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Background: Anterior cruciate ligament (ACL) injuries are closely associated with knee osteoarthritis (OA). 
However, diagnosing ACL injuries based on knee magnetic resonance imaging (MRI) has been subjective 
and time-consuming for clinical doctors. Therefore, we aimed to devise a deep learning (DL) model 
leveraging MRI to enable a comprehensive and automated approach for the detection of ACL injuries. 
Methods: A retrospective study was performed extracting data from the Osteoarthritis Initiative (OAI). 
A total of 1,589 knees (comprising 1,443 intact, 90 with partial tears, and 56 with full tears) were enrolled 
to construct the classification model. This one-stop detection pipeline was developed using a tailored 
YOLOv5m architecture and a ResNet-18 convolutional neural network (CNN) to facilitate tasks based on 
sagittal 2-dimensional (2D) intermediate-weighted fast spin-echo sequence at 3.0T. To ensure the reliability 
and robustness of the classification system, it was subjected to external validation across 3 distinct datasets. 
The accuracy, sensitivity, specificity, and the mean average precision (mAP) were utilized as the evaluation 
metric for the model performance by employing a 5-fold cross-validation approach. The radiologist’s 
interpretations were employed as the reference for conducting the evaluation.
Results: The localization model demonstrated an accuracy of 0.89 and a sensitivity of 0.93, achieving a 
mAP score of 0.96. The classification model demonstrated strong performance in detecting intact, partial 
tears, and full tears at the optimal threshold on the internal dataset, with sensitivities of 0.941, 0.833, 
and 0.929, specificities of 0.925, 0.947, and 0.991, and accuracies of 0.940, 0.941, and 0.989, respectively. 
In comparison, on a subset consisting of 171 randomly selected knees from the OAI, the radiologists 
demonstrated a sensitivity ranging between 0.660 and 1.000, specificity ranging between 0.691 and 1.000, 
and accuracy ranging between 0.689 and 1.000. On a subset consisting of 170 randomly selected knees from 
the Chinese dataset, the radiologists exhibited a sensitivity ranging between 0.711 and 0.948, specificity 
ranging between 0.768 and 0.977, and accuracy ranging between 0.683 and 0.917. After retraining, the 
model achieved sensitivities ranging between 0.630 and 0.961, specificities ranging between 0.860 and 0.961, 
and accuracies ranging between 0.832 and 0.951, respectively, on the external validation dataset. 

3416

https://crossmark.crossref.org/dialog/?doi=10.21037/qims-23-1539


Wang et al. The ACL classification using deep learning approach3406

© Quantitative Imaging in Medicine and Surgery. All rights reserved.   Quant Imaging Med Surg 2024;14(5):3405-3416 | https://dx.doi.org/10.21037/qims-23-1539

Introduction

The anterior cruciate ligament (ACL) is the most 
commonly affected structure within the knee, accounting 
for over 50% of knee injuries (1). An ACL injury increases 
the susceptibility to post-traumatic knee osteoarthritis (OA) 
and leads to a higher demand for total knee replacement 
(TKR) (2-5). Thus, an accurate diagnosis of ACL injuries 
is essential to initiate optimal treatments that reduce the 
occurrence of knee instability and improve the quality of 
life. Although arthroscopy is a standard diagnosis for ACL 
injury, it is an invasive procedure (6). Magnetic resonance 
imaging (MRI) has ascended as the preferred modality 
for evaluating ACL injuries, owing to to its exceptional 
soft tissue resolution, absence of ionizing radiation, and 
the capability for multiparametric imaging. Usually, 
radiologists rely on visual assessment of the morphology 
and signal attributes of MRI scans to diagnose ACL 
injuries. According to recent literature (7,8), MRI has a 
sensitivity of 87%, specificity of 90%, and the area under 
the curve (AUC) of 0.93 for the diagnosis of ACL injury. 
Nevertheless, this outstanding diagnostic accuracy heavily 
hinges on the extensive expertise of radiologists. In clinical 
practice, the growing volume of medical images has resulted 
in increased workloads for diagnostic radiologists, longer 
patient waiting times, and reduced efficiency. Meanwhile, a 
lack of diagnostic experience and considerable anatomical 
variation increases the likelihood of missed diagnoses or 
misdiagnoses, particularly in situations of high workload or 
when radiologists are fatigued.

Deep learning (DL) employs automatic feature learning and 
modeling of complex relationships between medical images 
and their interpretations (9-11). In recent years, DL has shown 
promising applications in medical imaging (12), particularly 
in the field of musculoskeletal (MSK) radiology (13), such 
as tissue segmentation, disease detection, classification, and 
prediction (14). Researchers are leveraging DL techniques, 
employing the convolutional neural network (CNN) models 

and their architectures across diverse applications. These 
CNN architectures typically encompass an input layer, an 
output layer, and multiple convolutional layers, pooling 
layers, rectified linear unit (ReLU) layers, dense layers, 
as well as dropout layers (15,16). The CNN shows huge 
success in the analysis of multi-classification diagnosis of 
ACL injuries. However, the sensitivity of the CNN model, 
particularly in distinguishing between partial and full tears, 
was reported to be low in studies conducted by Astuto (17), 
Namiri (18), and others. Furthermore, these studies did not 
validate the applicability of the model in external datasets 
and were often conducted using the images of a single 
manufacturer.

YOLOv5m (19) is a widely recognized object detection 
network known for its effectiveness on comprehensive 
datasets. ResNet-18 (20) is a currently superior model in 
image classification and recognition, and we hypothesize 
that more accurate ACL injury classification can be achieved 
based on YOLOv5m and ResNet-18. Therefore, in this 
study, a new fully automated DL model, modified from 
YOLOv5m and ResNet-18 network based on MRI, was 
devised for “one-stop” multi-tasking of ACL localization 
and accurate injury classification to enable clinical 
application. The model was validated in a multicenter 
dataset. We present this article in accordance with the 
TRIPOD reporting checklist (available at https://qims.
amegroups.com/article/view/10.21037/qims-23-1539/rc).

Methods

Study design

The study was conducted in accordance with the 
Declaration of Helsinki (as revised in 2013). All of the 
training image data was obtained from the Osteoarthritis 
Initiative (OAI; https://oai.ucsf.edu/), a comprehensive 
multicenter, longitudinal, 10-year prospective cohort study. 
This study encompassed 4,796 patients aged between 45 

Conclusions: The proposed model utilizing knee MRI showcases robust performance in the domains of 
ACL localization and classification.
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and 79 years, all of whom exhibited symptoms of OA, 
or were at least at risk of its development in 1 knee. The 
participant inclusion and exclusion criteria, imaging 
procedures, and assessments for the OAI study have been 
meticulously documented in prior works (21).

Internal dataset

The internal dataset included 1,756 knees from the 
incident cohort, the TKR cohort, and the progression 
cohort within the OAI dataset. The exclusion criteria 
were significant metallic artefacts, poor image quality, low 
image signal-to-noise ratio, lacking image and incomplete 
MRI Osteoarthritis Knee Score (MOAKS) records. As a 
result, 167 knees were further excluded. Finally, a total 
of 1,443 intact ligaments, 90 partial tears, and 56 full 
tears met the inclusion criteria. The ground truth data 
used for labeling were derived from MOAKS image 
evaluations conducted by 2 radiologists at the Boston 
Imaging Core Lab (22,23). Labels for ACL status can be 
accessed for download from the following website: https://
oai.epi-ucsf.org/datarelease/. A full tear was defined as a 
condition in which there was a total disruption of ACL 

fibers, resulting in ligament discontinuity. A partial tear 
was defined as the presence of residual straight or taut 
ACL fibers in at least 1 pulse sequence. Signal alterations 
indicative of mucoid degeneration were excluded from the 
definitions. Intraligamentous hyperintense signal changes, 
not accompanied by apparent thinning or discontinuity 
of the ligament, which are characteristic of mucoid 
degeneration of the ACL, were not individually scored 
as per the MOAKS scoring system. Therefore, mucoid 
degeneration was considered within the “normal” spectrum, 
as the primary focus was on morphological abnormalities 
of the ligament consistent with partial or complete fiber 
disruption. Figure 1 visually illustrates the study flow and 
the specific inclusion/exclusion criteria applied for the 
construction of our classification model.

External dataset

For external validation purposes, we leveraged 3 distinct 
datasets: MRNet (USA) (24), KneeMRI (Croatia) (25), and 
a Chinese dataset. The MRNet (USA) dataset, comprising 
988 knees with intact ACLs and 262 knees with ACL 
injuries, was employed to validate our binary classification 

OAI database
 (9,592 knees)

Excluded: n=7,836 
knees not from incident, 
progression and TKR cohorts 

Knees
n=1,756

Excluded: n=167 (9.5%)
•	 40 had significant metallic artefacts
•	 66 had poor image quality
•	 43 had low image signal-to-noise ratio
•	 10 had lacking image
•	 8 had incomplete MOAKS records

Classification model n=1,589 (90.5%)
•	 Intact (n=1,443)
•	 Partial tear (n=90)
•	 Full tear (n=56)

Training set  
1,271 knees (80%)

Validation set  
318 knees (20%)

Figure 1 Study flowchart and inclusion and exclusion criteria for the classification model. OAI, Osteoarthritis Initiative; TKR, total knee 
replacement; MOAKS, MRI Osteoarthritis Knee Score; MRI, magnetic resonance imaging.

https://oai.epi-ucsf.org/datarelease/
https://oai.epi-ucsf.org/datarelease/
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model. The KneeMRI dataset from Croatia consists of 917 
knee samples, comprising 690 knees with intact ACLs, 172 
knees with partial tears, and 55 knees with full tears. All 
these MRI examinations were labeled based on both report 
and additional reading by a radiologist. For a more detailed 
description of these 2 external validation datasets, please 
refer to Appendix 1 (available online), which provides a 
comprehensive elaboration.

Knee images from patients who underwent MRI 
examinations between October 2011 and March 2022 were 
retrospectively collected by querying the picture archiving 
and communication system (PACS) of The Third Affiliated 
Hospital of Southern Medical University (Guangzhou, 
China). The collection of this dataset was approved by the 
Ethics Board of The Third Affiliated Hospital of Southern 
Medical University (No. 2013012), and individual consent 
for this retrospective analysis was waived. All participants 
were 18–80 years of age. This dataset, referred to as 
“Chinese dataset” initially queried a total of 489 cases. After 
excluding 153 knees based on the exclusion criteria, a total 
of 336 knees were ultimately included. The dataset consists 
of 207 knees with intact ACLs (approximately 62%), 65 
with partial tears (about 21%), and 64 with complete tears 
(roughly 19%). The ground truth for the dataset was 
established by 2 radiologists, each possessing more than 2 
decades of experience in diagnostic MSK imaging. In cases 
where ambiguity arose, a consensus was reached through 
discussions to establish the definitive diagnostic opinion. 
The diagnostic criteria employed by the radiologists were 
consistent with those used in the OAI dataset.

MRI data acquisition

MR images from the OAI database were obtained using 
4 identical 3.0 Tesla scanners (Magnetom Trio; Siemens, 
Erlangen, Germany) located in Columbus, Ohio; Baltimore, 
Maryland; Pittsburgh, Pennsylvania; and Pawtucket, Rhode 
Island. The following sequences were acquired: sagittal 
2-dimensional (2D) intermediate-weighted fast spin-echo 
sequence with a repetition time/echo time (TR/TE) of 
3,200/30 ms, spatial resolution of 0.357 mm × 0.511 mm, 
and slice thickness of 3.0 mm. Further details of the MRI 
protocol and evaluation of 3 external datasets are described 
in Appendix 2 (online).

Deep CNN

The developed DL model  consists  of  2 essentia l 

components: the first component is responsible for 
localizing the ACL, whereas the second component 
classifies the ACL as intact, partial tears, or full tears. For a 
visual representation of our model, please refer to Figure 2.

Image labeling

M.W., a radiology resident with 3 years of clinical 
experience manually outlined the intercondylar notch 
region containing the ACL on selected MR image sections. 
Following this, Junjie Guo, a radiologist with 7 years of 
clinical experience, reviewed the annotated images.

Pre-processing

Initially, we limited our dataset to include only slices 15 
through 23 of each case, focusing on the middle portion 
with a size of 256×256 pixels to narrow down the input 
scope. Following this, we removed the top and bottom 
1% of the grayscale values from each slice and conducted 
grayscale min-max normalization. Subsequently, we 
converted the images into a single-channel JPG format, 
which was used as the input. These steps are all automated.

ACL localization

We employed the YOLOv5m (19) architecture to design 
our ACL localization model, which was implemented 
using the PyTorch V1.11.0 package (https://pytorch.
org/). We enhanced the accuracy of ACL detection across 
multiple slices within an MRI series by introducing a post-
processing technique. The specific algorithm for post-
processing involves retaining only the prediction boxes 
with the highest confidence in each slice as a preliminary 
result, and then setting 2 confidence thresholds: conf_
LB =0.35 and conf_thred =0.5. We considered slices with 
confidence between conf_LB =0.35 and conf_thred =0.5 as 
candidate predictions. If the number of prediction boxes 
with confidence greater than conf_thred =0.5 in a case was 
fewer than 2, we included these candidate prediction boxes. 
Finally, since the ACL must appear on continuous MRI 
slices, we included any dropped slices, regardless of the 
confidence level predicted by YOLOv5m, to ensure that the 
selected slices are continuous. 

We seamless ly  integrated the  post-process ing 
methodology into the YOLO detection code, subsequently 
applying the modified model to compute the region of 
interest (ROI) across the complete dataset. After determining 

https://cdn.amegroups.cn/static/public/QIMS-23-1539-Supplementary.pdf
https://cdn.amegroups.cn/static/public/QIMS-23-1539-Supplementary.pdf
https://pytorch.org/
https://pytorch.org/
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the ROI, we cropped the images, resized them to dimensions 
of 128×96 pixels, and then applied z-score normalization 
before inputting them into the classification network.

ACL classification

The classification network was an upgraded iteration of the 
MRNet (24). In this improvement, we replaced its backbone 
network AlexNet (26) with ResNet-18 (20). Once the 
backbone network had extracted feature maps from each 2D 
image, a global average pooling layer was applied to reduce 
these feature maps into feature vectors.

To effectively utilize information from multiple slices, we 
replaced the subsequent max-pooling layer in MRNet (24) 
with Squeeze-and-Excitation (SE) blocks (27). In our SE 
block, the feature vector of each slice was first mapped to a 
value using a fully connected layer. Then, these values were 
normalized through the softmax function to obtain weights 
for the corresponding slice. Finally, the feature vectors were 

weighted summed according to these weights to obtain a 
comprehensive vector. By incorporating the SE block, the 
network can assign varying levels of attention to different 
slices, effectively integrating information from multiple 
slices into the final comprehensive vector.

The final layer of the network featured a fully connected 
layer employing a sigmoid activation function, facilitating 
the prediction of probabilities within the 0 to 1 range. 
In order to enhance the model’s performance, data 
augmentation techniques were employed as part of this 
study. Within the training dataset, images underwent 
augmentation through random image translations (±15 
pixels) both horizontally and vertically, as well as random 
rotations (±15°). In the training of each fold, the partial 
tears and full tears in the training set were augmented by 
a factor of 5 and 9, respectively. These augmented images 
were uniformly cropped using the ACL localization model 
and subsequently incorporated into the classification 
network’s training set, augmenting its robustness. However, 
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Figure 2 Overview of the one-stop detection model pipeline. The proposed method consisted of two separate systems connected in a 
cascaded fashion to create a fully automated image processing pipeline. (A) ACL localization model. (B) ACL injury classification. DICOM, 
Digital Imaging and Communications in Medicine; SE, Squeeze-and-Excitation; ACL, anterior cruciate ligament.
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our model did not utilize augmented data during validation 
and metric computation.

Evaluation of radiologists 

In this study, we conducted a comparative analysis of the 
diagnostic performance of a classification model for ACL 
injuries with that of MSK radiologists. An experienced 
radiologist with 10 years of experience (Reader 1) and a 
first-year radiology resident (Reader 2) independently 
reviewed original whole MRI of 171 randomly selected 
knees from the OAI dataset and 170 knees from the Chinese 
dataset to determine the type of ACL injuries. For honest 
comparison, 30 cases of whole knee image with labels from 
the OAI dataset and Chinese dataset were provided for the 
MSK radiologists to train to perform the diagnostics before 
the actual evaluation. The radiologists also did not utilize 
augmented datasets during the assessment of the images. 
As a comparison, our classification model was tested on the 
abovementioned cases.

Statistical analysis

The statistical analysis was conducted using the software 
PyCharm 2021.2.3 (https://www.jetbrains.com/pycharm/
download/?section=windows). To evaluate the accuracy of 
the ACL localization model, we used the intersection over 
union (IoU) index, with the radiology resident’s labeling 
results as the gold standard. Model performance was 
further assessed using metrics such as average precision 

(AP), sensitivity, and the mean average precision (mAP). 
In evaluating the classification model for diagnosing ACL 
injury, we calculated sensitivity, specificity, and accuracy 
based on the threshold value corresponding to the Youden 
index as the performance metrics. To assess the reliability 
of the diagnoses between radiologists, the intraclass 
correlation coefficient (ICC) was used. This study employed 
5-fold cross-validation, and all reported results represent 
the average of 5 evaluations. 

Results

ACL localization model performance

The precision of the object detection network in the 
validation set was 0.89 and the sensitivity was 0.93. The 
mAP scores of the model (IoU threshold ≥0.5) was 0.96.

ACL classification model performance

Performance on the OAI dataset

Table 1 presents a comparative analysis of our model’s 
performance alongside the studies conducted by Namiri 
et al. (18) and Astuto et al. (17). Our model achieved 
noteworthy levels of sensitivity, with values of 0.941, 
0.833, and 0.929 for intact ligaments, partial tears, and full 
tears, respectively. Additionally, our model exhibited high 
specificity values of 0.925, 0.947, and 0.991, and accuracy 
values of 0.940, 0.941, and 0.989, respectively, for the 
corresponding ACL conditions. In order to objectively 

Table 1 Comparison of diagnostic performance of different models

Severity Study Sensitivity (95% CI) Specificity (95% CI) Accuracy (95% CI)

Intact Proposed model 0.941 (0.926–0.956) 0.925 (0.903–0.947) 0.940 (0.927–0.952)

Namiri et al. (2020) 0.835 (0.722–0.948) 0.744 (0.595–0.894) 0.839 (0.739–0.939)

Astuto et al. (2021) 0.835 (0.722–0.948) 0.744 (0.595–0.894) 0.839 (0.739–0.939)

Partial tear Proposed model 0.833 (0.752–0.915) 0.947 (0.931–0.964) 0.941 (0.928–0.954)

Namiri et al. (2020) 0.744 (0.594–0.894) 0.864 (0.747–0.981) 0.857 (0.754–0.961)

Astuto et al. (2021) 0.744 (0.594–0.894) 0.864 (0.747–0.981) 0.857 (0.754–0.961)

Full tear Proposed model 0.929 (0.836–1.000) 0.991 (0.986–0.996) 0.989 (0.985–0.992)

Namiri et al. (2020) 0.928 (0.836–1.000) 0.970 (0.957–0.983) 0.969 (0.958–0.979)

Astuto et al. (2021) 0.928 (0.836–1.000) 0.970 (0.957–0.983) 0.969 (0.958–0.979)

The sensitivity, specificity, and accuracy of the models of Namiri et al. and Astuto et al. were obtained using 5-fold cross-validation based 
on the OAI dataset we constructed. CI, confidence interval; OAI, Osteoarthritis Initiative.

https://www.jetbrains.com/pycharm/download/?section=windows
https://www.jetbrains.com/pycharm/download/?section=windows
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compare the results of the models, we obtained new 
sensitivities, specificities, and accuracies for the studies 
of Namiri et al. and Astuto et al. based on our internal 
dataset using 5-fold cross-validation. To visually illustrate 
the performance of our model, we provide a case study in 
Figure 3, depicting a knee with a correctly identified partial 
ACL tear. This correct case demonstrates how our pipeline 
adeptly localizes the ACL and generates a saliency map that 
effectively emphasizes the high-intensity features of the 
ligament.

Diagnosis by radiologists

The ICC value between reader 1 and reader 2 were 0.79 
and 0.81 on the OAI subset (n=171) and the subset of 
Chinese dataset (n=170), respectively. Table 2 shows the 
results of the comparison of the reader 1, reader 2 and 
ACL injury classification models. The model performed 
superiorly in detecting ACL tears compared to the readers 
diagnostic results.

Performance on the external validation datasets

Table 3 presents the performance of the model on external 

datasets, both before and after retraining. After retraining, 
the model demonstrated impressive sensitivity (0.935) 
and specificity (0.961) in effectively identifying unintact 
ACLs within the MRNet (USA) dataset. On the KneeMRI 
(Croatia) multi-class dataset, the model exhibited accuracies 
of 0.866, 0.832, and 0.928 for intact, partial tear, and full 
tear ACLs, respectively. On the Chinese dataset, the model 
achieved accuracies of 0.860, 0.866, and 0.898 for intact, 
partial tears, and full tears, respectively. These results 
indicate the model’s robust performance across a range of 
external datasets after retraining.

Discussion

In this study, we present a comprehensive detection 
system designed for accurate ACL localization and the 
efficient multi-classification of ACL injuries, accompanied 
by an in-depth exploration of relevant literature. This is 
achieved through the implementation of the YOLOv5m 
and ResNet-18 network architecture, complemented by a 
rigorous multi-center external data validation approach.

Prior to classifying ACL injuries, the extraction of the 
ROI can effectively mitigate interference from adjacent 
regions, such as bone, thereby leading to a significant 

A B

C

Figure 3 Sagittal MRI views of (A) a correctly classified knee with a partial tear ACL and (B) its ACL localization with, (C) probability plot 
showing the high probability region in the ACL on which our model is based to explain ACL tears. MRI, magnetic resonance imaging; 
ACL, anterior cruciate ligament.
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Table 2 Comparison of the results of MRI diagnosis of ACL tears by 2 readers and the proposed model

Dataset
Models and human 
readers

Class name
Evaluation metrics

Sensitivity (95% CI) Specificity (95% CI) Accuracy (95% CI)

OAI subset 
(n=17)

Reader 1 Intact 0.672 (0.596–0.748) 1.000 (1.000–1.000) 0.701 (0.630–0.772)

Partial tear 0.664 (0.330–0.998) 0.691 (0.618–0.764) 0.689 (0.618–0.761)

Full tear 0.999 (0.937–1.061) 0.976 (0.953–0.999) 0.977 (0.955–0.999)

Reader 2 Intact 0.942 (0.907–0.978) 0.934 (0.803–1.000) 0.942 (0.907–0.976)

Partial tear 0.660 (0.320–0.999) 0.944 (0.910–0.978) 0.930 (0.893–0.967)

Full tear 1.000 (1.000–1.000) 0.988 (0.971–1.000) 0.988 (0.972–1.000)

Proposed model Intact 0.936 (0.897–0.976) 1.000 (1.000–1.000) 0.942 (0.905–0.978)

Partial tear 1.000 (1.000–1.000) 0.939 (0.900–0.977) 0.942 (0.905–0.978)

Full tear 1.000 (1.000–1.000) 1.000 (1.000–1.000) 1.000 (1.000–1.000)

Subset of 
Chinese 
dataset 
(n=170)

Reader 1 Intact 0.711 (0.654–0.799) 0.977 (0.824–1.000) 0.683 (0.611–0.794)

Partial tear 0.752 (0.714–0.845) 0.793 (0.696–0.895) 0.801 (0.768–0.916)

Full tear 0.946 (0.858–0.971) 0.959 (0.893–0.994) 0.917 (0.819–0.947)

Reader 2 Intact 0.948 (0.876–0.969) 0.899 (0.796–0.932) 0.914 (0.845–0.977)

Partial tear 0.748 (0.713–0.901) 0.789 (0.645–0.857) 0.875 (0.819–0.973)

Full tear 0.916 (0.877–0.975) 0.768 (0.778–0.839) 0.877 (0.811–0.965)

Proposed model Intact 0.874 (0.810–0.922) 0.818 (0.746–0.895) 0.859 (0.796–0.919)

Partial tear 0.731 (0.717–0.855) 0.882 (0.794–0.933) 0.852 (0.816–0.939)

Full tear 0.714 (0.655–0.836) 0.975 (0.886–0.997) 0.961 (0.913–0.998)

MRI, magnetic resonance imaging; ACL, anterior cruciate ligament; CI, confidence interval. OAI, Osteoarthritis Initiative.

improvement in accuracy (28). A study by Liu et al. (29) 
developed 2 separate convolutional networks for ACL 
detection (level selection) and localization (determination 
of bounding box coordinates). However, this approach 
increased the training burden. Germann et al. (30) 
proposed a convolutional network that identified the layers 
containing ACLs, but the subsequent cropping step was still 
manual and imprecise, resulting in uniform-sized regions of 
123×320 pixels along the ACL. Namiri et al. (18) introduced 
a 3-dimensional (3D) segmentation network that divided 
the entire knee into 11 small regions, using the background 
region as the ROI for ACL. However, this localization 
method was considered indirect and inaccurate. Therefore, 
the existing studies were insufficient in accurately locating 
the ACL. 

The YOLO network is a well-established framework 
in the field of object detection for natural images, and 
its effectiveness extends to various diagnostic modalities. 

Notably, it has been successfully applied to tasks such as 
the automated identification of lung nodules in computed 
tomography images (31) and the detection of nodules in 
X-ray mammography. Expanding on the YOLO network, 
we have introduced several enhancements to address the 
limitations observed in earlier studies. Firstly, we have 
developed a method for selecting a rectangular bounding 
box for segmentation, with a specific focus on the ACL. 
This approach not only reduces segmentation loss but also 
accurately identifies torn ACLs, even when their original 
morphology is altered. Secondly, we have incorporated 
post-processing techniques to enhance the automation, 
maturity, and efficiency of the YOLO localization network. 
This refinement allows for the simultaneous selection of 
the appropriate level of detail and precise localization of the 
ACL. Additionally, our model integrates adaptive resizing 
of the rectangular box, dynamically adjusting to the precise 
position of the ACL within each image. This adaptive 
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resizing significantly reduces the impact of irrelevant 
data, streamlining the processing workflow and reducing 
redundant operations. Collectively, these enhancements 
effectively address the limitations present in previous 
studies, resulting in a model that is not only more accurate 
and efficient but also more user-friendly for the detection 
and localization of the ACL.

Numerous studies (24,28,30) have delved into ACL 
injury classification tasks using DL frameworks. Although 
most of these studies (32,33) focused on lesion detection 
using binary classifiers, a small number of studies (34,35) 
explored multi-classification. Namiri et al. (18) developed 
a model based on 3D CNN and 2D CNN, achieving 
accurate multi-classification of ACL with accuracies of 0.89 
and 0.92. However, their study only included 18 injuries. 
Astuto et al. (17) examined the sensitivity of a 3D DL 
model in predicting multiple classifications of ACL injuries, 
reporting a sensitivity of 0.75 for partial tears and 0.77 for 
full tears. In their pertinent multi-classification study, a 
central challenge was the underwhelming performance of 
the classification model, particularly with sensitivities of 0.75 
for cases involving partial tears and full tears. Moreover, 

their study solely relied on an internal dataset for model 
validation, lacking external validation, thus warranting 
improvements in generalization and model transferability.

In contrast, our model achieved remarkable sensitivities 
of 0.83 and 0.93 for the aforementioned categories. This 
improvement is attributed to the substitution of the 
classification network’s maximum pooling layer with a 
SE block within our model’s architecture. The SE block 
intelligently recalibrates feature responses by explicitly 
capturing interdependencies between channels. This 
approach enables the network to prioritize the most 
influential aspects for classification outcomes while 
amalgamating information from all image layers cohesively. 
Furthermore, our study distinguished itself by embracing 
a multi-center validation strategy, encompassing diverse 
databases originating from various global populations, 
distinct scanning equipment models, and sequences 
involving disparate parameter settings. Worth noting is 
our model’s commendable validation performance on the 
Chinese dataset, affirming its robustness. Our investigation 
unveiled an initial dip in the model’s performance during 
external validation, followed by a marked improvement 

Table 3 Model performance on external datasets

Dataset Verification method Class name Sensitivity (95% CI) Specificity (95% CI) Accuracy (95% CI)

MRNet, USA Without retraining Intact 0.808 (0.698–0.918) 0.750 (0.597–0.903) 0.786 (0.698–0.874)

Unintact 0.750 (0.597–0.903) 0.808 (0.698–0.918)

After retraining Intact 0.961 (0.908–1.000) 0.935 (0.849–1.000) 0.951 (0.906–0.997)

Unintact 0.935 (0.849–1.000) 0.961 (0.908–1.000)

KneeMRI, Croatia Without retraining Intact 0.914 (0.835–0.994) 0.673 (0.558–0.788) 0.852 (0.809–0.895)

Partial tear 0.351 (0.229–0.473) 0.924 (0.868–0.981) 0.810 (0.759–0.862)

Full tear 0.546 (0.191–0.902) 0.921 (0.868–0.974) 0.899 (0.853–0.944)

After retraining Intact 0.868 (0.830–0.906) 0.860 (0.803–0.918) 0.866 (0.851–0.881)

Partial tear 0.630 (0.504–0.757) 0.881 (0.849–0.914) 0.832 (0.817–0.847)

Full tear 0.721 (0.602–0.840) 0.940 (0.912–0.969) 0.928 (0.906–0.951)

Chinese dataset Without retraining Intact 0.773 (0.685–0.861) 0.790 (0.620–0.961) 0.779 (0.685–0.874)

Partial tear 0.569 (0.290–0.849) 0.671 (0.611–0.732) 0.652 (0.563–0.740)

Full tear 0.188 (0.000–0.501) 0.959 (0.917–1.000) 0.812 (0.731–0.893)

After retraining Intact 0.801 (0.777–0.827) 0.953 (0.927–0.979) 0.860 (0.840–0.880)

Partial tear 0.800 (0.731–0.869) 0.882 (0.846–0.918) 0.866 (0.848–0.884)

Full tear 0.860 (0.795–0.925) 0.908 (0.885–0.931) 0.898 (0.889–0.909)

CI, confidence interval; MRI, magnetic resonance imaging.
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after retraining. This observation aligns with the findings 
of Germann et al. (30) and Tran et al. (36). The variations 
evident in scanning instruments, sequences, and imaging 
parameters across diverse datasets contributed to these 
outcomes. These disparities underscore the substantial 
diversity inherent in multi-center MRI data. Furthermore, 
it is common for models trained exclusively on single-
center datasets to exhibit suboptimal performance on other 
datasets due to overfitting. Consequently, retraining the 
model, particularly with regards to detecting partial tears, 
becomes an essential step for optimal performance.

Furthermore, the system devised in our study can be 
seamlessly integrated with the MR scanning system. Digital 
Images and Communications in Medicine (DICOM) 
images from all sequences can serve as direct input data for 
the system, facilitating a step-by-step automatic analysis to 
yield a diagnostic result. The radiologist is only required 
to supervise the output diagnostic results, no additional 
operations are necessary. The system has the potential 
to be seamlessly connected with the scanning system, 
offering enhanced practicality and convenience in future 
applications.

There are several limitations in our study that should be 
considered. Firstly, the unbalanced data and the relatively 
limited number of injury cases could potentially lead 
to overfitting of the classification model. Secondly, our 
classification scheme focused solely on distinguishing partial 
and full tears, highlighting the need for future investigations 
to delve into a more nuanced and precise classification of 
partial injuries. Thirdly, it is important to acknowledge that 
our injury classification reference standard relied solely 
on diagnostic radiologists’ assessments, lacking validation 
through arthroscopic evaluation. Lastly, we did not compare 
the diagnostic performance of radiologists to the model 
on all the datasets we constructed, which may have led to 
slightly biased results. 

Conclusions

This study introduces a fully automatic pipeline using DL 
based on MR images for the localization and classification 
of ACL injuries. The proposed system aims to enhance 
the efficiency of aiding radiologist readings and reduce 
intergrader variability.
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Supplementary

Appendix 1 

Details of KneeMRI dataset (Croatia) and MRNet dataset (USA) 
KneeMRI dataset, Croatia
The KneeMRI dataset was obtained from the Clinical Hospital Centre Rijeka, Croatia and was acquired using a 1.5T 

Siemens Avanto MRI scanner. It contains 917 sagittal PD-weighted examinations from 2007 until 2014.
MRNet dataset, USA
The MRNet dataset comprises 1370 examinations between 2001 and 2012 by a research team at Stanford University 

Medical Center. MRNet dataset was divided into 3 sets: a training set with 1,130 patient samples, a validation set with 120 
patient samples, and a testing set with 120 patient samples. The training and validation sets are publicly available, but the 
testing set is not. It also includes other knee conditions, such as normal knees, meniscal tears, and ACL tears, but we restricted 
our analysis to cases with intact and ACL tears. Each examination contained the following sequences: coronal T1-weighted, 
coronal T2 with fat saturation, sagittal proton density (PD)-weighted, sagittal T2 with fat saturation, and axial PD-weighted 
with fat saturation. Examinations were performed using GE scanners, 775 (56%) with a 3T magnetic field, the remainder 
with a 1.5T magnetic field. 

Appendix 2

MRI imaging protocol and specific details of the all datasets in this study
MRNet dataset,USA
Imaging parameters for the 3.0T sagittal T2-FS sequence included: field-of-view (FOV) = 15cm, echo time (TE) = 54 ms, 

relaxation time (TR) = 5599 ms, slice thickness = 2.5 mm, gap = 0 mm, flip angle = 142°, numberof sections=42, acquisition 
matrix size=384×192.

Imaging parameters for the 1.5T sagittal T2-FS sequence included: field-of-view (FOV) = 16 cm, echo time (TE) = 54 ms, 
relaxation time (TR) = 3266 ms, slice thickness = 3.5 mm, gap = 0.5 mm, flip angle = 90°, number of sections=24, acquisition 
matrix size= 448×192.

Chinese dataset
All image acquisition is done on a 1.5T Achieva (221 participants) or 3T Ingenia (115 participants). Imaging parameters 

for the 3.0T sagittal PDW-SPAIR sequence included the following: field-of-view (FOV) = 18 cm, echo time (TE) = 30 ms, 
relaxation time (TR) = 2844 ms, slice thickness = 3.5 mm, and gap = 0.35 mm. 

Imaging parameters for the 1.5T sagittal PDW-SPAIR sequence include: FOV = 16 cm, TE = 30 ms, TR = 3000 ms, slice 
thickness = 3.5 mm, and gap = 0.35 mm.


