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Background: Due to the variations in surgical approaches and prognosis between intraspinal schwannomas 
and meningiomas, it is crucial to accurately differentiate between the two prior to surgery. Currently, there 
is limited research exploring the implementation of machine learning (ML) methods for distinguishing 
between these two types of tumors. This study aimed to establish a classification and regression tree (CART) 
model and a random forest (RF) model for distinguishing schwannomas from meningiomas.
Methods: We retrospectively collected 88 schwannomas (52 males and 36 females) and 51 meningiomas (10 
males and 41 females) who underwent magnetic resonance imaging (MRI) examinations prior to the surgery. 
Simple clinical data and MRI imaging features, including age, sex, tumor location and size, T1-weighted 
images (T1WI) and T2-weighted images (T2WI) signal characteristics, degree and pattern of enhancement, 
dural tail sign, ginkgo leaf sign, and intervertebral foramen widening (IFW), were reviewed. Finally, a CART 
model and RF model were established based on the aforementioned features to evaluate their effectiveness 
in differentiating between the two types of tumors. Meanwhile, we also compared the performance of the 
ML models to the radiologists. The receiver operating characteristic (ROC) curve, accuracy, sensitivity, 
specificity, positive predictive value (PPV), and negative predictive value (NPV) were used to evaluate the 
models and clinicians’ discrimination performance.
Results: Our investigation reveals significant variations in ten out of 11 variables in the training group 
and five out of 11 variables in the test group when comparing schwannomas and meningiomas (P<0.05). 
Ultimately, the CART model incorporated five variables: enhancement pattern, the presence of IFW, tumor 
location, maximum diameter, and T2WI signal intensity (SI). The RF model combined all 11 variables. 
The CART model, RF model, radiologist 1, and radiologist 2 achieved an area under the curve (AUC) of 
0.890, 0.956, 0.681, and 0.723 in the training group, and 0.838, 0.922, 0.580, and 0.659 in the test group, 
respectively.
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Introduction

Intradural extramedullary spinal meningiomas and 
schwannomas are frequently occurring tumors that are 
accompanied by progressive neurological symptoms. This 
well-documented fact is widely acknowledged in the medical 
community. These two growths comprise 55% of all initial 
neoplasms arising in the spinal region (1,2). In attempting to 
distinguish between the two lesions, healthcare professionals 
such as clinicians and radiologists have made use of imaging 
tools such as computed tomography (CT) and magnetic 
resonance imaging (MRI). These technologies are used 
to analyze the appearances of the lesions and identify any 
distinguishing features that can improve the accuracy of 
diagnosis. However, there are significant overlaps between 
features in traditional imaging and clinical settings in many 
cases, which can potentially lead to misdiagnosis (3). Hence, 
conventional imaging features should not be relied upon 
as sole means to differentiate spinal meningiomas from 
schwannomas.

Even though the majority of schwannomas and 
meningiomas are considered benign, it is crucial to have 
an accurate diagnosis prior to surgery since the surgical 
approach may differ depending on the type of the tumor 
(4,5). In the treatment of meningioma, the hard dura mater 
is partially removed along with the tumor to eradicate any 
remaining tumor cells, followed by a dural reconstruction 
surgery. Simultaneously, the arachnoid membrane can be 
conserved to avert the potential leakage of cerebrospinal 
fluid (CSF) post-surgery. This area must be conserved due 
to the presence of a meningioma that is located outside the 
subarachnoid space and beneath the dura mater. In contrast, 
schwannomas are located in the subarachnoid region, which 
calls for the resection of both the arachnoid membrane 
and dura mater in surgery. To prevent postoperative CSF 
leakage, it is necessary to suture the arachnoid membrane to 
the dura mater, creating an impermeable dural closure (6,7). 

The decision tree (DT) is a classification algorithm 
known for its interpretability and applicability. Specifically, 
the classification and regression tree (CART) analysis 
utilizes binary recursive partitioning as a tree construction 
method (8). Being a non-parametric approach, CART offers 
greater flexibility compared to other statistical methods such 
as logistic regression (9). Consequently, the CART model is 
highly intuitive and straightforward, making it suitable for 
clinical settings where it can aid in radiological and clinical 
decision-making. Meanwhile, random forest (RF) is also 
an effective classifier, which can predict the class of input, 
and select the most important features by providing feature 
importance (10).

To the best of our knowledge, there has been no research 
conducted so far that explores the potential of a CART 
prediction model and an RF model in distinguishing 
between intraspinal schwannomas and meningiomas.

In order to address this problem, a retrospective study 
was conducted to establish a CART prediction model and 
an RF model that utilizes MRI features and simple clinical 
data to differentiate between the two neoplasms under 
consideration. In addition, we compared the predictive 
performance of two types of machine learning (ML) 
models to that of the radiologists. We present this article in 
accordance with the TRIPOD reporting checklist (available 
at https://qims.amegroups.com/article/view/10.21037/
qims-23-1194/rc).

Methods

Patient data 

The patient cohorts for this retrospective study were 
obtained from May 2012 to October 2022 at the First 
Affiliated Hospital of Jinan University. The study was 
conducted in accordance with the Declaration of Helsinki 
(as revised in 2013). The study was approved by the 
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Ethics Committee of the First Affiliated Hospital of Jinan 
University, and individual consent for this retrospective 
analysis was waived. A meticulous screening was conducted 
on 160 patients who had undergone MRI examinations 
before the surgical resection. The study included two main 
criteria for patient selection: (I) patients with intraspinal 
spinal meningiomas or schwannomas that were confirmed 
through surgical resection and pathology. (II) patients 
who underwent multiparametric MR imaging, consisting 
of T1-weighted images (T1WI), T2-weighted images 
(T2WI), and contrast-enhanced T1WI sequences. A total 
of 21 patients were excluded from the study. The exclusion 
criteria were as follows: (I) patients with vertebral operation 
history before undergoing MRI examinations (n=4), (II) 
individuals with other types of intraspinal tumors such as 
neurofibromas, cavernous hemangiomas, or ependymomas 
(n=6), (III) patients with low MRI image quality that 
hindered accurate observations (n=6), and (IV) individuals 
who had incomplete MR scan sequences available (n=5). 

Finally, a total of 139 patients (88 with schwannomas 
and 51 with meningiomas) met the inclusion criteria during 
the research period and were included as the cohort used to 
construct the CART model and RF model. Upon admission, 
the patients had an average age of 53 years, ranging from 
19 to 86 years old. Histological examination of the surgical 
specimens in all cases revealed typical findings of intraspinal 
schwannomas and meningiomas. 

MRI data

In total, 139 patients were examined using 1.5-Tesla MR 
scanners (Optima; GE Medical Systems, Milwaukee, WI, 
USA) or 3.0-Tesla MR scanners (Discovery MR750; GE 
Medical Systems, USA). The MRI scanning protocol 
includes T1-weighted fast spin echo (FSE) sagittal sequences 
[repetition time/echo time (TR/TE) =260/15.1 ms  
for 1.5T, TR/TE =598/8.9 ms for 3.0T, and number of 
excitation (NEX) =4] and FSE T2-weighted sequences 
(TR/TE =1,620/120 ms for 1.5T, TR/TE =2,000/102 ms 
for 3.0T). Following this, axial, sagittal, and coronal fat-
suppressed T1WI were obtained for enhancement. The 
matrix range used for detection was from 288×192 to 
384×224 pixels. The slice thickness for axial, sagittal, and 
coronal images was 4 mm with a 1 mm gap between slices. 
All individuals underwent intravenous administration of 
gadolinium-diethylenetriamine pentaacetic acid (Gd-DTPA), 
with a dosage of 0.1 mmol/kg of their respective body weight. 

Two radiologists with three to 10 years of experience 

in spinal imaging diagnosis carefully examined all the 
images on the PACS workstation monitor. The two 
reviewers (radiologist 1: Y.L.W. and radiologist 2: X.R.C.) 
unanimously identified and provided detailed descriptions 
of the abnormal MRI findings. It is important to note that 
during the review process, both radiologists were unaware 
of any information regarding the patient’s age, sex, or 
histopathological results. Meanwhile, the two radiologists 
diagnosed every case based on the MRI images.

Clinical and MRI features

The identification of each intraspinal tumor in 139 
patients was performed, and an evaluation was conducted 
on their location, maximum diameter, DTS, GLS, 
intervertebral foramen widening (IFW), signal intensity 
(SI) characteristics, and enhancement degree and pattern. 
The maximum diameter of each extramedullary tumor was 
measured on the contrast-enhanced images, and tumor 
location was classified as cervical region, thoracic region, or 
lumbar region.

The presence of the DTS was considered based on the 
following criteria: (I) the tail should be identified on two 
consecutive slices passing through the tumor, (II) the tail 
should smoothly taper away from the tumor, and (III) the tail 
must exhibit enhancement greater than the tumor itself (11). 

The GLS was defined as follows: The appearance of the 
distorted cord and streak on enhanced axial MRI images 
bore a strong resemblance to that of a ginkgo leaf (12). 

A comparison of SI between the lesion and the spinal 
cord was conducted, whereby the lesion was classified as 
either homogeneous or heterogeneous. The SI was further 
categorized based on the main part, accounting for over 
80% of the lesion. On T1WI without enhancement, the 
SI of the tumor was divided into three groups, whereas 
on T2WI, it was divided into four groups. These groups 
included the following: (I) hypointense on T1WI, which is 
lower than that of the spinal cord but not equivalent to CSF. 
(II) Isointense on T1WI or T2WI, which is equivalent to 
that of the spinal cord. (III) Hyperintense on T2WI, which 
is higher than that of the spinal cord but not equivalent to 
CSF. (IV) Miscellaneous SI on T1WI or T2WI, which is 
representing different manifestations that do not belong to 
any of the above categories. (V) Fluid SI on T2WI, with SI 
equal to CSF, showing high intensity on T2WI (Figures 1,2). 

The degree of enhancement was defined as follows: 
strong, when the signal after the administration of Gd-
DTPA is similar to that of subcutaneous fat (regardless of 
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Figure 1 Three groups of T1-weighted images (the yellow arrows show the location of the tumors). (A) Hypointense, SI lower than that of 
the spinal cord. (B) Isointense, demonstrates equal SI to the spinal cord. (C) Miscellaneous signal intensity, SI is uneven, presenting a mixed 
signal. SI, signal intensity. 

Figure 2 Four groups of T2-weighted sagittal images (the yellow arrows correspond to the location of the tumors). (A) Isointense, the SI of 
the tumor is equal to that of the spinal cord. (B) Hyperintense, the SI of the tumor is higher than that of the spinal cord. (C) Miscellaneous 
SI. (D) Fluid signal intensity, the SI of the tumor is equal to that of CSF. SI, signal intensity; CSF, cerebrospinal fluid.
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Figure 3 Examples of the degree and the pattern of enhancement for sagittal images of T1WI after contrast agent injection (the yellow 
arrows indicate the location of the tumors). (A,B) Enhancement degree: (A) strong, (B) moderate. (C,D) Enhancement pattern: (C) diffuse, (D) 
rim. T1WI, T1-weighted images.

the enhancement pattern of the fat); moderate, when it 
is equivalent or lower to the signal of the vertebral body 
(Figure 3A,3B).

The pattern of enhancement was defined as follows: 
on the contrast-enhanced T1WI images, the contrast 
enhancement pattern is classified as diffuse when it appears 
homogeneous; it is classified as rim when there is non-
uniform enhancement in the peripheral or central part 
(Figure 3C,3D).

Statistics and construction procedures of ML models 

Categorical variables were presented as numbers and 
percentages, whereas continuous variables were described 
using median (interquartile range, IQR). The differences 
between the two groups of cases, schwannomas and 
meningiomas, for categorical variables, were analyzed 
using Pearson’s chi-squared test or Fisher’s exact test. For 
continuous variables, differences were analyzed using the 
non-parametric Wilcoxon rank sum test. Above statistics 
analysis was conducted by IBM SPSS Statistics 26.0 (IBM 
Corp., Armonk, NY, USA). A P value <0.05 was considered 
statistically significant. The data was randomly divided into 
a training set and a test set in a ratio of 6:4 in the CART 
and RF models, where the test set was used to examine 
the performance of the model. In the training group, the 
5-fold stratified cross-validation was adopted for CART 
and RF model in order to more accurately estimate the 

generalization ability of the models.
This study utilized a comprehensive three-tiered 

approach to preprocess and sample the dataset in 
preparation for analysis. Firstly, feature mapping was carried 
out to ensure consistent representation across the dataset. 
Following this, z-score normalization was implemented 
to standardize the data, promoting comparability and 
analytical effectiveness. The final step involved the use of 
the synthetic minority over-sampling technique (SMOTE) 
to generate additional samples, addressing class imbalances 
in the dataset. Throughout this process, two kinds ML 
algorithms were employed: RF and CART algorithms, 
chosen for their robustness and proficiency in handling 
complex data structures, ultimately ensuring a thorough and 
reliable analysis. 

The data analyses were conducted using Python version 
3.7.12 (https://www.python.org/downloads/release/
python-3712/) on the OnekeyAI platform version 3.1.8 
(http://medai.icu/). The ML algorithms, including CART 
and RF, were implemented using scikit-learn version 
1.0.2 (https://pypi.org/project/scikit-learn/1.0.2/). Scikit-
learn uses an optimized version of the CART algorithm 
for the construction of the DT model. In this research, 
we aimed to explore the influence of hyperparameters on 
the CART and RF models. Our findings indicate that for 
CART, the most effective performance is achieved when 
the max_depth hyperparameter is set to 3. Meanwhile, 
for RF, optimal performance is attained when the n_

https://www.python.org/downloads/release/python-3712/
https://www.python.org/downloads/release/python-3712/
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estimators hyperparameter is set to 4 and the max_depth 
hyperparameter is set to 2. These results emphasize 
the significance of carefully selecting appropriate 
hyperparameters for ML models.

By utilizing CART analysis, a DT model was established 
in order to differentiate between intraspinal schwannomas 
and meningiomas. CART analysis was employed to 
identify the most optimal predictive variables and divide 
the data into two nodes with the highest level of purity. 
This iterative process was repeated for each child node 
until reaching the minimum size for terminal nodes or 
until further splitting no longer enhanced the purity of the 
terminal nodes (9). Response events for both CART and RF 
models were configured as “schwannoma”. 

The predictive classification performance of the CART 
model and the RF model was assessed through the use 
of receiver operating characteristic (ROC) curve. The 
confusion matrix was adopted to describe the classification 
results of the CART and RF models. Furthermore, the 
accuracy, the area under the curve (AUC) and its 95% 
confidence interval (CI), sensitivity, specificity, positive 
predictive value (PPV), and negative predictive value (NPV) 
of the CART model, RF model, and two radiologists were 
also determined. Delong test was employed to compare the 
differences in diagnostic performance among the CART 
model, RF model, and two radiologists.

Results

Patient characteristics

The presented information in Table  1  provides a 
comprehensive overview of the patient demographics and 
MRI characteristics exhibited by both schwannomas and 
meningiomas.

Age and sex
An analysis of age revealed that median ages differed slightly 
between the two groups, with schwannoma patients having 
a median age of 53 and 49 in the training and test groups, 
respectively, whereas meningioma patients had a median age 
of 57 and 55 in the two groups, respectively. Sex distribution 
showed statistically significant differences in the training 
and test groups (P<0.001 and P=0.002, respectively), with a 
higher importance of males in the Schwannoma group (61% 
and 56%) compared to females (39% and 44%), while the 
opposite was observed in the Meningioma group. 

Tumor location and size 
In terms of tumor location, the analysis revealed that 
meningiomas were predominantly found in the thoracic 
region both in the training and test groups (67% and 81% 
respectively), whereas schwannomas were more evenly 
distributed across cervical (25% and 28%) and lumbar 
(43% and 44%) regions. When considering tumor size, 
the median maximum diameter of the lesions was observed 
to be 1.90 and 1.80 cm for meningiomas in the training 
and test groups, respectively, and 2.20 cm in both the 
training and test groups for schwannomas. The analysis of 
size distribution revealed a significant difference between 
the two tumors in the training groups, with a P value of 
0.009. However, the size of two tumors was not statistically 
significant in the test group. 

T1WI and T2WI SI
Examination of the imaging features revealed that isointense 
signal was more common in meningiomas (90% and 86% 
in the training and test groups, respectively) compared 
to schwannomas (63% and 56%, respectively) based on 
T1WI, whereas hypointense signal was less common in 
meningiomas (10% and 14%, respectively) compared to 
schwannomas (36% and 38%, respectively). Similar trends 
were observed in T2WI, with meningiomas displaying 
a higher prevalence of isointense signal (63% and 52%, 
respectively) compared to schwannomas (21% and 22%, 
respectively). 

Enhancement degree and pattern
Strong enhancement degree was the most common 
characteristic, observed in 73 (85%) and 48 (91%) of overall 
cases in the training and test cohorts, respectively, 86% 
and 91% of schwannoma cases, along with 83% and 90% 
of meningioma cases. Moderate enhancement degree was 
observed in 15% and 9% of overall cases among the training 
and test cohorts, respectively, 14% and 9% of Schwannoma 
cases, as well as 17% and 10% of meningioma cases. In 
our research, we found no significant statistical difference 
in the enhancement degree between schwannomas and 
meningiomas. However, enhancement pattern showed a 
significant difference between two tumors, with diffuse 
enhancement observed in 65% and 68% of overall cases 
in the training and test groups, respectively, 50% of 
schwannoma cases, but 93% and 95% of meningioma 
cases. In contrast, rim enhancement was seen in 35% 
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Table 1 Patient demographics and MRI characteristics

Characteristic

Training group (N=86) Test group (N=53)

Overall  
(N=86)

Schwannoma 
(N=56)

Meningioma 
(N=30)

P value
Overall  
(N=53)

Schwannoma 
(N=32)

Meningioma 
(N=21)

P value

Agea 54 (42, 64) 53 (38, 61) 57 (47, 75) 0.02 52 (42, 65) 49 (39, 62) 55 (44, 70) 0.12

Sexb <0.001 0.002

Male 41 (48) 34 (61) 7 (23) 21 (40) 18 (56) 3 (14)

Female 45 (52) 22 (39) 23 (77) 32 (60) 14 (44) 18 (86)

Tumor location (C/T/L)b 0.002 <0.001

Cervical 21 (24) 14 (25) 7 (23) 13 (25) 9 (28) 4 (19)

Thoracic 38 (44) 18 (32) 20 (67) 26 (49) 9 (28) 17 (81)

Lumbar 27 (31) 24 (43) 3 (10) 14 (26) 14 (44) 0 (0)

Max diameter  
(cm)a

2.00  
(1.53, 2.58)

2.20  
(1.60, 3.03)

1.90  
(1.50, 2.00)

0.009 2.00  
(1.60, 2.50)

2.20  
(1.60, 2.60)

1. 80  
(1.50, 2.00)

0.12

T1WI signal intensityc 0.01 0.06

Isointense 62 (72) 35 (63) 27 (90) 36 (68) 18 (56) 18 (86)

Hypointense 23 (27) 20 (36) 3 (10) 15 (28) 12 (38) 3 (14)

Miscellaneous 1 (1) 1 (2) 0 (0) 2 (4) 2 (6) 0 (0)

T2WI signal intensityb <0.001 0.002

Isointense 31 (36) 12 (21) 19 (63) 18 (34) 7 (22) 11 (52)

Hyperintense 25 (29) 16 (29) 9 (30) 21 (40) 11 (34) 10 (48)

Miscellaneous 8 (9) 6 (11) 2 (7) 8 (15) 8 (25) 0 (0)

Fluid signal 22 (26) 22 (39) 0 (0) 6 (11) 6 (19) 0 (0)

Enhancement degreeb 0.76 >0.99

Strong 73 (85) 48 (86) 25 (83) 48 (91) 29 (91) 19 (90)

Moderate 13 (15) 8 (14) 5 (17) 5 (9) 3 (9) 2 (10)

Enhancement patternb <0.001 <0.001

Diffuse 56 (65) 28 (50) 28 (93) 36 (68) 16 (50) 20 (95)

Rim 30 (35) 28 (50) 2 (7) 17 (32) 16 (50) 1 (5)

Dural tail signb <0.001 0.004

Yes 12 (14) 2 (4) 10 (33) 11 (21) 2 (6) 9 (43)

No 74 (86) 54 (96) 20 (67) 42 (79) 30 (94) 12 (57)

Ginkgo leaf signc 0.04 0.39

Yes 3 (3) 0 (0) 3 (10) 1 (2) 0 (0) 1 (5)

No 83 (97) 56 (100) 27 (90) 52 (98) 32 (100) 20 (95)

Intervertebral foramen wideningb 0.007 0.07

Yes 12 (14) 12 (21) 0 (0) 9 (17) 8 (25) 1 (5)

No 74 (86) 44 (79) 30 (100) 44 (83) 24 (75) 20 (95)

Data are expressed as n (%) or median (25th, 75th percentiles). a, Wilcoxon rank sum test; b, Pearson’s Chi-squared test; c, Fisher’s exact 
test. MRI, magnetic resonance imaging; T1WI, T1-weighted images; T2WI, T2-weighted images; C/T/L, cervical vertebra/thoracic vertebra/
lumbar vertebra.
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and 32% of overall cases in the training and test groups, 
respectively, 50% of schwannoma cases, but only 7% and 
5% of meningioma cases. The P value for the difference in 
enhancement pattern was found to be less than 0.001. 

DTS and IFW and GLS
Notably, the DTS was more frequently observed in 
meningiomas (33% and 43% in the training and test 
groups, respectively) compared to schwannomas (4% 
and 6%, respectively) (Figure 4A), whereas the IFW was 
more prevalent in schwannomas (21% and 25% in the 
training and test cohorts, respectively) than meningiomas 
(only one case in the test group) (Figure 4B). The 
GLS was found in 3% and 2% of overall cases in the 
training and test groups, with no cases observed in the 
Schwannoma group but present in 10% and 5% of the 
Meningioma group respectively. The difference in the 
prevalence of the GLS between the Meningioma and 
Schwannoma groups was statistically significant (P=0.04) 
in the training group, whereas the GLS of two tumors 
was not statistically significant in the test group (P=0.39)  
(Figure 4C). These findings provide valuable insights into 
the baseline characteristics and imaging features of patients 
with schwannoma and meningioma, highlighting important 
differences between the two tumor types.

The performance of the CART model, RF model, and two 
radiologists 

In the CART model, the feature importance plot showed 
that the most crucial predictor variable was enhancement 
pattern. The contribution of the top predictor variable 
is approximately 48.01%. The following list describes 
the second to fifth most important variables in this 
CART model (Figure 5A): The importance of IFW was 
approximately 23.99%. The importance of tumor location 
was approximately 16.35%. The importance of maximum 
diameter was approximately 8.91%. The importance 
of T2WI SI was approximately 2.74%. The remaining 
variables do not possess the same level of importance as the 
aforementioned five variables.

In the RF model, the top predictor variable was 
maximum diameter and its contribution was approximately 
28.39%. The following list shows the second to 11th 
most important variables in this RF model (Figure 5B): 
the importance of T2WI SI was approximately 20.22%; 
that of tumor location was 13.50%; that of enhancement 
pattern was approximately 10.26%; that of age was 
approximately 10.20%; that of sex was 4.54%; that of 
IFW was approximately 4.21%; that of T1WI SI was 
approximately 3.92%; that of DTS was 3.15 %; that of GLS 

B CA

Figure 4 Examples of DTS, IFW, and GLS. (A) A 46-year-old woman with intraspinal meningioma at the T2 vertebra level. Sagittal 
T1WI enhancement shows the lesion has “dural tail sign” (yellow arrow). (B) A 67-yeal-old man with intraspinal schwannoma displays a 
dumbbell shape. Axial T1WI enhancement shows the lesion presenting “intervertebral foramen widening” (yellow arrow). (C) An 84-year-
old woman with back pain and discomfort underwent MRI and was pathologically diagnosed as intraspinal meningioma. Axial T1WI with 
fat-suppressed enhancement displays the meningioma presenting diffuse enhancement and “ginkgo leaf sign” (yellow arrow). DTS, dural tail 
sign; IFW, intervertebral foramen widening; GLS, ginkgo leaf sign; T1WI, T1-weighted images; MRI, magnetic resonance imaging.
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Table 2 The performance of the CART model, RF model, and two radiologists in the training and test groups, respectively

Group Signature Accuracy AUC 95% CI Sensitivity Specificity PPV NPV

Training CART 0.814 0.89 0.8299–0.9510 0.893 0.667 0.833 0.769

Random forest 0.86 0.956 0.9185–0.9934 0.839 0.9 0.94 0.75

Radiologist 1 0.756 0.681 0.5846–0.7773 0.929 0.433 0.754 0.765

Radiologist 2 0.791 0.723 0.6275–0.8189 0.946 0.5 0.779 0.833

Test CART 0.811 0.838 0.7297–0.9459 0.875 0.714 0.824 0.789

Random forest 0.811 0.922 0.8551–0.9887 0.812 0.81 0.867 0.739

Radiologist 1 0.642 0.58 0.4655–0.6952 0.875 0.286 0.651 0.6

Radiologist 2 0.717 0.659 0.5446–0.7739 0.937 0.381 0.698 0.8

CART, classification and regression tree; RF, random forest; AUC, area under the curve; CI, confidence interval; PPV, positive predictive 
value; NPV, negative predictive value.
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Figure 5 The importance of the variables in the CART and RF models, respectively. (A) CART model; (B) RF model. The ROC curves 
of the CART and RF models in the training and test groups, respectively. (C) Training group; (D) test group. AUC, area under the curve; 
CART, classification and regression tree; RF, random forest; ROC, receiver operating characteristic.

was approximately 0.94%; and that of enhancement degree 
was approximately 0.67%.

The AUC of the CART model, RF model, radiologist 1, 
and radiologist 2 was calculated to be 0.890, 0.956, 0.681, 
and 0.723 in the training group, and 0.838, 0.922, 0.580, 
and 0.659 in the test group, respectively. The corresponding 

CI of each AUC are displayed in Figure 5C,5D, and Table 2). 
Table 2 shows the diagnostic performance of the ML 

models and radiologists: (I) CART model (accuracy: 0.814, 
sensitivity: 0.893, specificity: 0.667, PPV: 0.833, NPV: 
0.769), (II) RF model (accuracy: 0.860, sensitivity: 0.839, 
specificity: 0.900, PPV: 0.940, NPV: 0.750), (III) Radiologist 
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1 (accuracy: 0.756, sensitivity: 0.929, specificity: 0.433, PPV: 
0.754, NPV: 0.765), (IV) Radiologist 2 (accuracy: 0.791, 
sensitivity: 0.946, specificity: 0.500, PPV: 0.779, NPV: 
0.833), and (V) CART model (accuracy: 0.811, sensitivity: 
0.875, specificity: 0.714, PPV: 0.824, NPV: 0.789), (VI) RF 
model (accuracy: 0.811, sensitivity: 0.812, specificity: 0.810, 
PPV: 0.867, NPV: 0.739), (VII) Radiologist 1 (accuracy: 
0.642, sensitivity: 0.875, specificity: 0.286, PPV: 0.651, 
NPV: 0.600), and (VIII) Radiologist 2 (accuracy: 0.717, 
sensitivity: 0.937, specificity: 0.381, PPV: 0.698, NPV: 
0.800). (I–IV: training group, V–VIII: test group).

According to the Delong test, the comparison of AUCs 
between the RF model and the two radiologists showed 
significant differences in the training and test groups 
(Delong test, all P<0.001). There were also significant 
differences in the comparison of AUCs between CART 
model and the two radiologists in the training and test 
groups (Delong test, training group: P<0.001, CART 
vs. Radiologist 1; P=0.004, CART vs. Radiologist 2; test 
group: P=0.006, CART vs. Radiologist 1; P=0.02, CART 
vs. Radiologist 2). The comparison of AUCs between the 
RF model and CART model showed significant differences 
in the training group (Delong test, P=0.002). There were 
no statistically significant differences in the comparison of 
AUCs between the CART model and RF model in the test 
group (Delong test, P=0.09). There was also no significant 
difference in the diagnostic performance between the two 
radiologists in the training and test groups (Delong test, 
P=0.46 and P=0.29, respectively) (Figure 6A,6B).

Figure 7 depicts examples of correctly predicted and 

incorrectly predicted outcomes by the CART model, RF 
model, and radiologists. The confusion matrix illustrates 
the classification results of the CART and RF models 
(Figure S1).

The result of the 5-fold stratified cross-validation in the 
training group is shown in the Figure S2.

Discussion

The differentiation between preoperative schwannomas 
and meningiomas is of utmost importance in determining 
the appropriate surgical treatment approach. Our study 
developed and validated a novel CART prediction model 
and RF model for differentiating schwannomas and 
meningiomas. To the best of our knowledge, these two 
models have never been used to distinguish between 
these two types of tumors. Having sufficient clinical and 
imaging information is crucial for accurately differentiating 
between schwannomas and meningiomas. The statistical 
importance of MRI findings and clinical information 
was investigated using the CART and RF models. The 
CART model was developed by combining five variables, 
whereas the RF model was constructed by integrating all 
11 variables. These features were found to be informative 
for differential diagnosis in the two ML models. The 
CART model demonstrated a predictive ability of 0.890 
in the training group and 0.838 in the test group, whereas 
the RF model showed a higher discriminative ability with 
AUCs of 0.956 and 0.922 in the training and test groups, 
respectively. Meanwhile, the Delong test indicated that 

https://cdn.amegroups.cn/static/public/QIMS-23-1194-Supplementary.pdf
https://cdn.amegroups.cn/static/public/QIMS-23-1194-Supplementary.pdf
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B C DA

Figure 7 The illustration depicts examples of correctly predicted and incorrectly predicted outcomes by the CART model, RF model and 
radiologists. (A,B) A female patient, aged 62, exhibited a schwannoma situated at the level of the C6 vertebra (white arrows). The T2WI 
(A) revealed a round lesion measuring approximately 1.3 cm in maximum diameter. The T2WI signal displayed hyperintensity, and the 
T1WI enhancement scan (B) indicated a strong enhancement with a diffuse pattern. No signs of DTS, IFW, or GLS were observed within 
the lesion. The lesion causes compression of the adjacent spinal cord. Unfortunately, the CART model and radiologists misclassified the 
lesion as a meningioma. However, the RF model accurately classified the lesion as a schwannoma. (C,D) An 86-year-old male patient was 
diagnosed with a schwannoma at the L3–4 vertebral level (white arrows). The T2WI (C) revealed an approximately 2.3 cm circular lesion 
with fluid signal, and the T1WI enhancement scan (D) showed strong enhancement in a rim pattern. There were no signs of DTS, IFW, 
or GLS observed in the lesion. It is satisfying to note that the CART model, RF model and radiologists accurately classified the lesion as 
a schwannoma. CART, classification and regression tree; T2WI, T2-weighted images; T1WI, T1-weighted images; DTS, dural tail sign; 
IFW, intervertebral foramen widening; GLS, ginkgo leaf sign.

the RF and CART models both performed better than the 
two radiologists, suggesting that the RF and CART models 
could be used in this diagnostic analysis, and the RF model 
can be regarded as a more reliable and effective classifier for 
distinguishing between the two types of entities. 

Previous studies have suggested that more than 95% of 
meningiomas are benign tumors and are most frequently 
observed in elderly women (4). Furthermore, the advantage 
of women in terms of intraspinal meningioma occurrence 
is even greater than the advantage observed specifically for 
intracranial meningiomas. This phenomenon is believed to 
be influenced by estrogen (13,14). Our research findings are 
partially consistent with previous studies. The median age 
of patients diagnosed with spinal meningiomas was higher 
compared to that of those with schwannomas. Additionally, 
it is worth noting that a majority importance (77% and 86% 
in the training and test groups, respectively) of patients 
diagnosed with intraspinal meningiomas are female.

Regarding the location of two types of tumors, most 
spinal meningiomas are found in the region of thoracic 
vertebra, whereas a smaller portion occur in the region of 
cervical and lumbar vertebrae (5). On the contrary, spinal 
schwannomas are solitary, well-defined, and encapsulated 
tumors that typically originate from the posterior sensory 
roots of the region of cervical and lumbar vertebra. There 
are fewer cases involving the thoracic vertebra, and these 
tumors rarely occur in the sacral region (13,15). The results 
of our research align with prior studies, demonstrating 
that a significant importance of spinal meningiomas (67% 
and 81% in the training and test groups, severally) are 
localized in the thoracic region, whereas the majority of 
schwannomas (43% and 44%, respectively) manifest in the 
lumbar region. It is reported that the size of schwannomas 
was larger than that of meningiomas, and significant 
differences were observed between the two groups (2). Our 
research produced similar results in the training group, 
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whereas the results of the test group were not statistically 
significant, probably due to the limited sample size. Based 
on the DT model, tumor location and maximum diameter 
(representing size) held the third and fourth positions. As 
a result, these two variables contributed significantly to 
the model. For the RF model, maximum diameter was the 
top predictor variable, and tumor location was the third 
most important variable in the model. The results indicate 
that the maximum diameter and tumor location are both 
important predictors in differentiating the intraspinal 
schwannomas and meningiomas. 

Friedman et al. (16) have documented that schwannomas 
exhibit comparable or diminished SI relative to the 
spinal cord in T1WI images. Conversely, T2WI images 
generally demonstrate a spectrum of SI ranging from slight 
to significantly high intensity signals. Areas displaying 
hyperintensity on T2WI images commonly correspond 
to cystic regions, whereas lower intensity may suggest 
the presence of collagen deposition, hemorrhage, or 
densely cellularity (17). In terms of the degree of tumor 
enhancement, studies conducted by Zhai et al. and Schroth 
et al. have suggested that there is no significant statistical 
difference in contrast enhancement degree between 
intraspinal schwannomas and meningiomas (2,18). Our 
findings support the above viewpoints, as we observed 
no statistically significant difference in the degree of 
enhancement (P=0.76 and P>0.99 in the training and 
test cohorts, severally). However, the utilization of the 
enhancement pattern in our study yielded significant 
differences between meningiomas and schwannomas, 
thereby offering potential assistance in the differentiation 
of diagnoses (P<0.001). The feature importance plot in the 
CART model suggests that the T2WI SI variable holds a 
importance at 2.74%, whereas the T1WI variable is not 
included in the model. It is worth noting that the feature 
importance plot suggests that the enhancement degree is 
not incorporated in the model; however, the enhancement 
pattern is the most important variable in the construction 
of the model, with an importance of 48.01%. For the RF 
model, the T2WI SI and enhancement pattern accounted 
for 20.22% and 10.26%, respectively, whereas the T1WI 
SI and enhancement degree were of low importance in 
the model. The results demonstrate that the T2WI SI 
and enhancement pattern were two important variables in 
distinguishing the two tumors.

In a previous study conducted in 1989, researchers 
initially described a phenomenon referred to as the 
“dural tail sign”. This sign was exclusively described on 

contrast-enhanced MRI images in individuals with cranial 
meningiomas (19). Initially, Alorainy et al. (11) held the 
belief that the DTS exhibited high specificity towards 
meningiomas. However, Guermazi et al. (20-22) currently 
posit that this phenomenon merely suggests the presence of 
meningiomas, lacking specificity exclusively towards them. 
Previous studies have reported that various conditions 
such as sarcoidosis, lymphoma, loculated leptomeningeal 
metastasis with adjacent meningeal enhancement, and 
other diseases could mimic meningiomas, presenting DTS. 
This similar imaging feature can also be observed in cases 
of any type of histiocytic or lymphocytic infiltration as 
well as granulomatosis (23). De Verdelhan et al. (24) found 
that a DTS was present in 67% of meningeal tumors, 
rare extradural meningiomas, and recurrent meningeal 
tumors. Similarly, Alorainy et al. demonstrated that the 
DTS is equally common in spinal meningiomas and cranial 
meningiomas. In our current study, we observed a DTS in 
10 out of 30 meningiomas in the training group (P<0.001), 
and nine out of 21 in the test group (P=0.004), whereas 
only four in all schwannoma cases. However, this finding 
is not entirely consistent with the study conducted by Zhai  
et al. (2), as they reported a DTS in 60.4% of meningioma 
cases. We speculate that this difference may be attributed 
to the limited sample size of spinal meningiomas in our 
study. Due to the fact that DTS can only be observed 
in the sagittal or coronal enhanced scans of T1WI, and 
its importance in relation to other variables is relatively 
low, it makes little contribution to the CART and RF 
model. Therefore, the CART model excluded the DTS 
as a predictor, and the importance of DTS is also of low 
importance in the RF model.

When discussing the IFW, Iwanami et al. (25) found that 
the presence of lesions accompanied by IFW or a dumbbell 
shape is highly useful for differential diagnosis. In our 
study, we encountered 12 cases (21%) of schwannomas with 
IFW in the training cohort (P=0.007), whereas the results 
of test group were not statistically significant (P=0.07), 
possibly because of the sample size limitations. However, 
meningiomas with IFW are relatively rare, accounting for 
only 3–10% of all spinal meningiomas (26). Similarly, in our 
study, we observed only one case of meningioma with IFW 
in the test cohort, which is consistent with these findings. 
The RF model included the IFW as a predictor with an 
importance of 4.21%. Meanwhile, IFW was found to have 
an approximate variable importance of 23.99% in the CART 
model. Therefore, it was included in the construction of the 
CART model, highlighting the significance of IFW in the 
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context of differential diagnosis.
According to the findings of Yamaguchi et al. (12), it was 

determined that the presence of the GLS exhibited a high 
degree of specificity in identifying spinal meningiomas that 
originate laterally or ventrolaterally to the spinal cord. The 
expansion of tumors leads to the deformation of the spinal 
cord resembling a fan shape, as the denticulate ligaments, 
which are stretched, connect the outer side of the spinal cord 
to the dura mater. Schwannomas do not exhibit the GLS, 
possibly due to differences in their growth pattern (12).  
In our study, the GLS was only observed in four cases 
of meningiomas. Statistically significant differences exist 
between the schwannomas and meningiomas in the training 
group with regards to the GLS (P=0.04). However, there 
was no statistically significant differences in the test group 
between two tumors because of the sample size limitations 
(P=0.39). Meanwhile, the importance of GLS in the CART 
and RF model is relatively low. Therefore, the variable 
contributes little to the two models.

In this study, we established a CART model and an RF 
model integrating the clinical data with MRI findings, 
achieved the AUCs of 0.890, 0.956, and 0.838, 0.922 in 
the training and test cohorts, respectively. Furthermore, 
we also compared the performance of the ML models 
to the radiologists. Previous studies have shown that the 
RF model showed higher differential ability than the 
CART model in many diseases (27). Our study displayed 
a similar tendency in distinguishing the schwannomas 
and meningiomas. The results demonstrate that the RF 
model seems to be a better model than CART model for 
differentiating the schwannomas from meningiomas. The 
diagnostic abilities of the RF and CART models were better 
than those of experienced clinicians. The performance of 
the two radiologists indicates that clinicians achieved high 
sensitivity and relatively low specificity compared to the ML 
models, which means that they tended to misdiagnose the 
meningiomas as schwannomas. The results are consistent 
with previous research (28). The reason for this misdiagnosis 
may be that radiologists tend to misdiagnose difficult cases 
as schwannomas in terms of perspective of tumor incidence. 
A previous study reported that the accuracy of plain MRI 
findings in distinguishing the spinal schwannomas from 
meningiomas was 91.3% (29). Maki et al. suggested that 
the deep convolutional neural network based on MRI 
images could differentiate the two tumors, with an AUC of  
0.876 (28). Ito et al. proposed that a deep learning model 
based on MRI could differentiate the two tumors with 
accuracy of 82.1% in the validation group (30). However, 

the sample sizes in these studies were relatively small which 
may have resulted in overfitting and overly optimistic  
estimates (31). Lee et al. built a logistic regression 
model based on MRI findings to differentiate between 
schwannomas and meningiomas with a sensitivity, specificity, 
and accuracy of 89.8%, 97.1%, and 93.5% respectively (32). 
Nevertheless, the limited variables included in the study 
above, as compared to ours, may have an impact on the 
accuracy of the logistic regression model (33). 

Limitations

There were several limitations in our study. Firstly, the 
study was retrospective and conducted by experts in 
differentiating between schwannomas and meningiomas. 
In addition, the limited MRI sequences may influence the 
performance of the model. Our future study will employ 
more sequences, such as diffusion-weighted imaging (DWI) 
and arterial spin labeling (ASL) to improve the diagnostic 
ability of the model. Meanwhile, it did not include other 
intradural extramedullary tumors such as neurofibromas, 
capillary hemangiomas, or cysts, which could potentially 
impact the sensitivity of MRI imaging for distinguishing 
between the two types of lesions. In order to address 
these limitations, our future objective is to conduct a 
similar prospective study with a larger cohort. Finally, our 
forthcoming research proposal intends to employ radiomics 
for the purpose of extracting imaging characteristics of 
both tumor classifications, with the objective of discerning 
imperceptible dissimilarities that could facilitate their 
distinction. 

Conclusions

Our investigation integrates conventional MRI imaging 
characteristics with basic clinical data to construct two ML 
models named CART and RF. The RF model exhibited 
more exceptional efficacy than the CART model and 
experienced clinician in discriminating between the two 
categories of tumors, suggesting that the RF model could 
be considered a reliable and effective tool for improving 
clinical decision-making and prognosis.
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Supplementary

Figure S1 The confusion matrix of the CART and RF models in the training and test groups, respectively. (A,B) Training group; (C,D) test 
group. CART, classification and regression tree; RF, random forest.

Figure S2 The result of 5-fold stratified cross-validation in the training group. AUC, area under the curve; CART, classification and 
regression tree.


