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Deep-learning-based reconstruction of T2-weighted magnetic 
resonance imaging of the prostate accelerated by compressed 
sensing provides improved image quality at half the acquisition time
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Background: Deep-learning-based reconstruction (DLR) improves the quality of magnetic resonance (MR) 
images which allows faster acquisitions. The aim of this study was to compare the image quality of standard 
and accelerated T2 weighted turbo-spin-echo (TSE) images of the prostate reconstructed with and without 
DLR and to find associations between perceived image quality and calculated image characteristics.
Methods: In a cohort of 47 prospectively enrolled consecutive patients referred for bi-parametric prostate 
magnetic resonance imaging (MRI), two T2-TSE acquisitions in the transverse plane were acquired on a 3T 
scanner-a standard T2-TSE sequence and a short sequence accelerated by a factor of two using compressed 
sensing (CS). The images were reconstructed with and without DLR in super-resolution mode. The image 
quality was rated in six domains. Signal-to-noise ratio (SNR), and image sharpness were measured. 
Results: The mean acquisition time was 281±23 s for the standard and 140±12 s for the short acquisition 
(P<0.0001). DLR images had higher sharpness compared to non-DLR (P<0.001). Short and short-DLR 
had lower SNR than the standard and standard-DLR (P<0.001). The perceived image quality of short-DLR 
was rated better in all categories compared to the standard sequence (P<0.001 to P=0.004). All domains of 
subjective evaluation were correlated with measured image sharpness (P<0.001). 
Conclusions: T2-TSE acquisition of the prostate accelerated using CS combined with DLR 
reconstruction provides images with increased sharpness that have a superior quality as perceived by human 
readers compared to standard T2-TSE. The perceived image quality is correlated with measured image 
contrast.
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Introduction

Magnetic resonance imaging (MRI) of the prostate has 
been introduced in the pathway of early detection of 
clinically significant prostate cancer (csPCa) alongside 
serum prostate-specific antigen (PSA) levels and digital 
rectal examination to improve the efficiency of the process 
(1,2). Even risk-stratified population screening for prostate 
MRI places a substantial strain on the MR facilities where it 
competes for scanner time (3).

To maintain the image quality of multiparametric 
MRI (mpMRI), the acquisition protocol should reflect 
recommendations set by the Prostate Imaging Reporting 
and Data System (PI-RADS) 2.1 working group (4) and 
fulfill criteria set by the PI-QUAL (5). To simplify and 
accelerate prostate imaging, it has been suggested that 
bi-parametric MRI (bpMRI) may not be inferior in the 
detection of csPCa compared to mpMRI in a selected 
population (3,6). The use of a 3D T2-weighted turbo-
spin-echo (TSE) sequence to replace the three planes 
commonly used for T2 imaging of the prostate has been 
proposed but has not been widely adopted due to lower 
spatial resolution, greater susceptibility to motion artifacts, 
and worse tissue contrast compared to T2-TSE (7). Also, 
reducing the imaging to only one plane spares additional 
time with diagnostic accuracy comparable to “full” bi-plane 
T2 imaging in a so-called “fast bpMRI” (8,9).

Great effort has also been devoted to the acceleration 
of MRI sequences including improved signal processing, 
parallel imaging techniques, improved coil geometry, 
and sensitivity. Variable density pseudo-random k-space 
undersampling along the phase encoding direction with 
wavelet sparsity constraint and image reconstruction using 
sensitivity encoding parallel imaging (“compressed sensing”, 
CS) allow further temporal optimization of an MRI 
sequence, sometimes with aggravation of image artifacts 
(10-12). Image reconstruction from subsampled data using 
artificial intelligence (AI) and specifically deep-learning-
based reconstruction (DLR) has introduced another 
dimension of optimization of acquisition time, and the body 
of literature describing its potential in accelerating prostate 
MRI is growing (13-17). 

Methods for reconstructing MR images from undersampled 
data based on deep learning include a variety of approaches, 
including popular architectures such as U-Net, implemented 
either as dual-domain networks to exploit both spatial and 
k-space information or separately. Additionally, the utilization 
of Recurrent Neural Networks (RNN) or Generative 

Adversarial Networks (GAN) is common in MR image 
reconstruction. Hybrid methodologies integrate deep learning 
with physical models, iteratively refining the reconstruction 
process (18). 

Only one study has previously used DLR with resolution 
upscaling convolutional neural network (CNN) to improve 
images acquired with low resolution (19). Here, we used 
both of these techniques for standard acquisition and its 
accelerated version changing the CS acceleration factor. 

The recently developed SuperResolution CNN for 
upscaling magnetic resonance (MR) images is being 
implemented in clinical imaging and requires validation 
along with other acquisition and reconstruction techniques. 
Several studies have evaluated the performance of different 
types of SuperResolution networks using deep neural 
networks for brain MRI in terms of diagnostic performance 
and image quality (20-22). Novel denoising and super-
resolution approaches for MR images have been proposed 
and integrated into a single framework (23). GAN-based SR 
methods have also been reviewed for MRI reconstruction 
and acceleration tasks (24). Deep learning has been explored 
for enhancing spatial detail from small-matrix MRI 
acquisitions and has shown promising results. 

The objective of this study was to compare the image 
quality of standard and accelerated T2 TSE of the prostate 
reconstructed with and without DLR (including resolution 
upscaling CNN) and to find associations between perceived 
image quality and calculated image characteristics. We 
present this article in accordance with the STROBE 
reporting checklist (available at https://qims.amegroups.
com/article/view/10.21037/qims-23-1488/rc).

Methods

The study was conducted in accordance with the 
Declaration of Helsinki (as revised in 2013). The study was 
approved by Ethics Committee of the General University 
Hospital in Prague (No. 244/21 S-IV) and informed 
consent was taken from all individual participants.

Patient population

In this observational prospective study, we included 
consecutive patients ≥45 years of age who underwent 
bpMRI of the prostate for suspected prostate cancer 
between October 25, 2022, and December 2, 2022. The 
inclusion criteria were: informed consent; age ≥45 years; 
bpMRI; raw data and subsequent complete reconstructions 

https://qims.amegroups.com/article/view/10.21037/qims-23-1488/rc
https://qims.amegroups.com/article/view/10.21037/qims-23-1488/rc
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of both short and long T2-TSE acquisitions. Exclusion 
criteria were: prior prostatectomy; and severe artifacts from 
motion or metallic implants on T2-TSE.

MR acquisition

The examinations were performed on a 3T MRI scanner, 
Ingenia Elition (Philips, Best, The Netherlands), using phased 
array coils. Before the examination, all patients received 
hyoscine butylbromide (Buscopan, Boehringer Ingelheim 
Espana SA, Sant Cugat Del Valles, Spain) 20 mg/1 mL i.v. 
Within the bi-parametric prostate MRI, two transverse T2-
TSE sequences were acquired (Table 1). The acquisition time 
of a standard T2-TSE sequence had an estimated time of 4:27 s. 
The short T2 sequence (short) was accelerated twice using CS 
with an estimated acquisition time of 2:13 s. During the study 
interval, the order in which the two acquisitions were made, 
was changed. 

The data were immediately reconstructed with currently 
available CS technique (11,12,25-27). CS performs variable 
density pseudo-random k-space undersampling along the 

phase encoding direction. CS reconstruction algorithm 
performs iterative wavelet transformation of major 
components with wavelet sparsity constraint, suppression 
of noise, and comparison with original acquisition. CS is 
used together with parallel imaging technique (sensitivity 
encoding).

Raw data from the two acquisitions were saved and 
additionally reconstructed using vendor provided prototype 
(Philips SmartSpeed Precise Image, Table 1). This AI-based 
reconstruction technique consists of a series of CNNs as 
Adaptive CS Network (28) and SuperResolution Network 
(Precise Image Network) (29).

Adaptive CS Network represents iterative shrinkage-
thresholding approach (ISTA) as presented by Zhang  
et al. (30) and allows to reconstruct images acquired with 
CS technique (18,31,32).

This CNN is applied prior coil channel combination, 
removing the noise from the images to obtain good image 
quality from accelerated acquisitions (29). The Adaptive-
CS-Network employed in this work was pre-trained on 
740,000 sparsifying MR images using both 1.5T and 3T 
images of various anatomies and contrasts (25,33). The 
prototype was adapted and optimized to run on up-to-date 
standard reconstruction hardware available in our 3T MR 
scanner (31).

Precise Image Net is an AI-model applied to remove 
ringing artefacts and to replace the traditional zero-
filling strategy to increase the matrix size and therewith 
the sharpness of the images; these types of networks are 
known as Super Resolution networks (34,35). This network 
is trained on pairs of low- and high-resolution data with 
k-space crops to induce ringing. Data consistency checks 
are implemented to match the resulting k-space with the 
measured k-space data. The full reconstruction pipeline 
generates images with improved signal-to-noise ratio (SNR) 
and sharpness, higher matrix size and reduced ringing 
artefacts, and can be applied to all two-dimensional (2D) 
cartesian acquisitions.

MR evaluation and data processing

The studies were transferred to a multimodality workstation 
(Intellispace Portal, Philips, Best, The Netherlands) and 
reviewed in a random order. Three radiologists with 
experience of 4, 10, and 12 years in prostate MRI imaging 
(I.M., M.W., A.B.) rated the image quality on a five-point 
scale as (I) non-diagnostic; (II) poor but still interpretable; 
(III) acceptable (worse than expected); (IV) good (as 

Table 1 Acquisition and reconstruction protocols 

Acquisition Std/Short

Acquisition time (min:s) 4:27/2:13

Field-of-view (mm) 230×184 

Acquisition voxel size (mm) 0.62×0.76 

Slice thickness (mm) 3 

Slice gap 0

Number of slices 38

Number of excitations 1 

Acquisition matrix 372×299

TE (ms) 100 

TR (s) 3.9 

TSE factor 15

Bandwidth (Hz) 143 

Compressed sense factor 1.3/2.8 

Plane Transverse

Phase encoding RL

Reconstruction matrix Std: 400; DLR: 1,008

Std, standard acquisition; Short, short acquisition; TE, time to 
echo; TR, repetition time; TSE, turbo spine echo; DLR, deep-
learning-based reconstruction; RL, right-left. 
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expected); (V) excellent (better than expected) in the 
following categories: (i) image noise; (ii) image contrast; 
(iii) image sharpness; (iv) neurovascular bundle delineation; 
(v) urethral sphincter delineation; (vi) overall image quality 
(7,36). They also rated the presence of motion artifacts on 
a five-point scale to exclude acquisitions deteriorated by 
motion (non-interpretable, or poor but still interpretable).

One radiologist (M.W.) measured (I) mean and standard 
deviation of voxel intensity in an oval region of interest 
(ROI) in the fat tissue in the ischiorectal fossa on the right 
and left side, and (II) volume of the prostate (37,38). 

For objective quantification of image sharpness, the 
mean absolute value of the intensity gradient was computed 
for each slice after it was cropped to the central 50% in 
both dimensions. This computation utilized a 2D discrete 
differential operator, considering the pixel size to enable 
accurate comparisons. These determined values of the 
image gradient magnitude reflect the steepness of the 
signal intensity edges, which is strongly correlated with 
image sharpness, as previously demonstrated (39). This 

value reflects the steepness of signal intensity edges, which 
strongly correlates with image sharpness. The computation 
was implemented in Python 3.9, operating in fully 
automatic mode. The source code for this implementation 
was made available in the GitHub repository (https://
github.com/JakubicekRoman/QuantSharp). SNR was 
calculated as average signal intensity in the right and left 
ischiorectal fossa divided by its standard deviation.

Clinical data were retrieved from the hospital information 
system, and radiology reports, that were searched for 
previous prostate surgery, for the reason to perform MRI, 
and PI-RADS score (4).

Based on the sample size calculation to achieve a power 
of 80% and a two-sided level of significance of 5% for an 
effect size of 0.5, the study required 34 subjects.

Statistical analysis

Statistical analysis was performed in Prism (GraphPad 
Software, La Jolla, CA, USA), and R (R Foundation for 
Statistical Computing, Vienna, Austria). Continuous and 
ordinal data were compared using the Friedman’s test 
with Nemenyi’s post hoc tests, and expressed as median 
(interquartile range, IQR) or average ± standard deviation 
according to their distribution (D’Agostino & Pearson 
omnibus normality test). Average values of subjective 
evaluation scores were compared. Correlations were 
calculated using Spearman rank correlation (“rho”, ρ). 
Interobserver agreement was calculated as Fleiss’ kappa. A 
P value <0.05 was considered significant.

Results

From 48 bpMRI complete consecutive MR acquisitions 
(standard and short) and reconstructions (standard and 
DLR), one study was excluded due to severe motion artifacts, 
yielding a final study group of 47 patients 69.8±8.3 years  
old. MRI was requested for suspected prostate cancer (n=37), 
known prostate cancer after transurethral prostate resection 
(n=2), before radiotherapy (n=4), or as active surveillance 
(n=4, Table 2). The mean acquisition time was 281±23 s for 
the standard and 140±12 s for the short sequence.

The perceived image quality (Figure 1) was rated better 
in all categories in the short-DLR sequence compared 
to the standard sequence (without DLR, P<0.001 to 
P=0.004). No significant difference was observed between 
standard-DLR and short-DLR or standard and short 
sequences (Figure 2, Table S1). Images reconstructed with 

Table 2 Patient’s characteristics

Parameter Value

Patients (n) 47

Age (years) (mean ± SD) 69.8±8.3

MRI request (n)

Suspected prostate cancer (PSA ± DRE) 37

Known prostate cancer

After TURP 2

Before radiotherapy 4

Active surveillance 4

Prostate volume (mL) (mean ± SD) 69.8±8.3

PI-RADS (n)

Not stated 5

1 0

2 30

3 4 (4 PZ)

4 7 (7 PZ)

5 1 (1 PZ)

SD, standard deviation; MRI, magnetic resonance imaging; 
PSA, prostate specific antigen; DRE, digital rectal examination; 
TURP, transurethral resection of the prostate; PI-RADS, Prostate 
Imaging-Reporting and Data System; PZ, peripheral zone. 

https://github.com/JakubicekRoman/QuantSharp
https://github.com/JakubicekRoman/QuantSharp
https://cdn.amegroups.cn/static/public/QIMS-23-1488-Supplementary.pdf
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Figure 1 Comparison among standard and short T2 weighted turbo spin echo acquisitions and reconstructions with and without deep 
learning in 82-year-old (A) and 73-year-old (B) patients with well delineated hyperplastic nodules in the transition zone. PI-RADS 4 
lesion in the peripheral zone of the right posterior midgland (Gleason score 4+4, arrow) and mild motion blur can be appreciated in the 
second patient (B). Std, standard acquisition; sh, sharpness; snr, signal-to-noise ratio; Short, short acquisition; DLR, deep-learning-based 
reconstruction; PI-RADS, Prostate Imaging-Reporting and Data System.

DLR had significantly better sharpness compared to non-
DLR reconstructions (P<0.001, Table S1, Figure 3). Even 
short acquisition with DLR had a better image sharpness 
than standard acquisition without DLR (P<0.001). No 
difference in SNR was observed between DLR and standard 
reconstruction both in the short acquisitions (P=0.53) 
or in the standard acquisitions (P=0.91). Both short and 
short-DLR had lower SNR compared to the standard and 
standard-DLR (P<0.001). 

All categories of subjective evaluation were highly 
correlated with measured image sharpness (P<0.001,  
Table S2). SNR was correlated with image noise (P<0.001), 
image contrast (P=0.04), image sharpness (P=0.03), and 
overall rating of image quality (P<0.001, Table S2).

The Interobserver agreement in rating image quality in 
the six domains ranged from 0.49 (image contrast) to 0.72 
(image sharpness, Table S3).

Discussion

In this prospective study, we showed that DLR reconstruction 
with resolution upscaling in both standard and short T2 
TSE acquisitions improved image sharpness and perceived 

image quality in all domains. The DLR image even from 
the short acquisition was rated superior to the standard 
acquisition without DLR.

DLR is based on deep learning performed on an artificial 
neural network. The network develops associations between 
undersampled data from K-space and their standard 
equivalents (supervised learning). Also, AI performs 
unsupervised learning that enforces data consistency and 
suppresses artifacts (40,41). Finally, the network reaches 
a state, where it reproduces heavily undersampled data in 
MRI images with nearly original image quality.

In this work, we studied the influence of image 
acquisition (acceleration by sparse K-space sampling) and 
reconstruction (with and without DLR) on image quality. 
We demonstrated the positive effect of DLR especially 
on the image sharpness and perceived image quality. 
Previously, Gassenmaier et al. reported the use of DLR in 
three-plane prostate T2-TSE with the acceleration of the 
whole protocol by a factor of 2.7 and improved perceived 
image quality (13). The same study group reported 
improved perceived image quality using 2 mm instead 
of 3 mm slice thickness reconstructed using DLR (42). 
Their evaluation of image quality was based on a devised  

A B

https://cdn.amegroups.cn/static/public/QIMS-23-1488-Supplementary.pdf
https://cdn.amegroups.cn/static/public/QIMS-23-1488-Supplementary.pdf
https://cdn.amegroups.cn/static/public/QIMS-23-1488-Supplementary.pdf
https://cdn.amegroups.cn/static/public/QIMS-23-1488-Supplementary.pdf
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Figure 2 Comparison of image quality rated on a five-point scale on a box-and-whiskers plot (min, lower quartile, median, upper quartile, 
max, ‘+’ denotes average) among standard and short acquisition protocols and reconstruction with and without deep learning. Post-hoc tests 
significance is marked by asterisks: ***, P<0.001; **, P<0.01. Std, standard acquisition; Short, short acquisition; DLR, deep-learning-based 
reconstruction.

Figure 3 Comparison of measured image sharpness and contrast-to-noise ratio on a box-and-whiskers plot (min, lower quartile, median, 
upper quartile, max, ‘+’ denotes average) among standard and short acquisition protocols and reconstruction with and without deep learning. 
Post-hoc tests significance is marked by asterisks: ***, P<0.001; *, P<0.05. a.u., arbitrary unit; Std, standard acquisition; DLR, deep-learning-
based reconstruction; Short, short acquisition.
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four-point scale and no objective evaluation was performed. 
The use of DLR affected neither the T2 score nor the 
overall PI-RADS category. In our study, a time reduction 
by a factor of 2 was tested with similar results on a different 
3T scanner. We also showed that DLR substantially 
improved image sharpness both in standard and accelerated 
sequences. Harder et al. compared undersampled T2-TSE 
with different acceleration factors using compressed sense 

and earlier version of DLR on a six-point Likert scale in six 
dimensions and with apparent SNR, CNR, and line profile. 
They showed that DLR lead to increased SNR, CNR and 
image quality ratings enabling 58% acceleration (25).

Lee et al. reported that T2-TSE accelerated by 33% 
by reducing the number of excitations from 1.5 to 1 and 
reconstructed with DLR did not compromise image 
quality compared to the standard of care (16). Kim et al. 
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found that T2-TSE accelerated by a factor of four even if 
reconstructed with DLR results in lower ratings of image 
quality compared to the standard of care (15). Park et al. 
showed that fast T2-TSE reconstructed with DLR had 
higher SNR, but in our study, DLR improved sharpness 
but not SNR (43). Another study by Tong et al. reported 
two to three-fold acceleration of T2-TSE using DLR 
with preserved image quality (44). Johnson et al. used 
retrospective synthetic undersampling of T2-TSE with 
computed acceleration of scan time by a factor of six (14). A 
significant difference in overall image quality was regarded 
by only one of their four readers, but the diagnostic 
performance in the identification of clinically significant 
lesions did not change. In our study, we did not evaluate 
the diagnostic performance, because none of the patients 
had any clinically significant lesion in the transition zone, 
where T2 sequence is dominant for its evaluation. Although 
previous studies claimed to have addressed the diagnostic 
performance as well, the number of evaluated significant 
lesions in the transition zone was limited (19,25).

Recently, Bischoff et al. published a study comparing T2-
TSE with decreased resolution reconstructed with DLR 
including resolution upscaling using similar reconstruction 
software acquired with 36% time save and improved image 
sharpness (19). In this study, we used the SuperResolution 
net to upscale images acquired with standard resolution.

Although the image qual i ty can be objectively 
(homogeneity, resolution, linearity, SNR) measured on 
an MRI phantom, it rarely resembles the heterogeneous 
landscape introduced by the human body including motion 
and susceptibility artifacts. Excellent image quality of 
T2-TSE of the prostate can be obtained even without 
respecting minimal parameters recommended by the PI-
RADS v2.1 (4,5). Apart from the technical capabilities of 
the scanner, the image quality of prostate T2-TSE is also 
affected by other settings (e.g. bandwidth, turbo factor, echo 
and repetition times, voxel size, slice thickness) and other 
factors including motion artifacts, susceptibility artifacts, 
and patient diameter (5,45).

Rating of image quality was systematically introduced by 
Giganti et al. as PI-QUAL score (5,36). The score is also 
based on subjective evaluation only. Objective image quality 
measurement on MRI in different domains is difficult, 
although the use of AI in quality control of prostate MRI 
has been proposed (46). Here, we expressed sharpness in 
absolute values as a no-reference statistics of gradient of 
the edges (39). In accordance with the PI-QUAL scoring 
system, image quality is perceived as image sharpness rather 

more than SNR.

Study limitations

We identified the following limitations of the study. First, 
we evaluated only one sequence of the bi-parametric MRI 
protocol. Second, although the sequence of standard and 
short acquisitions was alternated, the difference in the 
appearance of the images was revealing of the reconstruction 
algorithm. Third, this study was performed on a technical 
level as none of these patients had clinically significant 
lesions in the transition zone, where the T2 sequence is 
dominant for interpretation. Fourth, the reconstruction of 
DLR in research mode had to be performed from raw data 
in off-time (research software) and therefore 9 patients with 
incomplete DLR reconstructions (auto-deleted raw data or 
DLR reconstruction not completed) could not be included. 
Further studies should ensue to evaluate the effect of short 
MRI acquisition with DLR on the diagnostic performance 
of prostate MRI in the transition zone, where the T2 
sequence is dominant.

Conclusions

Acceleration of T2 TSE prostate MRI by a factor of two 
using CS combined with deep learning reconstruction 
produces images with increased sharpness that have a 
superior quality as perceived by human readers compared 
to standard T2-TSE. The perceived image quality is 
correlated with measured image sharpness.

Acknowledgments

Funding: This study was supported by the Ministry of 
Health of the Czech Republic (MH CZ-DRO, General 
University Hospital in Prague) (No. 00064165) and the 
institutional funding of the Charles University in Prague 
(Cooperatio, Medical Diagnostics and Basic Medical 
Sciences) (UNCE 24/MED/018). 

Footnote

Reporting Checklist: The authors have completed the 
STROBE reporting checklist. Available at https://qims.
amegroups.com/article/view/10.21037/qims-23-1488/rc

Conflicts of Interest: All authors have completed the ICMJE 
uniform disclosure form (available at https://qims.

https://qims.amegroups.com/article/view/10.21037/qims-23-1488/rc
https://qims.amegroups.com/article/view/10.21037/qims-23-1488/rc
https://qims.amegroups.com/article/view/10.21037/qims-23-1488/coif


Quantitative Imaging in Medicine and Surgery, Vol 14, No 5 May 2024 3541

© Quantitative Imaging in Medicine and Surgery. All rights reserved.   Quant Imaging Med Surg 2024;14(5):3534-3543 | https://dx.doi.org/10.21037/qims-23-1488

amegroups.com/article/view/10.21037/qims-23-1488/
coif). L.L. serves as an unpaid editorial board member 
of Quantitative Imaging in Medicine and Surgery. P.O. is a 
current employee of Philips Healthcare. The other authors 
have no conflicts of interest to declare.

Ethical Statement: The authors are accountable for all 
aspects of the work in ensuring that questions related 
to the accuracy or integrity of any part of the work are 
appropriately investigated and resolved. The study was 
conducted in accordance with the Declaration of Helsinki 
(as revised in 2013). The study was approved by Ethics 
Committee of the General University Hospital in Prague 
(No. 244/21 S-IV) and informed consent was taken from all 
individual participants.

Open Access Statement: This is an Open Access article 
distributed in accordance with the Creative Commons 
Attribution-NonCommercial-NoDerivs 4.0 International 
License (CC BY-NC-ND 4.0), which permits the non-
commercial replication and distribution of the article with 
the strict proviso that no changes or edits are made and the 
original work is properly cited (including links to both the 
formal publication through the relevant DOI and the license). 
See: https://creativecommons.org/licenses/by-nc-nd/4.0/.

References

1. Eldred-Evans D, Tam H, Sokhi H, Padhani AR, Winkler 
M, Ahmed HU. Rethinking prostate cancer screening: 
could MRI be an alternative screening test? Nat Rev Urol 
2020;17:526-39.

2. Frisbie JW, Van Besien AJ, Lee A, Xu L, Wang S, Choksi 
A, Afzal MA, Naslund MJ, Lane B, Wong J, Wnorowski A, 
Siddiqui MM. PSA density is complementary to prostate 
MP-MRI PI-RADS scoring system for risk stratification 
of clinically significant prostate cancer. Prostate Cancer 
Prostatic Dis 2023;26:347-52.

3. Wallström J, Geterud K, Kohestani K, Maier SE, Månsson 
M, Pihl CG, Socratous A, Arnsrud Godtman R, Hellström 
M, Hugosson J. Bi- or multiparametric MRI in a 
sequential screening program for prostate cancer with PSA 
followed by MRI? Results from the Göteborg prostate 
cancer screening 2 trial. Eur Radiol 2021;31:8692-702.

4. Turkbey B, Rosenkrantz AB, Haider MA, Padhani AR, 
Villeirs G, Macura KJ, Tempany CM, Choyke PL, 
Cornud F, Margolis DJ, Thoeny HC, Verma S, Barentsz J, 
Weinreb JC. Prostate Imaging Reporting and Data System 

Version 2.1: 2019 Update of Prostate Imaging Reporting 
and Data System Version 2. Eur Urol 2019;76:340-51.

5. Giganti F, Kasivisvanathan V, Kirkham A, Punwani S, 
Emberton M, Moore CM, Allen C. Prostate MRI quality: 
a critical review of the last 5 years and the role of the PI-
QUAL score. Br J Radiol 2022;95:20210415.

6. Bass EJ, Pantovic A, Connor M, Gabe R, Padhani AR, 
Rockall A, Sokhi H, Tam H, Winkler M, Ahmed HU. 
A systematic review and meta-analysis of the diagnostic 
accuracy of biparametric prostate MRI for prostate 
cancer in men at risk. Prostate Cancer Prostatic Dis 
2021;24:596-611.

7. Polanec SH, Lazar M, Wengert GJ, Bickel H, Spick C, 
Susani M, Shariat S, Clauser P, Baltzer PAT. 3D T2-
weighted imaging to shorten multiparametric prostate 
MRI protocols. Eur Radiol 2018;28:1634-41.

8. van der Leest M, Israël B, Cornel EB, Zámecnik P, 
Schoots IG, van der Lelij H, Padhani AR, Rovers M, van 
Oort I, Sedelaar M, Hulsbergen-van de Kaa C, Hannink 
G, Veltman J, Barentsz J. High Diagnostic Performance of 
Short Magnetic Resonance Imaging Protocols for Prostate 
Cancer Detection in Biopsy-naïve Men: The Next Step 
in Magnetic Resonance Imaging Accessibility. Eur Urol 
2019;76:574-81.

9. Hötker AM, Vargas HA, Donati OF. Abbreviated MR 
Protocols in Prostate MRI. Life (Basel) 2022;12:552.  

10. Winkel DJ, Heye TJ, Benz MR, Glessgen CG, Wetterauer 
C, Bubendorf L, Block TK, Boll DT. Compressed Sensing 
Radial Sampling MRI of Prostate Perfusion: Utility for 
Detection of Prostate Cancer. Radiology 2019;290:702-8.

11. Yu VY, Zakian K, Tyagi N, Zhang M, Romesser PB, 
Dresner A, Cerviño L, Otazo R. Combined Compressed 
Sensing and SENSE to Enhance Radiation Therapy 
Magnetic Resonance Imaging Simulation. Adv Radiat 
Oncol 2022;7:100799.

12. Lustig M, Donoho D, Pauly JM. Sparse MRI: The 
application of compressed sensing for rapid MR imaging. 
Magn Reson Med 2007;58:1182-95.

13. Gassenmaier S, Afat S, Nickel MD, Mostapha M, 
Herrmann J, Almansour H, Nikolaou K, Othman 
AE. Accelerated T2-Weighted TSE Imaging of the 
Prostate Using Deep Learning Image Reconstruction: A 
Prospective Comparison with Standard T2-Weighted TSE 
Imaging. Cancers (Basel) 2021;13:3593.

14. Johnson PM, Tong A, Donthireddy A, Melamud K, 
Petrocelli R, Smereka P, Qian K, Keerthivasan MB, 
Chandarana H, Knoll F. Deep Learning Reconstruction 
Enables Highly Accelerated Biparametric MR Imaging of 

https://qims.amegroups.com/article/view/10.21037/qims-23-1488/coif
https://qims.amegroups.com/article/view/10.21037/qims-23-1488/coif
https://creativecommons.org/licenses/by-nc-nd/4.0/


Jurka et al. DLR of T2W of the prostate3542

© Quantitative Imaging in Medicine and Surgery. All rights reserved.   Quant Imaging Med Surg 2024;14(5):3534-3543 | https://dx.doi.org/10.21037/qims-23-1488

the Prostate. J Magn Reson Imaging 2022;56:184-95.
15. Kim EH, Choi MH, Lee YJ, Han D, Mostapha M, Nickel 

D. Deep learning-accelerated T2-weighted imaging of the 
prostate: Impact of further acceleration with lower spatial 
resolution on image quality. Eur J Radiol 2021;145:110012.

16. Lee KL, Kessler DA, Dezonie S, Chishaya W, Shepherd 
C, Carmo B, Graves MJ, Barrett T. Assessment of deep 
learning-based reconstruction on T2-weighted and 
diffusion-weighted prostate MRI image quality. Eur J 
Radiol 2023;166:111017.

17. Ghodrati V, Shao J, Bydder M, Zhou Z, Yin W, Nguyen 
KL, Yang Y, Hu P. MR image reconstruction using 
deep learning: evaluation of network structure and loss 
functions. Quant Imaging Med Surg 2019;9:1516-27.

18. Wang S, Xiao T, Liu Q, Zheng H. Deep learning for fast 
MR imaging: A review for learning reconstruction from 
incomplete k-space data. Biomed Signal Process Control 
2021;68:102579.

19. Bischoff LM, Peeters JM, Weinhold L, Krausewitz P, 
Ellinger J, Katemann C, Isaak A, Weber OM, Kuetting 
D, Attenberger U, Pieper CC, Sprinkart AM, Luetkens 
JA. Deep Learning Super-Resolution Reconstruction for 
Fast and Motion-Robust T2-weighted Prostate MRI. 
Radiology 2023;308:e230427.

20. Sharma R, Tsiamyrtzis P, Webb AG, Seimenis I, Loukas 
C, Leiss E, Tsekos NV. A Deep Learning Approach 
to Upscaling “Low-Quality” MR Images: An In Silico 
Comparison Study Based on the UNet Framework. Appl 
Sci 2022;12:11758.

21. Zhou Z, Ma A, Feng Q, Wang R, Cheng L, Chen X, Yang 
X, Liao K, Miao Y, Qiu Y. Super-resolution of brain tumor 
MRI images based on deep learning. J Appl Clin Med Phys 
2022;23:e13758.

22. Terada Y, Miyasaka T, Nakao A, Funayama S, Ichikawa S, 
Takamura T, Tamada D, Morisaka H, Onishi H. Clinical 
evaluation of super-resolution for brain MRI images based 
on generative adversarial networks. Inform Med Unlocked 
2022;32:101030.

23. Kaur P, Sao AK, Ahuja CK. Super Resolution of Magnetic 
Resonance Images. J Imaging 2021;7:101.

24. Guerreiro J, Tomás P, Garcia N, Aidos H. Super-
resolution of magnetic resonance images using Generative 
Adversarial Networks. Comput Med Imaging Graph 
2023;108:102280.

25. Harder FN, Weiss K, Amiel T, Peeters JM, Tauber R, 
Ziegelmayer S, Burian E, Makowski MR, Sauter AP, 
Gschwend JE, Karampinos DC, Braren RF. Prospectively 
Accelerated T2-Weighted Imaging of the Prostate by 

Combining Compressed SENSE and Deep Learning 
in Patients with Histologically Proven Prostate Cancer. 
Cancers (Basel) 2022.

26. Geerts-Ossevoort L, de Weerdt E, Duijndam A, van 
IJperen G, Peeters H, Doneva M, Nijenhuis M, Huang 
A. Speed done right. Every time. 2020. Accessed 9 Oct 
2023. Available online: https://www.philips.com.vn/c-dam/
b2bhc/master/landing-pages/compressed-sense-redesign/
speed/MR_white_paper_Compressed_SENSE.pdf

27. Hollingsworth KG. Reducing acquisition time in clinical 
MRI by data undersampling and compressed sensing 
reconstruction. Phys Med Biol 2015;60:R297-322.

28. Pezzotti N, Yousefi S, Elmahdy MS, Van Gemert 
JHF, Schuelke C, Doneva M, Nielsen T, Kastryulin 
S, Lelieveldt BPF, Van Osch MJP, De Weerdt E, 
Staring M. An Adaptive Intelligence Algorithm for 
Undersampled Knee MRI Reconstruction. IEEE Access 
2020;8:204825-38.

29. Peeters H, Chung H, Valvano G, Yakisikli D, van Gemert 
J, de Weerdt E, van de Ven K. Philips SmartSpeed. No 
compromise Image quality and speed at your fingertips. 
Accessed 9 Oct 2023. Available online: https://images.
philips.com/is/content/PhilipsConsumer/Campaigns/
HC20140401_DG/Documents/HC05072022-white_
paper_philips_smartspeed.pdf

30. Zhang J, Ghanem B. ISTA-Net: Interpretable 
optimization-inspired deep network for image compressive 
sensing. 2018 IEEE/CVF Conference on Computer 
Vision and Pattern Recognition, Salt Lake City, UT, USA, 
2018:1828-37.

31. Fervers P, Zaeske C, Rauen P, Iuga AI, Kottlors J, Persigehl 
T, Sonnabend K, Weiss K, Bratke G. Conventional 
and Deep-Learning-Based Image Reconstructions of 
Undersampled K-Space Data of the Lumbar Spine Using 
Compressed Sensing in MRI: A Comparative Study on 20 
Subjects. Diagnostics (Basel) 2023;13:418.

32. Feuerriegel GC, Weiss K, Kronthaler S, Leonhardt Y, 
Neumann J, Wurm M, Lenhart NS, Makowski MR, 
Schwaiger BJ, Woertler K, Karampinos DC, Gersing AS. 
Evaluation of a deep learning-based reconstruction method 
for denoising and image enhancement of shoulder MRI in 
patients with shoulder pain. Eur Radiol 2023;33:4875-84.

33. Foreman SC, Neumann J, Han J, Harrasser N, Weiss K, 
Peeters JM, Karampinos DC, Makowski MR, Gersing 
AS, Woertler K. Deep learning-based acceleration of 
Compressed Sense MR imaging of the ankle. Eur Radiol 
2022;32:8376-85.

34. Dong C, Loy CC, He K, Tang X. Image Super-Resolution 

https://www.philips.com.vn/c-dam/b2bhc/master/landing-pages/compressed-sense-redesign/speed/MR_white_paper_Compressed_SENSE.pdf
https://www.philips.com.vn/c-dam/b2bhc/master/landing-pages/compressed-sense-redesign/speed/MR_white_paper_Compressed_SENSE.pdf
https://www.philips.com.vn/c-dam/b2bhc/master/landing-pages/compressed-sense-redesign/speed/MR_white_paper_Compressed_SENSE.pdf
https://images.philips.com/is/content/PhilipsConsumer/Campaigns/HC20140401_DG/Documents/HC05072022-white_paper_philips_smartspeed.pdf
https://images.philips.com/is/content/PhilipsConsumer/Campaigns/HC20140401_DG/Documents/HC05072022-white_paper_philips_smartspeed.pdf
https://images.philips.com/is/content/PhilipsConsumer/Campaigns/HC20140401_DG/Documents/HC05072022-white_paper_philips_smartspeed.pdf
https://images.philips.com/is/content/PhilipsConsumer/Campaigns/HC20140401_DG/Documents/HC05072022-white_paper_philips_smartspeed.pdf


Quantitative Imaging in Medicine and Surgery, Vol 14, No 5 May 2024 3543

© Quantitative Imaging in Medicine and Surgery. All rights reserved.   Quant Imaging Med Surg 2024;14(5):3534-3543 | https://dx.doi.org/10.21037/qims-23-1488

Using Deep Convolutional Networks. IEEE Trans Pattern 
Anal Mach Intell 2016;38:295-307.

35. Li Y, Sixou B, Peyrin F. A review of the deep learning 
methods for medical images super resolution problems. 
IRBM 2021;42:120-33.

36. Giganti F, Allen C, Emberton M, Moore CM, 
Kasivisvanathan V; PRECISION study group. Prostate 
Imaging Quality (PI-QUAL): A New Quality Control 
Scoring System for Multiparametric Magnetic Resonance 
Imaging of the Prostate from the PRECISION trial. Eur 
Urol Oncol 2020;3:615-9.

37. Zhang Z, Dai G, Liang X, Yu S, Li L, Xie Y. Can Signal-
to-Noise Ratio Perform as a Baseline Indicator for Medical 
Image Quality Assessment. IEEE Access 2018;6:11534-43.

38. Erdogmus D, Larsson EG, Yan R, Principe JC, 
Fitzsimmons JR. Measuring the signal-to-noise ratio in 
magnetic resonance imaging: a caveat. Signal Process 
2004;84:1035-40.

39. Zhan Y, Zhang R. No-Reference Image Sharpness 
Assessment Based on Maximum Gradient and Variability 
of Gradients. IEEE Trans Multimed 2018;20:1796-808.

40. Lin DJ, Johnson PM, Knoll F, Lui YW. Artificial 
Intelligence for MR Image Reconstruction: An Overview 
for Clinicians. J Magn Reson Imaging 2021;53:1015-28.

41. Chen Y, Schönlieb C-B, Liò P, Leiner T, Dragotti PL, 
Wang G, Rueckert D, Firmin D, Yang G. AI-based 

Reconstruction for Fast MRI -- A Systematic Review and 
Meta-analysis. Proceedings of the IEEE 2022;110:224-45.

42. Gassenmaier S, Warm V, Nickel D, Weiland E, Herrmann 
J, Almansour H, Wessling D, Afat S. Thin-Slice Prostate 
MRI Enabled by Deep Learning Image Reconstruction. 
Cancers (Basel) 2023;15:578.

43. Park JC, Park KJ, Park MY, Kim MH, Kim JK. Fast 
T2-Weighted Imaging With Deep Learning-Based 
Reconstruction: Evaluation of Image Quality and 
Diagnostic Performance in Patients Undergoing Radical 
Prostatectomy. J Magn Reson Imaging 2022;55:1735-44.

44. Tong A, Bagga B, Petrocelli R, Smereka P, Vij A, Qian 
K, Grimm R, Kamen A, Keerthivasan MB, Nickel MD, 
von Busch H, Chandarana H. Comparison of a Deep 
Learning-Accelerated vs. Conventional T2-Weighted 
Sequence in Biparametric MRI of the Prostate. J Magn 
Reson Imaging 2023;58:1055-64.

45. Czyzewska D, Sushentsev N, Latoch E, Slough RA, 
Barrett T. T2-PROPELLER Compared to T2-FRFSE for 
Image Quality and Lesion Detection at Prostate MRI. Can 
Assoc Radiol J 2022;73:355-61.

46. Kim H, Kang SW, Kim JH, Nagar H, Sabuncu M, 
Margolis DJA, Kim CK. The role of AI in prostate MRI 
quality and interpretation: Opportunities and challenges. 
Eur J Radiol 2023;165:110887.

Cite this article as: Jurka M, Macova I, Wagnerova M, 
Capoun O, Jakubicek R, Ourednicek P, Lambert L, Burgetova A. 
Deep-learning-based reconstruction of T2-weighted magnetic 
resonance imaging of the prostate accelerated by compressed 
sensing provides improved image quality at half the acquisition 
time. Quant Imaging Med Surg 2024;14(5):3534-3543. doi: 
10.21037/qims-23-1488



Table S1 Comparison of image quality rated on a five-point scale (5= better than expected, 1= non-interpretable), calculated image sharpness, and signal-to-noise ratio among Std and short acquisitions 
and reconstruction with and without deep learning

Acquisition-reconstruction
Median (95% CI)

P
Post-hoc

Std (A) Std-DLR (B) Short (C) Short-DLR (D) (A)-(B) (A)-(C) (A)-(D) (B)-(C) (B)-(D) (C)-(D)

Subjective evaluation

Image noise 4.3 (3.2 to 4.7) 4.7 (3.4 to 5.0) 4.0 (3.0 to 4.3) 4.7 (3.3 to 5.0) <0.0001 <0.0001 0.052 0.0044 <0.0001 0.71 <0.0001

Image contrast 4.3 (3.5 to 4.7) 5.0 (3.6 to 5.0) 4.0 (3.4 to 4.7) 5.0 (3.6 to 5.0) <0.0001 <0.0001 0.87 <0.0001 <0.0001 1.0 <0.0001

Image sharpness 4.0 (3.1 to 4.2) 4.7 (3.5 to 5.0) 4.0 (3.1 to 4.3) 4.7 (3.5 to 5.0) <0.0001 <0.0001 1.0 <0.0001 <0.0001 1.0 <0.0001

NB delineation 4.0 (3.3 to 4.7) 4.7 (3.4 to 5.0) 4.0 (3.1 to 4.7) 4.7 (3.4 to 5.0) <0.0001 <0.0001 0.98 <0.0001 <0.0001 1.00 <0.0001

Sphincter delineation 4.3 (3.3 to 4.7) 5.0 (3.5 to 5.0) 4.3 (3.1 to 4.7) 5.0 (3.5 to 5.0) <0.0001 <0.0001 0.96 <0.0001 <0.0001 0.95 <0.0001

Overall 4.3 (3.1 to 4.7) 5.0 (3.4 to 5.0) 4.0 (3.1 to 4.7) 4.7 (3.4 to 5.0) <0.0001 <0.0001 0.85 <0.0001 <0.0001 0.98 <0.0001

Objective measurements

Image sharpness 282 (245 to 316) 428 (360 to 497) 314 (260 to 349) 465 (388 to 554) <0.0001 <0.0001 0.029 <0.0001 <0.0001 0.38 <0.0001

Signal -to-noise ratio 37.2 (35.9 to 40.5) 38.0 (37.2 to 41.4) 28.0 (27.1 to 30.1) 30.2 (29.0 to 32.0) <0.0001 0.91 <0.0001 <0.0001 <0.0001 <0.0001 0.53

Std, standard acquisition; Short, short acquisition; DLR, deep-learning-based reconstruction; 95% CI, 95% confidence interval; NB, neurovascular bundle.

Table S2 Cross-correlation matrix of objective measurements (image sharpness, signal-to-noise ratio, prostate volume) and subjective ratings

Parameter
Image sharpness Signal-to-noise ratio Volume

ρ P ρ P ρ P

Subjective evaluation

Image noise 0.438 <0.0001* 0.268 0.0002* 0.439 <0.0001*

Image contrast 0.612 <0.0001* 0.147 0.044* 0.612 <0.0001*

Image sharpness 0.657 <0.0001* 0.153 0.036* 0.657 <0.0001*

Neurovascular bundle delineation 0.517 <0.0001* 0.094 0.199 0.517 <0.0001*

Sphincter delineation 0.645 <0.0001* 0.136 0.062 0.645 <0.0001*

Overall 0.539 <0.0001* 0.195 0.0007* 0.539 <0.0001*

Objective measurements

Image sharpness – –

Signal-to-noise ratio −0.016 0.83 – –

Prostate volume 0.002 0.97 −0.062 0.395 – –

*, indicates statistical significance. ρ, Spearmann’s rho.

Table S3 Interobserver agreement in domains of subjective rating 
of image quality

Domain Agreement 95% CI

Image noise 0.53 0.44 to 0.60

Image contrast 0.49 0.39 to 0.59

Image sharpness 0.72 0.64 to 0.78

Overall 0.57 0.49 to 0.64

NB delineation 0.57 0.48 to 0.64

Sphincter delineation 0.54 0.44 to 0.63

95% CI, 95% confidence interval; NB, neurovascular bundle.
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