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Background: The presence of noise in medical ultrasound images significantly degrades image quality and 
affects the accuracy of disease diagnosis. The convolutional neural network–denoising autoencoder (CNN-
DAE) model extracts feature information by stacking regularly sized kernels. This results in the loss of 
texture detail, the over-smoothing of the image, and a lack of generalizability for speckle noise.
Methods: A lightweight attention denoise-convolutional neural network (LAD-CNN) is proposed in the 
present study. Two different lightweight attention blocks (i.e., the lightweight channel attention (LCA) block 
and the lightweight large-kernel attention (LLA) block are concatenated into the downsampling stage and 
the upsampling stage, respectively. A skip connection is included before the upsampling layer to alleviate the 
problem of gradient vanishing during backpropagation. The effectiveness of our model was evaluated using 
both subjective visual effects and objective evaluation metrics.
Results: With the highest peak signal-to-noise ratio (PSNR) and structural similarity (SSIM) values at all 
noise levels, the proposed model outperformed the other models. In the test of brachial plexus ultrasound 
images, the average PSNR of our model was 0.15 higher at low noise levels and 0.33 higher at high noise 
levels than the suboptimal model. In the test of fetal ultrasound images, the average PSNR of our model was 
0.23 higher at low noise levels and 0.20 higher at high noise levels than the suboptimal model. The statistical 
analysis showed that the p values were less than 0.05, which indicated a statistically significant difference 
between our model and the other models.
Conclusions: The results of this study suggest that the proposed LAD-CNN model is more efficient 
in denoising and preserving image details than both conventional denoising algorithms and existing deep-
learning algorithms.
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Introduction

With the development of medical imaging technology, 
ultrasound imaging has been widely implemented in 
clinical medical diagnostics due to its non-invasive, low-
cost, and real-time advantages, making it one of the most 
widely used diagnostic tools in medicine today. However, 
due to their acquisition mechanism, ultrasound images are 
inherently subject to speckle noise. The signal generated 
by the ultrasound probe scatters as it transmits through 
the organism, resulting in the appearance of speckle 
noise in the medical ultrasound image. Speckle noise is a 
predominant contributor to poor image quality in medical 
ultrasound images (1). In addition to affecting the quality of 
the ultrasound image, speckle noise can also lead to the loss 
of important details in the image, thus posing a challenge to 
the physician in making a diagnosis. Therefore, the efficient 
removal of speckle noise from ultrasound images by means 
of scientific algorithms is of great practical importance.

Conventional denoising techniques for ultrasound images 
are primarily classified into the following two categories: 
(I) frequency domain filtering; and (II) spatial domain 
filtering. Frequency domain filtering requires transforming 
the signal from the spatial domain to the frequency domain 
through Fourier transform, wavelet transform, or other 
methods. Denoising is performed in the frequency domain, 
and the resulting denoised image is obtained via inverse 
transformation. Rodrigues et al. (2) combined the S-median 
threshold wavelet filter with a bilateral filter to effectively 
remove speckle noise. Vimalaraj et al. (3) introduced a 
method for denoising ultrasound images that combines the 
dual-tree complex wavelet transform with the possibility of 
fuzzy C-means. In spatial domain filtering, the denoising 
task is accomplished through the direct manipulation of 
the pixels in the image. Examples of these manipulations 
include the use of a median filter (4), Frost filter (5), 
and non-local means filter (6). The aforementioned 
conventional denoising techniques can result in the loss of 
image details during the denoising process and suffer from 
extensive time consumption and manual parameterization.

In recent years, advances in deep learning have led 
to the development of new image denoising techniques  
(7-9). Liu et al. (10) proposed deep convolutional encoder-
decoder networks for image denoising, incorporating 
a skip connection in the convolutional and transposed 
convolutional layers. This results in the extraction of more 
detailed features from the bottom layer and thus improves 
the denoising effect. Zhang et al. (11) presented a feed-

forward denoising convolutional neural network (DnCNN) 
that employs deep network architecture and residual 
learning in image denoising. Zeng et al. (12) proposed the 
residual encoder-decoder with squeeze-and-excitation 
network (RED-SENet) based on the channel attention 
mechanism. The channel attention mechanism (13) was 
initially applied in the fields of image classification (14) and 
target monitoring (15). It extracts important information 
in the channel domain, while the large-kernel attention 
(LKA) mechanism extracts a larger range of information in 
the spatial domain. The large-kernel attention mechanism 
has high performance in image super-resolution (16), image 
classification (17), and image segmentation (18). Gondara 
et al. (19) proposed a convolutional neural network–
denoising autoencoder (CNN-DAE) model for medical 
image denoising. Encoding and decoding stages form the 
entire network, and denoising is accomplished by learning 
the mapping from the noisy images to the original images. 
The CNN-DAE model extracts feature information by 
stacking regularly sized kernels; however, this leads to a 
loss of texture detail and the over-smoothing of the image. 
Additionally, it only takes Gaussian noise into account, 
which limits its generalizability to speckle noise.

To address the above-mentioned issues, we modified 
the structure of the CNN-DAE model and proposed a 
lightweight attention denoise-convolutional neural network 
(LAD-CNN) model. Two different lightweight attention 
blocks [i.e., the lightweight channel attention (LCA) block 
and the lightweight large-kernel attention (LLA) block] 
were concatenated into the encoding and decoding stages, 
respectively. Further, skip connections were used to obtain 
a larger receptive field to preserve detailed features and 
avoid overfitting. Experiments were carried out on both 
public and private data sets. The results indicated that the 
proposed LAD-CNN model is more efficient in denoising 
and preserving image details than both conventional 
denoising algorithms and existing deep-learning algorithms.

Methods

Noise model

Speckle noise in ultrasound images is signal-dependent (20), 
it can be modeled as:

n= × +γz u u  [1]

where n ~ N (0, 2σ ) is the normal distribution with an 
expectation of zero and a variance of 2σ ; u  is the original 
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image; and γ  is affected by the ultrasound equipment and 
other operating factors. The experimental results achieved 
by Loupas et al. (21), based on logarithmically compressed 
images, showed that the simulated speckle noise image at 
γ  =0.5 was consistent with the real ultrasound image. Since 
then, this model has been used in numerous studies to 
simulate speckle noise in ultrasound images (20,22-24).

Network architecture

To address the inadequacy in the speckle noise denoising 
performance of the CNN-DAE model, we propose an 
autoencoder network for denoising ultrasound images 
that employs the attention mechanism. To enhance the 
sensitivity of the network to the texture details in medical 
ultrasound images, two different lightweight attention 
blocks are introduced into the downsampling stage and 
the upsampling stage, respectively. In the current network, 
two downsampling layers and upsampling layers are 
retained, with the subpixel convolution being chosen for 
the upsampling stage. Further, to alleviate the problem 
of gradient vanishing during backpropagation, a skip 

connection is included before the upsampling layers as 
shown in Figure 1.

During the encoding stage, the initial noisy image 
undergoes a convolutional layer with a convolution kernel 
size of 5×5. This process extends the image from a single-
channel image to a 64-channel image while preserving 
the feature size of the image through padding. Maximum 
pooling is used in the downsampling stage to extract the 
most distinctive features from the ultrasound image. This 
enables the model to detect edge and texture information 
while reducing its complexity and training time, as it does 
not require any additional training parameters. To avoid the 
loss of details due to the convolution operation immediately 
after the downsampling, a LCA block is added after the 
downsampling layer to help the model to make more 
effective use of the feature information.

The low-dimensional features are extracted from the 
decoding stage through a 3×3 convolutional layer. To 
prevent the loss of significant information in multiple 
pooling layers, as well as the gradient vanishing during 
the data training process, a skip connection is used to 
concatenate feature maps from the downsampling layer 
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Figure 1 Structure of the LDA-CNN model. LCA, lightweight channel attention block; LLA, lightweight large-kernel attention block; 
LAD-CNN, lightweight attention denoise-convolutional neural network; Conv, convolution layers; Relu, rectified linear unit; DW-Conv, 
depthwise convolution; DW-D-Conv, depthwise dilation convolution; Gelu, Gaussian Error Linear Unit.



Shi et al. US image denoising based on lightweight attention mechanism3560

© Quantitative Imaging in Medicine and Surgery. All rights reserved.   Quant Imaging Med Surg 2024;14(5):3557-3571 | https://dx.doi.org/10.21037/qims-23-1654

with feature maps from the upsampling layer. The subpixel 
convolution without training parameters is used to recover 
the image size (25). This upsampling strategy can be used as 
a substitute for interpolation or transposed convolution, and 
it has a larger receptive field while reducing computational 
consumption and training time. The subpixel convolution 
technique converts depth to space to extract features from 
a low-resolution image and to rearrange the pixels from 
multiple channels into a single channel in a high-resolution 
image. More detailed information can be obtained using 
skip connection (12). The upsampling layer is succeeded by 
the LLA block. The image is restored to its initial size after 
two upsampling layers, and the denoised image is obtained 
via a 1×1 convolutional layer and a sigmoid activation 

function. The specific parameters of the present network 
are shown in Table 1. Table 2 compares the total parameter 
differences between the LAD-CNN model and other 
typical deep-learning denoising models. Notably, our model 
has fewer parameters than most of the other denoising 
models. Since our model is based on CNN-DAE with two 
additional modules (the LCA block and LLA block), it has 
more parameters than the CNN-DAE model.

LCA block

The channel attention mechanism improves the denoising 
performance, as the weights of the important feature 
channels are strengthened adaptively, while the unimportant 
feature channels are suppressed. In the LAD-CNN model, a 
LCA block is proposed on the basis of the channel attention 
mechanism. To reduce the complexity of the model, a 1×1 
convolutional layer is used instead of the fully connected 
layer to extract features and enhance the nonlinear 
capability of the network. By using a LCA block, the 
number of training parameters is reduced and the important 
information in the feature channels is emphasized.

LLA block

The large-kernel convolution mechanism captures relations 
between pixels that are further apart, enabling long-
distance dependence by convolution with a larger-sized 
convolution kernel. The use of a large-kernel convolution 
mechanism usually leads to a significant increase in the 
number of parameters and the computational cost. Guo  
et al. (26) introduced the LKA mechanism by decomposing 
the convolution operation with a kernel size of k × k into 
the following three components: a depthwise convolution 
with a kernel size of k/d × k/d, where d is the expansion 
rate; a depthwise dilation convolution with a kernel size of 
(2d-1) × (2d-1); and a channel convolution with a kernel 
size of 1×1. Based on the LKA mechanism, we propose a 
LLA block. This block also extracts feature information 
with a kernel size of 1×1. In addition, we incorporate 
skip connections into the network to introduce shallow 
features and gradients into the deep network, leading to 
a significant improvement in convergence speed and the 
reduction of gradient vanishing. Further, we employ a 
group convolution technique to further reduce the number 
of training parameters. During the upsampling stage, there 
is a loss of information as the low-dimensional feature map 
is restored to the denoised image. To address this issue, 

Table 1 LAD-CNN parameters

Layer 
number

Layer type Encoder

L1 Conv + Relu Kernel size: 5×5; padding: 2; stride: 1; 
Relu

L2 Pooling Maxpool 2D; Kernel size: 2×2

L3 Conv + Relu Kernel size: 3×3; padding: 1; stride: 1; 
Relu

L4 Pooling Maxpool 2D; Kernel size: 2×2

L5 Conv + Relu Kernel size: 3×3; padding: 1; stride: 1; 
Relu

L6 Conv + Relu Kernel size: 3×3; padding: 1; stride: 1; 
Relu

L7 Conv Kernel size: 5×5; padding: 2; stride: 1

L8 Conv + Relu Kernel size: 1×1; padding: 0; stride: 1; 
sigmoid

LAD-CNN, lightweight attention denoise-convolutional neural 
network; Conv, convolution layers; Relu, rectified linear unit.

Table 2 Comparison of total model parameters

Model Total parameters

RED-SENet [12] 1,851,169

DnCNN [11] 556,096

CNN-DAE [19] 298,497

LAD-CNN 533,155

RED-SENet, residual encoder-decoder with squeeze-and-excitation 
network; DnCNN, denoising convolutional neural network; CNN-
DAE, convolutional neural network-denoising autoencoder; LAD-
CNN, lightweight attention denoise-convolutional neural network.



Quantitative Imaging in Medicine and Surgery, Vol 14, No 5 May 2024 3561

© Quantitative Imaging in Medicine and Surgery. All rights reserved.   Quant Imaging Med Surg 2024;14(5):3557-3571 | https://dx.doi.org/10.21037/qims-23-1654

the LLA block is inserted into the upsampling layer, which 
adaptively allocates weights to the pixels of the feature map 
and thereby enhances the use of global information.

Experimental environment and training data

To evaluate the effectiveness of the proposed denoising 
model, experiments were carried out on both simulated 
speckle noise ultrasound images and real clinical ultrasound 
images. All the experiments were implemented on the 
Pytorch framework and accelerated with the NVIDIA 
GeForce RTX 3060Ti Graphics Processing Unit (GPU).

The Berkeley Segmentation Dataset (BSD400) (27), which 
comprises 400 images with a size of 180 px × 180 px, was 
used for training. To augment the image data, the original 
400 images were first randomly rotated or translated and 
then resized to 128 px × 128 px image blocks, resulting in 
a data set of 2,000 images. Additionally, speckle noise was 
added to the resulting 2,000 images. Of these, 1,600 images 
were used for training, and the remaining 400 images were 
used for validation.

To assess the robustness and generalizability of the 
model, and confirm its effectiveness in ultrasound image 
denoising, we chose a variety of public and private data 
sets from different organ regions for testing, including 
the Kaggle brachial plexus ultrasound public data set (28), 
which contains 5,508 images with a size of 580 px × 420 px; 
the fetal head ultrasound public data set (29), which contains 
1,334 images with a size of 800 px × 540 px; and cardiac 
ultrasound images, which were provided by Shanghai 
Children’s Medical Center and were acquired using the 
Philips iU 22 ultrasound system with a two-dimensional 
probe. The imaging parameters were as follows: frame 
rate: 51 Hz; depth: 15 cm, thermal index of soft tissue: 0.7; 
and mechanical index: 1.4. The data set comprised 500 
images with a size of 790 px × 630 px. From each of the 
above-mentioned data sets, 100 representative ultrasound 
images that captured the diversity of the data set well and 
had clearer textures were extracted and resized to images 
with a size of 128 px × 128 px. The study was conducted 
in accordance with the Declaration of Helsinki (as revised 
in 2013). The study was carried out with the approval of 
the local institutional review board of Shanghai Children’s 
Medical Center Affiliated to Shanghai Jiao Tong University 
School of Medicine, and written informed consent was 
obtained from the parents of the patients.

Quantitative evaluations

The following three commonly used evaluation metrics 
were used to quantitatively assess the effectiveness of the 
ultrasound image denoising: the peak signal-to-noise 
ratio (PSNR), structural similarity (SSIM), and equivalent 
number of looks (ENL). The PSNR measures the pixel-
by-pixel difference between the denoised image and the 
original image, while the SSIM evaluates the similarity in 
terms of brightness, contrast, and structure.

To assess the effectiveness of the model in denoising 
real ultrasound images, denoising was performed on 
ultrasound data collected from clinical sources (the cardiac 
ultrasound images provided by Shanghai Children’s Medical 
Center). Due to the unavailability of original images for 
comparison, metrics such as the PSNR and SSIM were no 
longer applicable. To overcome this limitation, the ENL 
was introduced (30,31). The ENL serves as an indicator for 
evaluating the smoothness of the images in homogeneous 
areas, providing a metric for assessing denoising efficiency 
in the absence of original images. The PSNR, SSIM, and 
ENL are defined as follows:

( )
( )

2
max

10PSNR 10 log
MSE ,

u
u x

= ⋅ [2]

( )( )
( )( )

1 2
2 2 2 2

1 2

2 2
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x u x u

c c
c c

µ µ σ
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2

2ENL= x

x

µ
σ

[4]

where xµ  and uµ  are the mean of denoised image x  and 
original image u , respectively; umax is the maximum value 
of the original image u ; xuσ  is the covariance between x  
and u ; xσ  and uσ  are the standard deviations of x  and u , 
respectively; and c1 and c2 are constants that are set to 6.5025 
and 58.5225 as proposed in (32).

Higher PSNR and SSIM values indicate a greater 
similarity between the denoised image and the original 
image, indicating better denoising performance, while a 
higher ENL value indicates greater accuracy in the denoised 
image. The PSNR and SSIM were chosen to measure the 
denoising performance of images that contained artificial 
noise, while the ENL was chosen to measure the denoising 
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performance of real clinical images that were contaminated 
by noise (24).

In the training process, the Adam optimizer was 
implemented with an initial learning rate of 0.001. The 
learning rate was multiplied by a decay factor of 0.1 if the 
PSNR of the validation set was monitored and did not 
increase after five epochs. We trained the model for 120 
epochs with a batch size of 10. Weight parameters from the 
epoch with the highest PSNR and SSIM were chosen for 
the subsequent tests. To assess the ability of the proposed 
model to reduce speckle noise, comparative experiments were 
performed on public and private data sets with conventional 
denoising methods (block-matching and three-dimensional 
filtering (BM3D) (33), Gaussian filtering (21), and other 
deep-learning denoising methods [e.g., DnCNN (11), 
CNN-DAE (19), and RED-SENet (12)].

Loss function

The mean squared error (MSE) function and the total 
variation (TV) regularization function are employed to 
calculate the loss. The MSE function is defined as:

( )2

1=

n

i
MSE

u x
L

n
=

−∑
 [5]

where u  represents the original image, x represents the 
denoised image, and n represents the number of the batch size.

The MSE function is effective in training the model; 
however, artifacts may still occur in the process of image 
recovery. To address the issue of artifacts, we incorporated 
the TV regularization function (34) to smooth the image 
and reduce the artifacts that arise from the denoised image. 
The TV function is defined as:

( ) ( )2 21, , , 1 ,

1 1

W H
w h w h w h w h

TV
w h

L x x x x+ +

= =

= − + −∑∑  [6]

where x represents the denoised image, and W and H are 
the height and width of the image, respectively.

Thus, the overall loss function is defined as:

MSE= +LOSS TV TVL L Lγ
 

 [7]

where, TVγ  is a predefined weight for the TV loss function. 
To prevent excessive smoothing, TVγ  should be much 
smaller than 1 (34). TVγ  =0.08 was chosen according to the 
experimental results shown in Figure 2. The experiment was 
carried out at a noise level σ  =3, and the experimental setup 
was the same as that for the model training. The test set 
comprised 100 images taken from the fetal head ultrasound 
public data set.

Results

In this study, six noise models with different levels (σ  =2.0, 
3.0, 4.0, 5.0, 6.0, and 7.0) were trained and compared to 
conventional denoising methods and other deep-learning 
models. The effectiveness of each model was evaluated 
based on both subjective visual effects and objective 
evaluation metrics. Table 3 presents the average PSNR 
and SSIM values for each model, under various noise 
levels, which were based on a test set of the brachial plexus 
ultrasound images.

As Table 3 shows, the denoising effects of the deep 
learning-based methods were significantly better than 
the conventional denoising models at all noise levels. 
Among the deep learning-based methods, the current 
model had the highest PSNR and SSIM value at all noise 
levels, outperforming the other CNN models, and showed 
remarkable denoising efficiency compared to the CNN-
DAE model.

Figure 3 shows a subjective visual comparison of the 
original image, the noised image, and the denoised images. 
The results showed that BM3D over-smoothed the image, 
resulting in a significant loss of texture information. 
Gaussian filtering was ineffective at removing noise from 
the texture and was inadequate at recovering the edge 
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Table 3 Comparison of the metrics of the various models using the brachial plexus data set

Model

Noise level

σ =2 σ =3 σ =4 σ =5 σ =6 σ =7

PSNR SSIM PSNR SSIM PSNR SSIM PSNR SSIM PSNR SSIM PSNR SSIM

NOISE 22.10 0.74 18.66 0.60 16.23 0.48 14.48 0.39 13.03 0.34 12.07 0.30

BM3D 26.17 0.85 23.90 0.77 22.64 0.71 20.99 0.66 20.64 0.61 19.96 0.60

Gauss filter 23.96 0.84 22.51 0.78 21.14 0.71 18.73 0.55 18.92 0.59 18.08 0.55

CNN-DAE 25.37 0.89 23.88 0.85 22.83 0.82 21.99 0.78 21.23 0.75 20.56 0.72

DnCNN 26.42 0.91 24.49 0.86 22.99 0.82 22.01 0.78 21.25 0.75 20.60 0.72

RED-SENet 22.35 0.80 23.87 0.85 21.92 0.80 20.22 0.76 20.96 0.74 20.35 0.72

Our model 26.56 0.92 24.55 0.87 23.25 0.84 22.31 0.80 21.56 0.78 20.97 0.75

σ, noise level; PSNR, peak signal-to-noise ratio; SSIM, structural similarity; NOISE, speckle-noised images; BM3D, block-matching and 
three-dimensional filtering; CNN-DAE, convolutional neural network-denoising autoencoder; DnCNN, denoising convolutional neural 
network; RED-SENet, residual encoder-decoder with squeeze-and-excitation network. 

Figure 3 Subjective visual comparison of the denoised brachial plexus images at σ =5.0. (A) Original image, (B) noised image, (C) BM3D, 
(D) Gauss filter, (E) CNN-DAE, (F) DnCNN, (G) RED-SENet, (H) our model. BM3D, block-matching and three-dimensional filtering; 
CNN-DAE, convolutional neural network-denoising autoencoder; DnCNN, denoising convolutional neural network; RED-SENet, 
residual encoder-decoder with squeeze-and-excitation network; σ, noise level.
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features. The DnCNN model retrieved a greater amount 
of the texture information and more effectively processed 
the image edges; however, the denoised image still 
contained some speckle noise that could subjectively affect 
visual perception. The RED-SENet model preserved the 
overall texture information more efficiently, but it faced a 
significant challenge in the form of edge noise. The LAD-
CNN model enabled more effective recognition of edge 
information than the CNN-DAE model. Additionally, it 
provided a more comprehensive and detailed representation 
of texture features. Although the proposed model 

performed equivalently to the DnCNN in terms of the 
objective metrics, such as the PSNR and SSIM, on this 
data set, it was still necessary to evaluate its performance 
through subjective vision. It is important to note that the 
image denoised by the DnCNN model had severe white 
noise. Therefore, from a comprehensive perspective, our 
model appeared to outperform the DnCNN model.

Figure 4A,4B illustrate the variation of the evaluation 
metrics in the denoising performance at different noise 
levels for each model evaluated on the brachial plexus data 
set. At low noise levels (σ  =2, 3, and 4), the average PSNR 
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Figure 4 Variations in the denoising evaluation metrics for each model at different noise levels. (A) The average PSNR for the brachial 
plexus data set, (B) the average SSIM for the brachial plexus data set, (C) the average PSNR for the fetal head data set, (D) the average SSIM 
for the fetal head data set. PSNR, peak signal-to-noise ratio; σ, noise level; SSIM, structural similarity; BM3D, block-matching and three-
dimensional filtering; CNN-DAE, convolutional neural network-denoising autoencoder; DnCNN, denoising convolutional neural network; 
RED-SENet, residual encoder-decoder with squeeze-and-excitation network.
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of our model was 0.15 higher than that of the suboptimal 
DnCNN model. At the low noise level of σ  =2.0, the RED-
SENet model could not efficiently identify the speckle noise 
and image details, ultimately resulting in a lower PSNR and 
SSIM value than the other convolutional neural network 
(CNN) models. At high noise levels (σ  =5, 6, and 7), the 
average PSNR of our model was 0.33 higher than that of 
the suboptimal model (DnCNN).

Table 4 shows the average PSNR and SSIM for each 
model at different noise levels on the fetal ultrasound images 
data set. The variations of the denoising performance 
metrics of each model on the fetal head data set under 
different noise levels are displayed in Figure 4C,4D. At 
low noise levels (σ  =2, 3, and 4), the average PSNR of our 
model was 0.23 higher than that of the suboptimal model. 
At high noise levels (σ  =5, 6, and 7), the average PSNR 
of our model was 0.15 higher than that of the suboptimal 
model. Figure 5 shows the subjective visual comparison 
of the original image, the noised image, and the denoised 
images. The conventional models had the disadvantages 
of excessive smoothing and a poor denoising effect. The 
CNN model preserved the feature information and texture 
structure of the original image to the maximum extent; 
however, the DnCNN model was inefficient at processing 
the edge noise.

The statistical analysis was carried out for the data at 
a noise level of σ =3 (Table 5). The Mann-Whitney U test 
was used, as the data did not follow a normal distribution. 
The p values were less than 0.05, indicating that there was a 
statistically significant difference.

To verify the effectiveness of our model in reducing 
speckle noise in real clinical ultrasound images, the private 
ultrasound image data set provided by Shanghai Children’s 
Medical Center with 100 cardiac ultrasound images was 
tested. Figure 6 displays the visual denoising effect of all 
models in this data set. Compared to other models, our 
model was able to effectively remove noise from real clinical 
ultrasound images while also providing better clarity and 
visual effects than other models. Moreover, as Table 6 
shows, the present denoising model outperformed the other 
models in terms of the objective evaluation metrics.

Discussion

Summary of the experimental results

In this study, we proposed an ultrasound image denoising 
autoencoder model that uses the lightweight attention 
mechanism to address the ineffective reduction of speckle 
noise and loss of detail in current deep-learning ultrasound 
image denoising algorithms.

Experiments on images with artificial speckle noise and 
real clinical ultrasound images demonstrated the superior 
performance of the LAD-CNN model over conventional 
filtering methods and other CNN models in reducing 
speckle noise while retaining texture structures. Based on 
the objective metrics and subjective visual evaluation, we 
observed that the conventional denoising models had the 
defects of over-smoothing and incomplete noise reduction. 
The deep-learning denoising models, such as the CNN-

Table 4 Comparison of the metrics of the various models using the fetal head data set

Model

Noise level

σ =2 σ =3 σ =4 σ =5 σ =6 σ =7

PSNR SSIM PSNR SSIM PSNR SSIM PSNR SSIM PSNR SSIM PSNR SSIM

NOISE 24.58 0.68 22.93 0.59 18.81 0.47 17.10 0.40 15.82 0.35 14.80 0.32

BM3D 28.55 0.81 28.45 0.72 26.10 0.69 25.34 0.65 23.37 0.60 22.01 0.57

Gauss filter 29.45 0.82 28.15 0.73 25.44 0.69 23.95 0.63 22.68 0.58 21.68 0.55

CNN-DAE 30.00 0.90 28.65 0.88 27.77 0.87 27.00 0.86 26.36 0.84 25.86 0.83

DnCNN 30.86 0.92 26.25 0.76 27.78 0.88 26.94 0.86 26.19 0.84 25.94 0.84

RED-SENet 26.45 0.85 28.77 0.91 27.07 0.88 25.52 0.86 26.26 0.86 25.66 0.84

Our model 30.88 0.92 29.13 0.91 28.09 0.88 27.25 0.86 26.49 0.86 26.01 0.85

σ, noise level; PSNR, peak signal-to-noise ratio; SSIM, structural similarity; NOISE, speckle-noised images; BM3D, block-matching and 
three-dimensional filtering; CNN-DAE, convolutional neural network-denoising autoencoder; DnCNN, denoising convolutional neural 
network; RED-SENet, residual encoder-decoder with squeeze-and-excitation network.
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Figure 5 Subjective visual comparison of the denoised fetal head images at σ =5.0. (A) Original image, (B) noised image, (C) BM3D, (D) 
Gauss filter, (E) CNN-DAE, (F) DnCNN, (G) RED-SENet, (H) our model. BM3D, block-matching and three-dimensional filtering; 
CNN-DAE, convolutional neural network-denoising autoencoder; DnCNN, denoising convolutional neural network; RED-SENet, 
residual encoder-decoder with squeeze-and-excitation network; σ, noise level.
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DAE, DnCNN, and RED-SENet models, generally 
performed better on the objective metrics, but had the 
problems of blurred image texture and noisy edges on the 
subjective visual images. In both the brachial plexus test set 
and fetal head test set, the LAD-CNN model outperformed 
the conventional denoising models and the other deep-
learning denoising models.

Further, it is worth noting that the RED-SENet model 
exhibited artifacts on the brachial plexus test set that 
were not present in (12) and other test sets in the present 
study. The training and test sets in (12) were from the 
same ultrasound data set, while the training set and test 
sets were from different data sets in the present study. 

It is speculated that the RED-SENet model may be less 
effective when the training and test sets are from different 
data sets, particularly when dealing with low-quality images. 
Therefore, we suggest that the same data set be used for 
training and testing to prevent the occurrence of artifacts 
on low-quality ultrasound images.

Potential application in medical diagnostics

To evaluate the denoising effect of the LAD-CNN 
model in clinical diagnosis, eight ultrasonographers 
(two physicians and six technicians, all with more than  
five years of experience) used their expertise and experience 

Table 5 PSNR statistics for each model at the noise level of σ =3

Model BM3D Gauss filter CNN-DAE DnCNN RED-SENet

P value <0.001 <0.001 0.001 <0.001 0.004

PSNR, peak signal-to-noise ratio; σ, noise level; BM3D, block-matching and 3D filtering; CNN-DAE, convolutional neural network–
denoising autoencoder; DnCNN, denoising convolutional neural network; RED-SENet, residual encoder-decoder with squeeze-and-
excitation network.
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Figure 6 Subjective visual comparison of the denoised images from different models using the private data set. (A) Original image, (B) 
BM3D, (C) Gauss filter, (D) CNN-DAE, (E) DnCNN, (F) RED-SENet, (G) our model. BM3D, block-matching and three-dimensional 
filtering; CNN-DAE, convolutional neural network-denoising autoencoder; DnCNN, denoising convolutional neural network; RED-
SENet, residual encoder-decoder with squeeze-and-excitation network.
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to evaluate 100 real ultrasound data sets. The evaluation 
criteria were whether the ultrasound images were clearer after 
denoising than before denoising, and whether it was easier to 
confirm the lesions or organs during diagnosis. The results of 
the questionnaire are shown in Figure 7. Six ultrasonographers 
were of the view that the LAD-CNN model was more effective 
in denoising (see Figure 7A), and seven ultrasonographers were 
of the view that our model could assist in ultrasound diagnosis 
(see Figure 7B). The results further confirmed the effectiveness 
of the proposed denoising model.

The time taken to process a 128 px × 128 px—sized 
ultrasound image was compared with the conventional 
model and the deep-learning models at a noise level of  
σ =3.0 (see Table 7). Between the two conventional models, 
BM3D shows a better denoising effect than Gaussian 
filtering, but the time cost was greatly increased. In 
comparison, the deep-learning models had excellent 
denoising performances and basically realized “real-time 
denoising”. Thus, the use of deep-learning denoising 
represents a promising method for image processing.

Table 6 Comparison of the metrics of the various models using the private data set

Model BM3D Gauss filter CNN-DAE DnCNN RED-SENet Our model

ENL 13.78 13.59 16.64 13.15 14.41 16.73

BM3D, block-matching and three-dimensional filtering; CNN-DAE, convolutional neural network-denoising autoencoder; DnCNN, 
denoising convolutional neural network; RED-SENet, residual encoder-decoder with squeeze-and-excitation network; ENL, equivalent 
number of looks.
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Ablation experiments

To assess the effect of the two attention blocks added to 
the present model (i.e., the LCA block and the LLA block) 
on denoising performance, ablation experiments were 
carried out on the base model of the CNN-DAE model. As  
Table 8 shows, Model I refers to the base model without 
adding any block, Model II incorporates a LLA block 
only, Model III involves a LCA block, and Model IV 

incorporates both lightweight attention blocks. Except for 
the aforementioned differences, the same settings as those 
for the model training were used, and 100 fetal head data 
sets were used as the test set.

As Table 8 shows, the metrics of Model I were the lowest 
at all noise levels. The metrics increased with the addition 
of different blocks, and the metrics of Model IV achieved 
the highest values. The LCA block enabled the model to 

Figure 7 Questionnaire on the denoising effect of real ultrasound images. (A) The most effective model in denoising. (B) Effectiveness 
of the denoising model for clinical diagnosis. BM3D, block-matching and three-dimensional filtering; CNN-DAE, convolutional neural 
network-denoising autoencoder.
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Table 7 Comparison of denoising time

Model BM3D Gauss filter CNN-DAE DnCNN RED-SENet Our model

Time(s) 7.150 0.08 0.008 0.009 0.008 0.008

BM3D, block-matching and three-dimensional filtering; CNN-DAE, convolutional neural network-denoising autoencoder; DnCNN, 
denoising convolutional neural network; RED-SENet, residual encoder-decoder with squeeze-and-excitation network.

Table 8 Comparison of the metrics from the ablation experiments

Model

Noise level

σ =2 σ =3 σ =4 σ =5 σ =6 σ =7

PSNR SSIM PSNR SSIM PSNR SSIM PSNR SSIM PSNR SSIM PSNR SSIM

Model I 30.45 0.90 28.81 0.90 27.64 0.86 26.89 0.84 26.01 0.85 25.60 0.83

Model II 30.52 0.91 29.01 0.90 27.72 0.87 27.06 0.84 26.16 0.85 25.69 0.86

Model III 30.73 0.91 29.03 0.90 27.83 0.87 27.05 0.85 26.23 0.85 25.88 0.87

Model IV 30.88 0.92 29.13 0.91 28.09 0.88 27.25 0.86 26.79 0.86 26.01 0.85

σ, noise level; PSNR, peak signal-to-noise ratio; SSIM, structural similarity.
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adjust attention dynamically among different channels by 
introducing a channel attention mechanism. The LLA 
block expanded the receptive field by increasing the size of 
the convolutional kernel, enabling global information to be 
captured more comprehensively. Both blocks contributed 
to the improvement of speckle noise reduction. Mann-
Whitney U tests were conducted on the data at the noise 
level of σ =3. The results, as shown in Table 9, indicate that 
all the P values were below 0.05, suggesting the presence of 
a significant difference.

Conclusions

To address the issues of insufficient denoising performance 
and the loss of detail in existing deep-learning algorithms 
for denoising ultrasound images, we proposed the LAD-
CNN model. The model incorporates a LCA block and 
a LLA block, which are concatenated into the encoding 
and decoding stages. Skip connections are employed to 
preserve image details and prevent overfitting. Subpixel 
convolutional layers are introduced in the decoding stage to 
enlarge the receptive field. To address the issue of artifacts, a 
composite loss function (comprising the linear combination 
of the MSE and TV functions) is employed. Comprehensive 
subjective visual evaluations and objective metrics were used 
to examine the denoising effect on both simulated speckle 
noise images and real ultrasound images. Comparisons 
against conventional denoising models and deep-learning 
models demonstrated that the proposed model effectively 
reduced speckle noise and preserved texture details in the 
ultrasound images.

Our future work will focus on the feasibility of practical 
medical applications while continuously optimizing the 
performance of the model. First, we plan to explore more 
efficient model structures to improve the performance of 
deep-learning models in medical image denoising. Second, 
we will focus on translating the results into practical medical 
applications and efficiently integrating deep-learning 
models into the medical image processing. We aim to make 
this preprocessing process available to physicians, enabling 

them to assist in diagnoses.
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