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Background: In clinic, the subjectivity of diagnosing insomnia disorder (ID) often leads to misdiagnosis or 
missed diagnosis, as ID may have the same symptoms as those of other health problems. 
Methods: A novel deep network, the multimodal transformer graph convolution attention isomorphism 
network (MTGCAIN) is proposed in this study. In this network, graph convolution attention (GCA) is first 
employed to extract the graph features of brain connectivity and achieve good spatial interpretability. Second, 
the MTGCAIN comprehensively utilizes multiple brain network atlases and a multimodal transformer (MT) 
to facilitate coded information exchange between the atlases. In this way, MTGCAIN can be used to more 
effectively identify biomarkers and arrive at accurate diagnoses.
Results: The experimental results demonstrated that more accurate and objective diagnosis of ID can be 
achieved using the MTGCAIN. According to fivefold cross-validation, the accuracy reached 81.29% and the 
area under the receiver operating characteristic curve (AUC) reached 0.8760. A total of nine brain regions 
were detected as abnormal, namely right supplementary motor area (SMA.R), right temporal pole: superior 
temporal gyrus (TPOsup.R), left temporal pole: superior temporal gyrus (TPOsup.L), right superior frontal 
gyrus, dorsolateral (SFGdor.R), right middle temporal gyrus (MTG.R), left middle temporal gyrus (MTG.L), 
right inferior temporal gyrus (ITG.R), right median cingulate and paracingulate gyri (DCG.R), left median 
cingulate and paracingulate gyri (DCG.L).
Conclusions: The brain regions in the default mode network (DMN) of patients with ID show significant 
impairment (occupies four-ninths). In addition, the functional connectivity (FC) between the right middle 
occipital gyrus and inferior temporal gyrus (ITG) has an obvious correlation with comorbid anxiety (P=0.008) 
and depression (P=0.005) among patients with ID. 
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Introduction 

Insomnia disorder (ID) is becoming a serious health 
problem due to the acceleration in the pace of life pace and 
the increase of work pressure (1). The main symptom of ID 
is an emerging persistent disorder in sleep quality or sleep 
time that directly affects the individual’s quality of life and 
social function. According to the suggested criteria of the 
Diagnostic and Statistical Manual of Mental Disorders, Fifth 
Edition (DSM-5), if the sleep problem occurs at least three 
times a week for at least 3 months, it can be considered ID 
(2,3). However, it remains a challenging task to arrive at 
an accurate and objective diagnosis of ID in clinic (4), and 
this is compounded by the presence of comorbid anxiety 
and depression (5,6). Therefore, there is a critical need 
to develop an accurate diagnostic method of ID, identify 
reliable biomarkers, and more fully clarify its pathogenesis. 
Intuitively, functional connectivity (FC) is employed to 
disclose cerebral diseases, including brain impairments 
in patients with ID and other psychiatric disorders (7-9). 
That is, the brain network can be conceived of as a graph 
composed of nodes and edges, where nodes represent 
brain regions and edges represent the correlation between 
different regions (10). Through the exploration of the 
interactions between different brain regions and the analysis 
of FC, a better understanding about brain mechanism can 
be achieved (11).

Traditionally, the detection of ID is mainly based 
on electroencephalography (EEG) (12). For example, 
Almuhammadi et al. (13) used support vector machine 
(SVM) to detect obstructive sleep apnea (OSA) in 
the publicly available EEG dataset of 70 recordings, 
achieving a classification accuracy of 97.14%. Shahin  
et al. (14) employed SVM to detect ID on a self-produced 
EEG dataset of 115 participants and achieved an  
F1-score, sensitivity, and specificity of 0.88, 84%, and 91%, 
respectively. Qu et al. (15) used a convolutional neural 
network (CNN) and a recurrent neural network (RNN) to 
detect ID on the self-produced EEG dataset and achieved 
an insomnia detection rate of 90.9%. Kusmakar et al. (16)  
collected nocturnal actigraphy signals and employed 
random forest and SVM to detect chronic insomnia, 
reporting a classification accuracy of 80% in classifying 
insomnia individuals from their healthy bed partners. 
However, the collection time of EEG is relatively long and 
susceptible to interference from the scalp and the skull, and 
it is relatively difficult to locate the internal sources of brain 
activities.

Resting-state functional magnetic resonance imaging 
(rs-fMRI) which is a noninvasive technique, provides an 
alternative means to investigating brain activities (17). 
Through the extraction and analysis of the blood oxygen 
level-dependent (BOLD) signal, fMRI can accurately 
localize activated brain regions and visualize brain activity 
patterns and FC across entire brain region (18-20). For 
instance, Lee et al. (21) achieved 80% accuracy in detecting 
ID using SVM by analyzing a self-produced fMRI task data 
of 40 participants. The bilateral inferior frontal gyrus, right 
calcarine cortex, right lingual gyrus, left inferior occipital 
gyrus, and left inferior temporal gyrus (ITG) were identified 
as brain regions associated with insomnia. Shahid et al. (22) 
employed CNN segmentation of the pharynx of patients 
with OSA by analyzing the self-produced MRI data of 50 
participants, and the Jaccard coefficient for the pharynx 
being segmented was approximately 86%. Ma et al. (23)  
employed the multivariate relevance vector regression 
method to detect short-term/acute and chronic subtypes by 
analyzing self-produced MRI data of 73 participants. They 
found that FC predicted sleep quality in both short-term/
acute and chronic insomnia and that FC patterns changed 
during the transition from short-term/acute to chronic 
insomnia. These studies demonstrate the effectiveness 
of resting-state fMRI (rs-fMRI) in detecting ID, thus 
its application in revealing the altered brain activities in 
patients with ID may yield valuable insights. Expanded 
dynamic FC (dFC) serves as a better detector for describing 
the relationship between BOLD signals and FC (24,25). 
dFC-based analysis can be used to conveniently to identify 
potential biomarkers and gain deeper insights (26) but may 
be constrained by certain limitations. First, the complexity 
of causative factors problematizes using machine learning to 
detect ID, especially when sample sizes are small. Second, 
rational network architectures and feature interactions 
need to be considered to better cope with the complex 
associations between brain regions. Third, it is challenging 
to track and identify the brain activity in patients with 
ID, especially when there are comorbidities with other 
psychiatric disorders. 

To address these problems, we introduce the graph 
neural network (GNN) to extract the interactions among 
different brain regions. The GNN is a powerful tool for 
handling graph-structured data and is suitable for capturing 
information propagation between graph nodes (27-29). 
Furthermore, we have leveraged global parallel computing 
of multimodal transformer (MT) (30) to improve the 
information exchange between DFC and FC features. The 
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MT does well in finding global dependencies within the 
multimodal input sequence or multimodal data. If we embed 
the multimodal attention (MA) blocks into the GNN, this 
can extract the features of the brain’s functional network and 
reveal the associations between brain activity and different 
diseases. Our study has three main contributions. First, a 
novel deep network named multimodal transformer graph 
convolution attention isomorphism network (MTGCAIN) 
is proposed to detect and diagnose ID. To the best of our 
knowledge, the advantages of GNN and transformers have 
not yet been applied to the detection of ID. Second, we 
propose the identifications of more reliably distinguishing 
ID symptoms by fusing the related brain regions and 
FC with clinical indicators. This approach captures the 
intricate relationship between brain activity and clinical 
characteristics, providing a comprehensive understanding 
of the brain activity underlying ID. Third, we employ 
the proposed method to evaluate the psychological 
influences and neural states of ID and attempt to identify 
the psychological and neural comorbidities associated with 
ID. The experimental results indicated that our approach 
may provide a new means to unravelling the associations 
between brain network activity and ID and open up novel 
perspectives and methods for investigating and treating ID. 

The remainder of the paper is organized as follows. 
The details of the methods are presented in the methods 
section, including materials and preprocessing, dynamic 
graph construction, MTGCAIN construction and 
experimental setup. The performance evaluation and 
extraction of abnormal brain regions and FC are presented 
in the results section. The analysis and discussion of the 
mining of abnormal regions and the relevant FC of ID 
are presented in the discussion section. In the last section, 
concluding remarks are drawn to summarize the findings 
and implications regarding the relationship between brain 
functions and ID. 

Methods 

Data acquisition and preprocessing 

In this study, we acquired rs-fMRI images using the Signa 
HDX 3.0T MRI device (GE HealthCare) under the 
permission of the Affiliated Hospital of Qingdao University 
and recruited 62 volunteers, comprising 32 healthy controls 
(HCs) and 30 patients with ID. The diagnostic criteria 
for ID included meeting the definition of DSM-5 and 
a Pittsburgh Sleep Quality Index (PSQI) greater than  
7 (2,31). Patients with ID were excluded due to having (I) 
a history of serious neurological or medical illness; (II) an 
occupation requiring shift work; (III) any contraindication 
to MRI; (IV) a history of medication-based treatment for 
ID; (V) a history of alcohol abuse, drug abuse, or smoking; 
(VI) abnormal signals on conventional MRI imaging; and 
(VII) a condition of pregnancy, lactation, or menstruation. 
The demographics of the participants from both groups 
are shown in Table 1. During the scanning procedure, the 
volunteers were required to keep their eyes closed and 
stay awake and relaxed, without engaging in any specific 
thinking. We used a single-excitation gradient echo-planar 
echo imaging sequence. The scan parameters were as 
follows: time to repetition (TR) =2,000 ms, time to echo 
(TE) =30 ms, flip angle (FA) =90°, 35 slices, thickness  
=4.0 mm, gap =0.6 mm, matrix size = 64×64, field of view 
(FOV) =22 cm × 22 cm, and acquisition times =240 time 
points (about 8 minutes). 

The study was conducted in accordance with the 
Declaration of Helsinki (as revised in 2013). This study 
was approved by the Institutional Review Board at the 
Affiliated Hospital of Qingdao University (No. QYFY 
WZLL 28505) and informed consent was taken from all 
the patients. The MRI volumetric data were preprocessed 
using the RESTplus v. 1.2 MATLAB toolbox (32). The 
preprocessing included the following set of operations: 
(I) converting image format from Digital Imaging and 
Communications in Medicine (DICOM) to Neuroimaging 
Informatics Technology Initiative (NIfTI); (II) removing 
the first 10 points of the original data; (III) correcting 
the time layer, head motion, and original points, with 
participants with a head movement greater than 2.5 mm 
or 2.5° being excluded; (IV) spatial normalization, with the 
voxel size being rescaled to 3×3×3 mm3; (V) regression of 
several interfering covariates such as cerebrospinal fluid 
signal, white matter signal, and six head motion parameters 
(spatial smoothing was not adopted here to avoid increasing 
local spatial correlation) (33); (VI) eliminating linear 

Table 1 Demographic data of the two study groups 

Variable HCs Patients with ID P value

Age (years) 32.28±8.90 35.93±12.68 0.19

Sex (male/female) 12/20 13/17 0.62

Education (years) 12.28±2.71 13.05±3.22 0.32

PSQI 3.44±1.72 11.50±3.13 <0.001

Data are expressed as the mean ± standard deviation. HCs, 
healthy controls; ID, insomnia disorder; PSQI, pittsburgh sleep 
quality index. 
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Figure 1 Workflow for construction of the dynamic graph. The BOLD signal is extracted using multiple plots. For each graph, the node 
features H of the dynamic graph are constructed from the BOLD signals by timestamp encoding and position encoding. The adjacency 
matrix C is obtained from the Pearson correlation between BOLD signals. The top G% of the strongest FC in C is selected to obtain the 
binarized adjacency matrix A. BOLD, blood oxygen level-dependent; rs-fMRI, resting-state functional magnetic resonance imaging.

trends of the data and conducting band-pass filtering  
(0.01–0.08 Hz); and (VII) extracting the BOLD signals 
using three brain atlases, including Automated Anatomical 
Labeling (AAL; 116 parcels), Craddock-200 (CC200;  
200 parcels), and Schaefer (400 parcels), to sequentially 
refine the delineation of brain regions and guide the 
experiments. To augment the dataset, the BOLD signals of 
each participant were nonoverlappingly and equally divided 
into five parts (34). Thus, one participant was divided into 
five samples. It is worth noting that these five samples could 
only appear in either the training or test set at the same 
time and could not be split between the two sets. As a result, 
a total of 310 input data samples were obtained, comprising 
160 HCs and 150 patients with ID.

Construction of the dynamic graph 

The construction process of the dynamic graph is illustrated 
in Figure 1. Assume a BOLD signal has M points. A set of 

FC matrices are formed by traversing the BOLD signals 
with a sliding window. The total number of windows is 
determined as follows:

1MK
s
τ−

= +

	
[1]

where τ is window length and s is sliding stride. 
The Pearson correlation between different BOLD signal 

pairs in each window can be calculated as follows:

[2]( ) ( ) ( )( ) ( ) ( )( )
( )( ) ( )( )

cov ,
,

var var
i j

ij i j

i j

B k B k
C k corr B k B k

B k B k
= =

⋅

where C denotes the FC matrix; ij denotes the index number 
of BOLD signals, 1≤i, j≤N; N represents the total number 
of brain regions; and B(k) denotes the BOLD signal within 
the k-th sliding window, 1≤k≤K. Subsequently, the values 
of the top G FC in matrix ( ) N Nk ×∈C  are set to 1, while 
the values of the remaining FC are set to 0. Then, a binary 
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adjacency matrix ( ) { }0,1 N Nk ×∈A is obtained to represent the 
dynamic graph. 

For the i-th node in the k-th dynamic graph, the feature 
is encoded with timestamps using long short-term memory 
(LSTM) for all the time points in the first k windows. The 
encoded feature is then concatenated adopting one-hot 
positional encoding and fed into a linear layer to produce 
the feature vector ( ) d

i k ∈h  of i-th node (d represents the 
feature dimension). The operations of forming ( )i kh  can be 
expressed as follows: 

( ) ( ) ( )( )LSTM , onehoti i ik concat B B W=h
	

[3]

where W  denotes the weights of the linear layer. Thus, 
the node feature matrix ( )kH  of the k-th dynamic graph is 
obtained by concatenating the feature vector of each node; 
that is, ( ) ( ) ( ) ( )1 ,..., ,..., d N

i Nk k k k × ∈=   H h h h . 

Construction of the MTGCAIN

The pipeline of MTGCAIN is illustrated in Figure 2. The 
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Figure 2 The pipeline of the MTGCAIN with L parallel channels. Each channel consists of a graph convolution block, readout block, 
encoder block, and output block. The output of the graph convolution block is used as the input of the next channel. MTGCAIN, 
multimodal transformer graph convolution attention isomorphism network; MLP, multilayer perceptron; MA, multimodal attention; GCA, 
graph convolution attention; GC, graph convolution.
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MTGCAIN has L parallel channels in total. Each channel 
contains four blocks: the graph convolution block, the readout 
block, the encoder block, and the output block. In each channel, 
the dynamic graph is first input into the graph convolution 
block. The features are then extracted by the readout block. In 
the encoder block, the information interaction among multiple 
atlases is carried out using the dynamic graph. Finally, the 
output classification results expressed by predicted probabilities 
are generated through a linear layer. 

The graph convolution block
In GNN, the convolution operation can be expressed 
iteratively as follows: 

[4]( ) ( ) ( ) ( )( ) ( ) ( ) ( ) ( ) ( )1 1
,

1,

MLP 1
i

N
l l l l l

i i i j j
j j

k k A k k− −

= ∈

 
= + ⋅ + ⋅  

 
∑

A

h h h

where MLP represents a multilayer perceptron containing two 
linear layers, and ϵ denotes the learnable weight parameters. 
In the l-th channel, the node feature ( ) ( )l d

i k ∈h  is obtained by 
aggregating the node features and its neighboring nodes in the 
(l-1)-th channel. Hence, the node feature matrix of the k-th 
dynamic graph in the l-th channel is represented as follows: 

( ) ( ) ( ) ( ) ( ) ( ) ( ) ( )1 ,..., ,...,l l l l d N
i Nk k k k × ∈=   H h h h . Consequently, Eq. 

4 can be rewritten in the form of the matrix multiplication as 
follows: 

[5]( ) ( ) ( ) ( )( ) ( ) ( ) ( ) ( )( )( ) ( ) ( )( )1
,1 ,2BN ReLU BNl l l l l

h hk ReLU k k k k− = ⋅ + 
 

H I A H W W

where I  denotes an identity matrix, W  represents the 
network weights of the MLP, and BN denotes a batch 
normalization operation. 

The readout block 
The readout block includes graph convolution attention 
(GCA) and sigmoid nonlinear mapping. The schematic 
diagram of GCA is illustrated in the middle right portion 
of Figure 2. The role of GCA is to capture the global 
characteristics of node features and to emphasize local key 
features and edges. The global information and attention 
scores are obtained from the neighborhood node features 
and graph edges (27). Specifically, the graph convolution 
is applied to ( ) ( )l kH  to compress the d × N feature matrix 
into a 1 × N feature vector. The vector is used as the 
attention score vector ( ) ( )l Nk ∈v  in the dynamic graph. The 
procedure can be expressed as follows:

( ) ( ) ( ) ( ) ( ) ( )( ) ( ) ( ) ( )
1 1
2 2  l lk ReLU k k k k k

−  
= +     

lv w D I A D H [6]

where D represents the degree matrix of +I A, and 1 d×∈w  

represents the weights of the linear layer. Subsequently, the 
nonlinear mapping of ( ) ( )l kv  can be implemented to obtain 
the readout vector ( ) ( )l dk ∈x  as follows:

( ) ( ) ( ) ( ) ( ) ( )( )l l lk k sigmoid k= ×x H v
	

[7]

The feature matrix with size of D×K is then obtained by 
concatenating the dynamic feature vector as follows:

( ) ( ) ( ) ( ) ( ) ( ) ( )1 , , , ,l l l lk K = … … X x x x
	

[8]

The encoder block
The traditional transformer only facilitates information 
propagation within a single modality using the self-
attention mechanism. However, in this study, we aimed to 
realize the information interaction between different atlases. 
Therefore, we introduced MA in the encoder block to share 
and aggregate information across different modalities.

Assuming there are m modalities, the i-th modality can 
be expressed as follows: 

( ) ( ) ( )
,

l l l
i i i query=Q X W

	
[9]

( ) ( ) ( )
,

l l l
i i i key=K X W

	
[10]

( ) ( ) ( )
,

l l l
i i i value=V X W

	
[11]

Subsequently, ( )
,
l

i attentionX  and ( )
,
l

i hiddenX  for this modality can be 
derived as follows: 

[12]( ) ( )
( ) ( )

( )
,

1

1 softmax
l l Tm

l l li j
i attention i j

j

LayerNorm
m d=

  
 = +      

∑
Q K

X X V

 

[13]( ) ( ) ( ) ( ) ( )( )( ), , , ,1 ,2ReLUl l l l l
i hidden i attention i attention i iLayerNorm= +X X X W W

 
Therefore, the feature matrix ( ) ’l d K

hidden
×∈X   (where d’=d×m) 

for all modalities can be obtained from the following 
formula:

( ) ( ) { }{ }( ), | 1, ,l l
hidden i hiddenconcat i m= ∈ …X X

	
[14]

The workflow of MA is illustrated in the top right 
corner of Figure 2. The attention mechanism of MA 
enables information exchange between the graph features 
of different atlases. Therefore, this approach can deal 
with the features of multiple atlases more directly, thus 
realizing multimodal feature fusion in the encoder block. 
More accurate and comprehensive multimodal analysis and 
modeling can be achieved by introducing the MA.

The output block 
As mentioned previously, each channel in the graph 
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convolution yields a feature matrix ( )l
hiddenX  for each subject. 

The feature vector of each subject is obtained by averaging 
all the dynamic graph vectors under their respective feature 
matrix. Then, the feature vectors pass through linear layer 
to obtain n-class probabilities as follows: 

( ) ( )( ) ( )

1

ˆ 1 K
ll l

yhidden
k

k
K =

 
=  
 
∑y X W

	
[15]

where 
( ) ( ) ( ){ } [ ]1 1ˆ , , 0,ˆ̂l l l

ny y= … ∈y . To alleviate the oversmoothing 
and optimally leverage the multiscale features, the predicted 
probabilities at each channel are added up to obtain the 
final prediction probability as follows:

( )

1

ˆ̂ 1 L
l

lL =

= ∑y y
	

[16]

Loss function design 
In this study, we designed a hybrid loss function for training 
the MTGCAIN. The hybrid loss function is expressed as 
follows: 

1 2total ce ortho unitλ λ= + +    	 [17]

where λ1 and λ2 are weight coefficients.

ce  is the cross-entropy loss function which can be 
expressed as follows: 

( ), ,
1 1

1 log ˆ
QP

ce p q p q
p q

y y
P = =

= − ∑∑

	

[18]

where P is the number of instance, Q is the number of 
classes, y is the ground truth, and ŷ  is the prediction output 
of the model. 

ortho  is the orthogonality constraint loss function which 
can be expressed as follows:

( ) ( ) ( ) ( ) 2
1 1

1L K
l lT

ortho
l k

k k
m= =

= ⋅ −∑∑ H H I
	

[19]

where 
( ) ( ) ( ) ( )( )l lTm max k k= H H . The term 1/m  ensures 

orthogonality between feature  vectors  in different  
channels (35). The purpose of the orthogonality constraint 
is to make the feature matrix H  a full rank matrix so that the 
features represented by the eigenvector h are richer. This 
can alleviate collinearity issues among features to enhance 
feature independence. 

unit  is the unit constraint loss function which can be 
expressed as follows:

( )( )2

2
1

1
L

l
unit

l=

= −∑ w
	

[20]

where w is a feature projection vector. The purpose of the 

unit constraint is to spread the attention scores as much 
as possible and improve the model’s focus on different 
features. 

Implementation details

The proposed MTGCAIN was validated on the self-
produced dataset. The preprocessing was carried out using 
the RESTplus v. 1.2 MATLAB toolbox. The training and 
testing were implemented using PyTorch in the Python 
environment, supported by an Nvidia RTX A6000 with 48 
GB of GPU memory. 

In this study, we set the window length and sliding stride 
based on a priori knowledge (24); that is, W=20 and s=1. 
The model was optimally parameterized in the ID dataset 
as follows: channel number L=4, feature dimension d=128, 
G=30%, and weight coefficients in the hybrid loss function 
λ1=λ2=0.00001. The training parameters were epoch=30 
and initial learning rate lr=0.0005, and a changeable 
learning rate was adopted. In the first 20% training epochs, 
the learning rate increased gradually to 0.001 and then 
decreased gradually to 5.0×10−7. Fivefold cross-validation 
was employed to ensure the stability of the results. Four 
popular quantitative metrics, including accuracy, precision, 
recall, and area under the receiver operating characteristic 
(ROC) curve (AUC) were used to evaluate the performance 
of MTGCAIN. Comparative experiments with SVM (21),  
brain graph neural network (BrainGNN) (28), graph 
convolutional network (GCN) (36), spatio-temporal 
attention graph isomorphism network (STAGIN) (35), and 
multi-granular, multi-atlas spatio-temporal attention graph 
isomorphism network (IMAGIN) (37) were conducted to 
demonstrate the superiority of MTGCAIN over existing 
techniques. The experimental results are shown in the 
model comparison section. The code is available at https://
github.com/YuloongWang/MTGCAIN.

Results 

Model comparison

As listed in Table 2, five main methods of brain network 
analysis were used for comparison. It is clear that 
MTGCAIN achieved the best performance in all four 
metrics. The mean accuracy, precision, recall, and AUC 
were 81.29%, 79.44%, 84.00%, and 0.8760, respectively. 
Among these, the most significant improvement was 
observed in for recall, which reached 84%. Furthermore, 

https://github.com/YuloongWang/MTGCAIN
https://github.com/YuloongWang/MTGCAIN
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Table 2 The four quantitative metrics outcomes of the comparative experiments

Model Accuracy (%) Precision (%) Recall (%) AUC

SVM (21) 60.52±7.13 64.35±6.15 71.26±8.84 0.6108±0.1026

BrainGNN (28) 69.35±3.68 70.18±3.23 70.63±5.80 0.6931±0.0364

GCN (36) 71.94±1.94 70.82±4.97 73.33±8.17 0.7586±0.0343

STAGIN (35) 72.90±4.72 70.01±6.77 78.67±4.00 0.8029±0.0313

IMAGIN (37) 76.45±4.63 74.58±5.80 78.67±8.59 0.8514±0.0305

MTGCAIN 81.29±3.32 79.44±5.98 84.00±5.73 0.8760±0.0175

Data are expressed as the mean ± standard deviation. AUC, area under the receiver operating characteristic curve; SVM, support 
vector machine; BrainGNN, brain graph neural network; GCN, graph convolutional network; STAGIN, spatio-temporal attention graph 
isomorphism network; IMAGIN, multi-granular, multi-atlas spatio-temporal attention graph isomorphism network; MTGCAIN, multimodal 
transformer graph convolution attention isomorphism network.

all the models had relatively low precision, and that of the 
MTGCAIN was only 79.44%. 

Loss function design is a critical factor to keeping the 
stability and convergence in the training of a deep network. 
In this study, we used a hybrid loss function, defined in 
Eq. [17]. The results of the ablation study are shown 
here to demonstrate the necessity of using the hybrid loss 
function. As listed in Table 3, the use of ce  and ortho  resulted 
in significant improvements in recall and AUC, which 
improved by 5.33% and 0.0271, respectively. Similarly, 
the use of ce  and unit  improved precision by 3.76%. The 
use of the three losses resulted in 3.87% improvement in 
accuracy for the MTGCAIN. These results demonstrate 
that incorporating the orthogonality and unit constraints 
can enhance the overall performance. 

Abnormal regions explored with the MTGCAIN

A major motivation for developing the MTGCAIN is to 
explore the most relevant biomarkers associated with ID. 
As the AAL atlas is widely used to provide accurate brain 

parcellation and rich structural information, we employed it 
here as an anatomical reference to maintain the generalizability 
and reproducibility of the results. The brain regions were 
divided into six subnetworks: the sensorimotor network (SMN), 
visual network (VN), execution and attention network (EAN), 
default mode network (DMN), subcortical nuclei (SBN) 
region, and cerebellum network (CEN) (38). 

After  the GCA scores  were obtained from the 
MTGCAIN, and two operations were conducted to realize 
the accurate localization of brain lesions in patients with 
ID. First, the nodes within the top 10 ranks of attention 
scores in each channel of the MTGCAIN were selected. 
Second, the nodes that appeared consistently across all 
channels were further filtered. From this, we identified nine 
nodes corresponding to nine brain regions for diagnosing 
ID. The nine explored brain regions, corresponding 
subnetworks, and specific functions are presented in Table 4.  
The distribution of the explored abnormality regions 
related to ID is visualized in Figure 3. The right temporal 
pole: superior temporal gyrus (TPOsup.R), left TPOsup 
(TPOsup.L), left middle temporal gyrus (MTG.L), right 

Table 3 Effectiveness analysis of the hybrid loss functions on MTGCAIN 

Loss Accuracy (%) Precision (%) Recall (%) AUC

ce 77.42±2.04 76.91±6.49 78.00±5.42 0.8429±0.0139

ce , ortho 79.03±3.68 76.86±6.79 83.33±7.30 0.8700±0.015

ce , unit 78.71±3.13 80.67±10.48 77.33±11.04 0.8457±0.0185

ce , ortho , unit 81.29±3.32 79.44±5.98 84.00±5.73 0.8760±0.0175

Data are expressed as the mean ± standard deviation. MTGCAIN, multimodal transformer graph convolution attention isomorphism 
network; AUC, area under the receiver operating characteristic curve.
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Figure 3 Illustration of abnormal brain regions related to insomnia disorder under different views explored by the MTGCAIN. (A) Brain 
region labeling in the AAL atlas. (B) Brain region labeling in the CC200 atlas. (C) Brain region labeling in Schaefer atlas. L, left cerebral 
hemisphere; R, right cerebral hemisphere; MTGCAIN, multimodal transformer graph convolution attention isomorphism network; AAL, 
automated anatomical labeling; CC200, Craddock-200. 

Table 4 The nine most-relevant brain regions to insomnia disorder mined by MTGCAIN 

Brain region Subnetwork Specific function References

SMA.R SMN Receiving somatosensory information (4,39,40)

TPOsup.R SMN Receiving somatosensory information (41,42)

TPOsup.L EAN Controlling goal-directed and intellectual activities (41,42)

SFGdor.R DMN Meditation and introspection (4,5,18,39,40,42)

MTG.L DMN Meditation and introspection (3,40,42-44)

MTG.R DMN Meditation and introspection (3,40,42-44)

ITG.R DMN Meditation and introspection (5,31,40)

DCG.L SBN Regulation and control the exchange of information (42)

DCG.R SBN Regulation and control the exchange of information (42)

MTGCAIN, multimodal transformer graph convolution attention isomorphism network; SMA, supplementary motor area; SMN, 
sensorimotor network; TPOsup, temporal pole: superior temporal gyrus; EAN, execution and attention network; SFGdor, superior frontal 
gyrus, dorsolateral; DMN, default mode network; MTG, middle temporal gyrus; ITG, inferior temporal gyrus; DCG, median cingulate and 
paracingulate gyri; R, right hemisphere; L, left hemisphere; SBN, subcortical nuclei.
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MTG (MTG.R), and right inferior temporal gyrus (ITG.
R) were found in all three atlases. The detailed data of 
the results, such as attention scores, can be retrieved from 
Github (https://github.com/YuloongWang/MTGCAIN) for 
researchers to analyze. In the abnormal FC as characterized 
by the MTGCAIN section, a comprehensive investigation 
of the neuroimaging biomarkers of ID through the 
integration of clinical indicators is detailed.

Abnormal FC as characterized by the MTGCAIN 

Given the explored ID-relevant brain regions, we surmised 
that examining the FC between these brain regions 
could determine the relationship between FC and ID. 
Furthermore, we thought it would be fruitful to distinguish 
between healthy individuals and patients with ID. We 
selected the effective FC according to the following criteria: 
(I) FC involving at least one of the explored abnormal 
brain regions, (II) the strength of FC ranked at the top G 
values, (III) FC exhibiting significant differences (P<0.05) 
between the HC group and the ID patient group, and 
(IV) FC showing significant correlations (P<0.05) with 
PSQI. As listed in Table 5, four FCs were selected: right 
supplementary motor area (SMA.R)-left parahippocampal 
gyrus (PHG.L), TPOsup.R-right middle frontal gyrus 
(MFG.R), TPOsup.R-ITG.L, and ITG.R-right middle 
occipital gyrus (MOG.R). The bold brain regions in 
the table represent the selected abnormal brain regions. 
The distribution of the FC is depicted in Figure 4A. The 
comparisons of the FC strengths between the HC and the 
ID patient group are shown in Figure 4B. In addition, a 
significant analysis of the selected FCs with the self-rating 

anxiety scale (SAS) and self-rating depression scale (SDS) 
was conducted, the results of which are listed in the last 
two columns of Table 5. Meanwhile, Figure 5 shows the 
relationship between the FC strengths and the scale scores.

Discussion

Performance evaluation of MTGCAIN

The model comparison in Table 2 demonstrates the 
superiority of MTGCAIN and that the SVM falls 
considerably short in extracting features, as its four 
metrics were the worst compared to the other methods. 
This indicates that the conventional machine learning 
approach is limited in capturing complicated multiple-
channel dynamic features. The BrainGNN and GCN 
performed similarly in terms of the four metrics, but both 
were limited in capturing the global graph structural 
information. The MTGCAIN’s readout block can capture 
graph features from a global perspective to improve feature 
representation. The STAGIN is suitable for dealing with 
a single-modal input pattern and showed a relatively 
superior performance. However, it is still insufficient 
for learning multimodal patterns. The MTGCAIN uses 
multimodal inputs to solve this problem. The IMAGIN 
incorporates multimodal inputs and demonstrated obvious 
performance enhancement. The significant improvement 
in its AUC indicated that the usage of multimodal inputs 
enables more accurate discrimination between the positive 
and negative samples. However, its capability in terms of 
information interaction and deep feature processing still 
needs to be explored. The attention mechanism of MT 
in MTGCAIN can fully integrate the deep features of 
multiple modalities for better feature representation. Owing 
to its powerful information interaction capability between 
different modalities, the MTGCAIN exhibited favorable 
performance in predicting ID classification. Furthermore, 
the false-positive and false-negative rates of MTGCAIN 
were 21.25% and 16%, respectively. Its higher false-positive 
rate indicates that HCs are more likely to be misdiagnosed 
as ID. Comparatively, the false-negative rate was lower, 
indicating that IDs were less likely to be misdiagnosed as 
HCs. In clinical application, attention may need to be paid 
to the risk of HCs being misdiagnosed as ID by the model.

To examine how λ1 and λ2 affect performance, we 
conducted an ablation study. Due to the high cost of 
training deep learning models, we used an empirical 
approach in which we first adjusted λ2 to fix λ1 to 0 and then 

Table 5 Significance test of FC in the insomnia disorder group in 
terms of PSQI, SAS, and SDS

FC Group (P) PSQI (P) SAS (P) SDS (P)

SMA.R-PHG.L 0.009 0.02 0.31 0.11

TPOsup.R-MFG.R 0.01 0.01 0.57 0.15

TPOsup.R-ITG.L 0.01 0.01 0.09 0.05

ITG.R-MOG.R 0.01 0.04 0.008 0.005

FC, functional connectivity; PSQI, pittsburgh sleep quality index; 
SAS, self-rating anxiety scale; SDS, self-rating depression 
scale; SMA, supplementary motor area; PHG, parahippocampal 
gyrus; TPOsup, temporal pole: superior temporal gyrus; MFG, 
middle frontal gyrus; ITG, inferior temporal gyrus; MOG, Middle 
occipital gyrus; R, right hemisphere; L, left hemisphere. 

https://github.com/YuloongWang/MTGCAIN
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Figure 4 Spatial distribution and boxplots of the four functional connectivities. (A) The spatial distribution of the selected functional 
connectivities related to insomnia disorder. (B) Comparisons of functional connectivity strengths between the healthy control group and the 
insomnia disorder group. L, left cerebral hemisphere; R, right cerebral hemisphere; PHG, parahippocampal gyrus; ITG, inferior temporal 
gyrus; MFG, middle frontal gyrus; TPOsup, temporal pole: superior temporal gyrus; MOG, middle occipital gyrus; SMA, supplementary 
motor area; ID, insomnia disorder.

adjusted λ1 to obtain a determined λ2. The results are shown 
in Figure 6. It can be seen that the highest accuracy was 
achieved with λ1 = λ2 =0.00001. The orthogonality and unit 
constraints can act as a priori knowledge during the training 
process, which can help guide the model to converge to 
a more reasonable solution. In addition, these constraints 
can reduce the parameter space of the model and help 
to find the convergence point faster. Furthermore, these 
constraints can also reduce the magnitude of weight updates 
and improve the stability of the model.

Regional distribution of the abnormal regions in patients 
with ID

As can be seen from Table 4 and Figure 3, the brain regions 

involved in sensory processing, cognition, meditation, 
and information exchange are closely related to ID (19). 
Interestingly, there were four ID relevant brain regions 
belonging to the subnetwork of the DMN. This indicated 
that the DMN subnetwork plays a critical role in regulating 
healthy sleep. Indeed, Mak et al. found that the balanced 
regulation of the aforementioned regions is crucial for 
maintaining healthy sleep, emotion, and cognition, whereas 
disrupted balance may be associated closely with ID (45). 
According to Wang et al., excessive arousal of the DMN and 
heightened sensitivity to visual and auditory stimuli may 
be the primary mechanisms underlying insomnia, leading 
simultaneously to cognitive impairment and emotional 
dysregulation (46). More detailed evidence concerning the 
nine brain regions most relevant to ID can be found in the 
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Figure 5 Scatter plots for the relationship between clinical scales and the FC of the insomnia disorder group. (A) Positive correlation (P=0.02) 
of FC strength between SMA.R and PHG.L with PSQI. (B) Positive correlation (P=0.01) of the FC strength between MFG.R and TPOsup.
R with PSQI. (C) Positive correlation (P=0.01) of the FC strength between TPOsup.R and ITG.L with PSQI. (D) Positive correlation 
(P=0.04) of FC strength between MOG.R and ITG.R with PSQI. (E) Positive correlation (P=0.008) of FC strength between MOG.R and 
ITG.R with SAS. (F) Positive correlation (P=0.005) of the FC strength between MOG.R and ITG.R with SDS. PSQI, pittsburgh sleep 
quality index; SMA, supplementary motor area; PHG, parahippocampal gyrus; MFG, middle frontal gyrus; TPOsup, temporal pole: superior 
temporal gyrus; ITG, inferior temporal gyrus; MOG, middle occipital gyrus; L, left cerebral hemisphere; R, right cerebral hemisphere; SAS, 
self-rating anxiety scale; SDS, self-rating depression scale; FC, functional connectivity;

Figure 6 Effect of loss weights λ1 and λ2 on accuracy.

references in the last column of Table 4.
Considering the diversity of abnormal brain regions, a 

comprehensive treatment approach may be more effective 
in clinic. Combining medication, cognitive behavioral 
therapy, and lifestyle interventions to address different brain 
networks in a holistic manner increases the likelihood of 
treatment success.

Role analysis of ID relevant FC

It was observed that the four FCs had strong synergistic 
effects (Figure 4), particularly in the ID patient group. 
The mean value of FC strength in the ID patient group 
was higher than that of the HC group. This indicated 
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that the exchange of information between brain regions is 
more powerful and frequent in individuals with ID. These 
differences may reflect specific alterations in information 
processing and the organization of brain functions in 
individuals with ID and further supports the crucial role 
of FC in the development of ID. The potential presence 
of abnormally high FC strength may be regarded as one of 
the biomarkers of ID, which can assist us in enhancing our 
comprehension of the neurological foundation of ID.

In the subnetwork of the SMN and EAN, there was a 
significant correlation (P=0.02) between the strength of 
the SMA.R-PHG.L FC and the PSQI, as demonstrated in 
Table 5 and Figure 5A. This observation is consistent with 
previous studies (4,39,40) reporting a correlation between 
SMA damage and ID. Furthermore, in patients with ID, 
we observed a significant correlation of PSQI with the 
strength of the TPOsup.R-MFG.R FC (P=0.01) and the 
TPOsup.R-ITG.L FC (P=0.01). Similarly, Huang et al. 
has reported increased FC strength between TPOsup and 
the left pallidum in patients with ID (41). These findings 
suggest that there exists a potential association between the 
abnormalities in the SMA and TPOsup regions and ID, 
with the literature (31) also suggesting an additional link 
between the ITG.R and comorbid depression in patients 
with ID. In this study, we found a significant correlation 
between the ITG.R-MOG.R FC strength and the PSQI 
(P=0.05), and the strength of the ITG.R-MOG.R FC was 
correlated with both anxiety (P=0.008) and depression 
(P=0.005) in patients with ID. The supports the speculation 
of Baglioni et al. regarding the existence of a partial overlap 
in the pathological mechanisms of ID, depression, and 
anxiety (47). Therefore, our most significant finding is that 
the FC between the ITG.R and MOG.R has the potential 
to serve as a neuroimaging biomarker for comorbid 
insomnia with depression and anxiety.

Insomnia is a multifaceted pathological condition that 
can potentially involve disruptions in FC among various 
brain regions. The maintenance of healthy sleep patterns 
relies upon a complex interplay of neuroregulatory 
mechanisms. It is evident from the Figure 5 that the scale 
scores were positively correlated with FC strength. In other 
words, the greater the strength of abnormal FC observed in 
insomnia patients, the poorer their sleep quality becomes. 
This indirectly explains why the FC strength in the ID 
patient group was higher compared to that of HC group. 
Specifically, in the results presented in Figure 5, we can 
observe a positive correlation of the strength of the SMA.
R-PHG.L FC, TPOsup.R-MFG.R FC, TPOsup.R-ITG.

L FC, and ITG.R-MOG.R FC with the PSQI scores. 
Furthermore, it can be seen that the FC strength of ITG.
R with MOG.R was significantly correlated with anxiety 
and depression for patients with ID. These findings indicate 
that an increase in FC between brain regions associated 
with insomnia may result in deteriorated sleep quality. Such 
enhanced FC may lead to excessive activation between brain 
regions, thus affecting the normal sleep processes. Further 
research concerning the mechanisms and regulation of 
these aberrant functional connections would aid in a deeper 
understanding of the neurobiological underpinnings of 
insomnia and provide valuable guidance for developing 
individualized treatment strategies. For example, in 
response to a detected abnormal FC strength, a targeted 
modulation approach could be considered to adjust brain 
activity through neurofeedback, neuromodulation, or other 
interventions. Changes in functional brain connectivity 
can be tracked during the course of treatment to assess 
the effectiveness of the treatment and to make timely 
adjustments to the treatment program.

Conclusions

In this study, we proposed a novel deep network, 
MTGCAIN, to characterize the brain activity based on 
the analysis of rs-fMRI images. By integrating the GCA 
and MT, the proposed model demonstrated a superior 
capability in identifying the ID relevant abnormal brain 
regions and FC. The GCA is helpful for capturing brain 
node and edge features, while the MT can realize efficient 
exchange and aggregate of modality-specific information. 
Through comparative and ablation experiments, we showed 
that the MTGCAIN has promising prospects in detecting 
biomarkers and identifying the pathogenic factors in 
patients with ID. 

Based on the analysis of experimental results, it was 
found that the DMN exhibits a stronger connection with 
ID compared to other subnetworks. In addition, the FC 
strength of MOG.R and ITG.R was associated with anxiety 
and depression in patients with ID. This means that in 
the diagnosis of ID in clinic, these brain regions and FCs 
should be given more attention. The MTGCAIN holds 
promise in being for multimodal fusion with other imaging 
modalities (e.g., diffusion tensor imaging). Combining 
multiple imaging data can help to mitigate the effect of 
noise from a single modality on the model, giving the 
model a more accurate and stable diagnostic capability. 
Therefore, in our next study, we will increase dataset size 
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and add image modalities to improve the generalizability 
of the MTGCAIN and further our understanding of ID 
mechanisms. 
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