84 0.85

Model-ResNet-18 0.97 0.91–0.99 0.84 0.85 0.86 0.84

Model-ResNet-50 0.89 0.83–0.93 0.66 0.66 0.69 0.69

100 kVp Model-DenseNet 0.90 0.83–0.95 0.72 0.64 0.64 0.69

Model-ResNet-18 0.93 0.86–0.98 0.77 0.76 0.75 0.78

Model-ResNet-50 0.90 0.82–0.94 0.77 0.78 0.79 0.77

80 kVp Model-DenseNet 0.78 0.69–0.84 0.51 0.42 0.46 0.58

Model-ResNet-18 0.84 0.76–0.89 0.54 0.47 0.5 0.62

Model-ResNet-50 0.86 0.79–0.91 0.66 0.64 0.63 0.74

AUC, area under the curve; CI, confidence interval.
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Figure 4 ROC analysis showing the diagnostic performance of these models for BMD assessment in the internal test set. The deep learning 
models using DenseNet (blue line), ResNet-18 (green line), and ResNet-50 (red line) achieved the following AUCs for osteoporosis, 
osteopenia, and normal BMD: DenseNet 0.94 (95% CI: 0.91–0.97), 0.91 (95% CI: 0.87–0.94), and 0.98 (95% CI: 0.96–0.99); ResNet-18 0.96 
(95% CI: 0.92–0.98), 0.91 (95% CI: 0.87–0.94), and 0.97 (95% CI: 0.94–0.99); ResNet-50 0.95 (95% CI: 0.92–0.97), 0.76 (95% CI: 0.69–
0.80), and 0.96 (95% CI: 0.93–0.98), respectively. DenseNet and ResNet-18 models exhibited superior performance compared to ResNet-50 
model. ROC, receiver operating characteristic; BMD, bone mineral density; AUC, area under the curve; CI, confidence interval.
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Table 3 The diagnostic performance of these models in gender-stratified analysis

Gender Model AUC 95% CI Accuracy F1 score Recall Precision

Male Model-DenseNet 0.94 0.89–0.97 0.80 0.78 0.77 0.83

Model-ResNet-18 0.95 0.90–0.98 0.85 0.86 0.85 0.87

Model-ResNet-50 0.90 0.84–0.94 0.73 0.74 0.75 0.75

Female Model-DenseNet 0.95 0.90–0.98 0.90 0.90 0.90 0.90

Model-ResNet-18 0.94 0.89–0.97 0.80 0.80 0.80 0.80

Model-ResNet-50 0.87 0.82–0.91 0.61 0.60 0.62 0.67

AUC, area under the curve; CI, confidence interval.

Model-DenseNet
Model-ResNet-18
Model-ResNet-50

Accuracy

F1 scoreF1 scoreF1 score RecallRecallRecall

PrecisionPrecisionPrecision AccuracyAccuracy

AUCAUCAUC

Independent test set 
120 kVp image

Independent test set 
100 kVp image

Independent test set 
80 kVp image

markedly mitigates the time- and labor-intensive aspects 
of segmentation, contributing to heightened efficiency and 
accuracy. Among various CNN architectures, the developed 
ResNet-18 network emerged as the most proficient in 
bone density status assessment, attaining AUCs of 0.97, 
0.91, and 0.95 for detecting normal BMD, osteopenia, and 
osteoporosis, respectively.

Localization and segmentation of the vertebral body 
constitute fundamental steps in assessing BMD in chest 
CT images. Although manual delineation by radiologists is 
feasible, it demands considerable time, meticulous attention, 
and consistency. Given the substantial volume of chest CT 
scans conducted annually, this would pose a substantial 
workload for clinical practitioners. The advent of DL 
provides a potential solution to this challenge. Chen et al. 
achieved automatic segmentation of the thoracic spine with 
a CNN, yielding a Dice coefficient exceeding 0.85 (22).  
Niu et al. successfully localized T12–L2 targets in CT scans 

using a DL system (16). However, the standard chest CT 
scanning range typically excludes the first and second lumbar 
vertebrae, despite including the lung apices to the bilateral rib 
diaphragm angles. Some studies have explored the analysis 
of the entire thoracic spine, but the uneven distribution 
of BMD in this region may diminish sensitivity in 
osteoporosis detection (23). Rühling et al. observed a gradual 
increase in the correlation between C2–T12 and lumbar 
vertebrae (L1–L2) (range, rC2 =0.76 to rT12 =0.96) (24).  
Budoff et al. proposed that the cancellous bone of the lower 
thoracic vertebrae (T10–T12) provides pertinent information 
for BMD assessment (25). The strength of our integrated 
DL framework lies in its capability to swiftly locate specific 
T10–T12 regions and precisely delineate TVCB boundaries 
through a multi-scale strategy. With a clear demarcation 
between cortex and cancellous regions, the segmentation 
model exhibited satisfactory performance and accurate 
segmentation across test sets acquired at various tube 

Figure 5 The radar plots were used to display the comprehensive diagnostic performance of the three models on the independent test set. 
The diagnostic performance of the deep learning models based on DenseNet, ResNet-18, and ResNet-50 shows varying degrees of decline 
on the independent test set from 120 to 80 kVp images. AUC, area under the curve. 
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voltages. In 80, 100, and 120 kVp images, the mean Dice 
coefficient of the segmentation model surpassed 0.93.

The DL networks employed in the model classification 
phase automatically learn complex features from the input 
image, enabling end-to-end classification without the need 
for manually designed hard-coded feature extraction (26). 
These DL networks consist of various CNNs variants, 
such as ResNet-18, ResNet-50, and DenseNet. ResNet 
tackles the challenges of gradient explosion and vanishing 
problems in CNNs by utilizing multiple stacked ResNet 
units (27). ResNet-50, characterized by a bottleneck 
structure for each ResNet block and a deeper architecture 
than ResNet-18, has demonstrated superior classification 
accuracy in studies focusing on brain abnormalities and 
oral squamous cell carcinoma with multiple classes 
(28-30). Although ResNet-50, with its 50-layer depth, 
exhibits enhanced expressive power for capturing 
complex features, beneficial for discriminating tumors 
with high heterogeneity, it did not perform as well as 
ResNet-18 in our study for osteoporosis detection, 
achieving only 0.67 accuracy. 

We attribute this discrepancy to the fact that ResNet-50’s 
increased depth and complexity may be counterproductive 
for a simpler classification task such as osteoporosis 
detection. This observation aligns with findings by Lu et al.  
in a binary task of identifying primary and metastatic 
brain tumors (31). ResNet-18, producing more modest 
features and being lighter than ResNet-50, is less prone 
to overfitting. Previous studies have demonstrated the 
effectiveness of ResNet-18 in detecting osteoporosis in 
lumbar spine X-ray radiographs, achieving an AUC of 
0.8 (32). In our study, the ResNet-18 network achieved 
an AUC exceeding 0.9 for osteoporosis detection in both 
the internal and independent test sets, benefiting from a 
larger sample size and more voxels in the chest CT images. 
DenseNet, a CNN with dense connections between any 
2 layers, enhances the transfer and utilization of features 
while mitigating gradient vanishing during training (31). 
In our study, DenseNet exhibited notable performance in 
detecting osteoporosis, with an AUC of 0.95, comparable to 
the efficacy reported by Niu et al. in detecting osteoporosis 
on T12–L2 (16).

Osteopenia diagnosis involves 2 threshold values: 80 and 
120 mg/cm3. Compared to normal BMD and osteoporosis, 
which have a single threshold value, osteopenia cases are 
more susceptible to approaching the threshold and prone to 
classification errors. Thus, diagnosing osteopenia represents a 
challenging and crucial aspect of the classification model (32).  

Both the DenseNet and ResNet-18 networks achieved 
an AUC exceeding 0.90, indicating their effectiveness in 
detecting osteopenia. This study separately assessed the 
male and female populations, considering variations in 
hormone levels and physical activity. The findings suggest 
that the performance of the DenseNet and ResNet-18 
models remains unaffected by gender changes. Pan  
et al. (33) also utilized a DenseNet-based model to assess 
BMD from CT images, reporting AUCs of 0.875 and 
0.950 for diagnosing osteoporosis in male and female test 
sets, respectively, which were similar to our study, further 
validating the utility of our model.

This study is the first to assess the impact of tube voltage 
on DL classification model performance. Utilizing the 
DenseNet and ResNet-18 networks, which exhibit superior 
overall performance, on an independent test set containing 
images with varying tube voltages, we observed that 
reducing the tube voltage from 120 to 100 kVp resulted in 
an average decrease in accuracy and precision of 16.56% for 
the DenseNet model and 7.74% for the ResNet-18 model. 
Similarly, decreasing the tube voltage from 120 to 80 kVp 
led to an average decrease in accuracy and precision of 
approximately 35.53% for the DenseNet model and 30.95% 
for the ResNet-18 model. In essence, as the tube voltage 
decreased, the DL model’s ability to assess bone density 
status diminished, with the DenseNet network being more 
affected compared to ResNet-18. Consequently, taking all 
factors into account, we chose ResNet-18 as the backbone 
network for the classification phase.

This study has certain limitations that warrant attention. 
Firstly, validation of these findings is necessary with 
a multicenter dataset and a larger patient population. 
Secondly, given the rapid development of CNN models, 
our analysis covered only a limited number of models 
for diagnostic accuracy. It is imperative to validate the 
performance of other CNN models. Lastly, this study 
concentrated on spine bone density measurements, yet the 
relationship between hip bone density measurements and 
overall bone density remains unexplored.

Conclusions 

We have introduced a cutting-edge DL framework model 
that offers an effective and efficient strategy for CT-based 
opportunistic osteoporosis screening without incurring 
additional costs or radiation exposure. The fully automated 
nature and high accuracy of the method represent a 
significant step forward in developing more efficient systems 
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to support clinical decision-making.
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Supplementary

Appendix 1: The bone mineral density (BMD) measurement

All BMD examinations were performed with a standard protocol according to the manufacturer’s instructions. The main 
scan parameters were 120 kVp, smart mA (noise index: 10, 200–400 mA), scanning field of view of 50 cm, and reconstruction 
thickness and interval of 1.25 mm. All images were transferred to a dedicated quantitative computed tomography (QCT) 
post-processing workstation (Model 4 QCT pro v6.1; Mindways Software, Inc., Austin, USA) for BMD assessment. In 
addition, a QCT calibration phantom (Mindways Software Inc., USA) was scanned once a week for accurate asynchronous 
BMD analysis.

For BMD assessment, the BMDs of L1–2 vertebrae were measured, and the average values were calculated. An oval 
volume of interest (VOI) was manually placed with a depth of 9 mm, which avoids cortical bone, vertebral venous plexus, and 
bone islands, covering approximately 2/3 of cancellous bone. According to the clinical diagnostic criteria of BMD assessment, 
osteoporosis was defined as an average BMD of L1–L2 <80 mg/cm3, osteopenia as a range of 80–120 mg/cm3, and normal 
BMD as >120 mg/cm3.


