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Background: Thyroid nodules are commonly identified through ultrasound imaging, which plays a crucial 
role in the early detection of malignancy. The diagnostic accuracy, however, is significantly influenced by 
the expertise of radiologists, the quality of equipment, and image acquisition techniques. This variability 
underscores the critical need for computational tools that support diagnosis.
Methods: This retrospective study evaluates an artificial intelligence (AI)-driven system for thyroid nodule 
assessment, integrating clinical practices from multiple prominent Thai medical centers. We included 
patients who underwent thyroid ultrasonography complemented by ultrasound-guided fine needle aspiration 
(FNA) between January 2015 and March 2021. Participants formed a consecutive series, enhancing the 
study’s validity. A comparative analysis was conducted between the AI model’s diagnostic performance and 
that of both an experienced radiologist and a third-year radiology resident, using a dataset of 600 ultrasound 
images from three distinguished Thai medical institutions, each verified with cytological findings.
Results: The AI system demonstrated superior diagnostic performance, with an overall sensitivity of 80% 
[95% confidence interval (CI): 59.3–93.2%] and specificity of 71.4% (95% CI: 53.7–85.4%). At Siriraj 
Hospital, the AI achieved a sensitivity of 90.0% (95% CI: 55.5–99.8%), specificity of 100.0% (95% CI: 69.2–
100%), positive prediction value (PPV) of 100.0%, negative prediction value (NPV) of 90.9%, and an overall 
accuracy of 95.0%, indicating the benefits of AI’s extensive training across diverse datasets. The experienced 
radiologist’s sensitivity was 40.0% (95% CI: 21.1–61.3%), while the specificity was 80.0% (95% CIs: 63.6–
91.6%), respectively, showing that the AI significantly outperformed the radiologist in terms of sensitivity 
(P=0.043) while maintaining comparable specificity. The inter-observer variability analysis indicated a 
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Introduction

Thyroid nodules, although often benign growths in 
the thyroid gland, can occasionally suggest underlying 
malignancies. These nodules are widespread in the general 
population, found in 19–68% of individuals (1). Alarmingly, 
about 3–10% result in a thyroid cancer diagnosis (2). Over 
recent decades, thyroid cancer incidence has significantly 
risen (3), making it the fifth most common cancer in women 
worldwide (4). In Thailand, it occupies an even higher rank, 
being the fourth most diagnosed cancer among women (5). 
Considering these trends, discussions around the potential 
benefits and controversies associated with the early and 
accurate detection of thyroid nodules for cancer prevention 
and survival rates warrant further exploration (6).

Ultrasonography stands as the primary modality 
for detecting and characterizing thyroid nodules, 
informing decisions on fine needle aspiration (FNA). 
Ultrasonography’s prevalence in clinical practice stems from 
its non-invasiveness, absence of radiation, cost-effectiveness, 
and convenience. Additionally, ultrasonography enables 
concurrent interventions (7). However, the efficacy of 
ultrasound-based diagnose is hinges not just on image 
quality or equipment, but significantly on the expertise of 
the interpreting radiologist. Those less experienced often 
face higher misdiagnosis rates, unintentionally increasing 
unnecessary FNA procedures (8).

There has been a consistent push towards refining 
diagnostic accuracy in this field. Wang et al. utilized 
ultrasound elastography images to study thyroid 
microcarcinoma (9). Luo et al. took an innovative approach 
to classifying thyroid nodules, integrating linear discriminant 
analysis with elastography images (10). Despite their 

promise, ultrasound elastography images present their own 
set of challenges, with various factors possibly affecting their 
reliability (11). Over time, numerous classification systems 
for thyroid nodule risk using conventional ultrasound images 
have emerged. However, concerns remain about their 
effectiveness due to inherent inconsistencies (12). Pioneers 
like Liang et al. developed a unique radiomics score aimed at 
predicting thyroid nodule malignancies, showcasing superior 
performance over existing methods but requiring manual 
delineation of regions of interest (13). Concurrently, works 
by Thomas and Haertling utilized the image similarity model 
by Google to draw parallels between histological features in 
thyroid cancer diagnosis based on ultrasound images (14).

In a bid to further enhance diagnosis, Ma et al. 
introduced a convolutional neural networks (CNN)-
based model for thyroid nodule diagnosis, combining two 
distinct CNN architectures to generate a richer feature 
map, thus enhancing predictive accuracy (15). Gao et al. 
adopted a multi-scale CNN approach for thyroid cancer 
differentiation, harnessing the pre-trained Alexnet’s 
capabilities (16,17). Additionally, the introduction of 
the Faster Region-based Convolutional Network for 
extracting regions of interest (ROIs) from ultrasound 
images offered a new perspective on malignancy prediction 
(18,19). Other studies like those by Liu et al. incorporated 
an Artificial Neural Network, drawing insights from the 
gray-level co-occurrence matrix and principal component 
analysis (20). Zhu et al. employed the pretrained VGG-19 
model to diagnose thyroid and breast cancers, achieving 
commendable accuracy rates (21). Cumulatively, these 
studies signify AI’s transformative potential in enhancing 
diagnostic precision and mitigating subjective errors, 

moderate agreement (K=0.53) between the radiologist and the resident, contrasting with fair agreement 
(K=0.37/0.33) when each was compared with the AI system. Notably, 95% CIs for these diagnostic indexes 
highlight the AI system’s consistent performance across different settings.
Conclusions: The findings advocate for the integration of AI into clinical settings to enhance the 
diagnostic accuracy of radiologists in assessing thyroid nodules. The AI system, designed as a supportive tool 
rather than a replacement, promises to revolutionize thyroid nodule diagnosis and management by providing 
a high level of diagnostic precision.
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ultimately leading to more accurate patient treatment plans 
and reduced healthcare costs.

Our study presents a novel “AI” system for thyroid 
nodule assessment, improving automation and accuracy. 
Using advanced AI techniques, it predicts malignancy in 
ultrasound images, mirroring practices from Thai medical 
centers. Departing from manual ROI segmentation, we 
employ You Only Look Once (YOLO) deep neural network 
for more precise and efficient segmentation. For malignancy 
prediction, we adopted CNNs, specifically using the pre-
trained DenseNet121. Furthermore, we integrated the Weakly 
Supervised Data Augmentation Network (WSDAN) (22), 
finding it particularly adept at discerning nuanced features 
on ultrasound images. This model was trained using 
images from multiple centers in Thailand, including Siriraj 
Hospital, Vajira Hospital, and the HRH Princess Maha 
Chakri Sirindhorn Medical Center, resulting in a noticeable 
boost in our thyroid nodule classification metrics. 

Given the outlined advancements and challenges in 
thyroid nodule diagnosis, the purpose of this study is to 
evaluate the efficacy of our novel artificial intelligence 
(AI) system in improving the accuracy of thyroid nodule 
malignancy detection in ultrasound images, aiming to 
reduce the reliance on subjective interpretation and decrease 
the rate of unnecessary FNA procedures. We present 
this article in accordance with the STARD reporting 
checklist (available at https://qims.amegroups.com/article/
view/10.21037/qims-23-1650/rc).

Methods

In this section, we detail the materials and methods 
employed during our research, starting with the patient 
selection criteria, moving on to the methods for ultrasound 
image acquisition, followed by our data and statistical 
analysis approach, and concluding with the demographic 
data and ultrasound characteristics of the examined nodules.

Patients

For this retrospective analysis, we examined 600 nodules, 
each corresponding to an individual patient who underwent 
thyroid ultrasonography complemented by ultrasound-
guided FNA across three prominent Thai medical 
institutions: Siriraj Hospital, Vajira Hospital, and HRH 
Princess Maha Chakri Sirindhorn Medical Center during 
the period from January 2015 to March 2021. To ensure a 
comprehensive and unbiased dataset, patients were selected 

through a consecutive series approach, meaning all eligible 
patients who presented during the specified timeframe and 
met the inclusion criteria were considered for the study 
without omission.

This study was conducted in accordance with the 
Declaration of Helsinki (as revised in 2013) and approved 
by the institutional review board of Siriraj Hospital under 
ID SIRB Protocol No. 851/2563(IRB4). All participating 
institutions were informed and agreed the study. Given 
the retrospective nature of this study, the requirement for 
informed consent was waived.

The dataset adhered to the following inclusion criteria:
(I) Patients aged 18 years or older.
(II) The thyroid diagnostic procedure via ultrasound-

guided FNA was conducted on the same day.
(III) The nodule’s diagnosis, whether benign or 

malignant, was conclusively determined using 
thyroid FNA cytology.

Given that benign cytological findings usually constitute 
80–90% of all thyroid nodule diagnoses, benign cases were 
chosen proportionally to malignant ones for each year in 
focus to ensure a balanced dataset.

The dataset’s quality was ensured by applying the 
following exclusion criteria:

(I) Nodules yielding inconclusive pathology results.
(II) Ultrasound images of compromised clarity or quality.

Ultrasound image acquisition

Thyroid ultrasound examinations were carried out by 
experienced radiologists utilizing high-frequency linear 
probes across various institutions: Philips iu22 xmatrix at 
Siriraj Hospital, GE logiq E9 and GE logiq E10 at Vajira 
Hospital, and GE logiq E9 along with Toshiba Aplio 500 at 
HRH Princess Maha Chakri Sirindhorn Medical Center. 
All scans adhered to the American College of Radiology 
accreditation standards, capturing the thyroid glands 
in both transverse and longitudinal orientations using 
grayscale imaging. These images were then archived in a 
picture archiving and communication system (PACS).

Subsequently, the thyroid nodule ultrasound images from 
the PACS were retrieved and exported as JPEG files. To 
maintain patient confidentiality and focus on relevant areas, 
images displaying personal details or non-ultrasonographic 
content were trimmed using a software tool developed in-
house. Examples of these modifications are illustrated in 
Figure 1.

The ultrasound thyroid images were assessed by 

https://qims.amegroups.com/article/view/10.21037/qims-23-1650/rc
https://qims.amegroups.com/article/view/10.21037/qims-23-1650/rc
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radiologists with a decade of experience, as well as by third-
year diagnostic radiology residents. The evaluation criteria 
focused on several distinct ultrasound features of each 
nodule:

(I) Shape: either taller or wider.
(II) Margin: delineated as well-defined or ill-defined.
(III) Echogenicity: characterized as marked hypoechoic, 

hypoechoic, isoechoic, or hyperechoic.
(IV) Composition: categorized as predominantly cystic, 

predominantly solid, or entirely solid. 
(V) Calcification: the presence of calcification was 

identified and further characterized based on size, 
distinguishing between microcalcification (small-
sized calcifications) and macrocalcification (larger-
sized calcifications) or determined to be absent.

The American College of Radiology Thyroid Imaging 
Reporting and Data System (ACR TI-RADS 2017) 
guidelines (23) were employed to classify each thyroid 
nodule, based on its ultrasound characteristics, as benign or 
malignant.

In total, the collection comprised 600 thyroid nodules, 
with 229 classified as malignant and 371 as benign. These 
images were then randomly distributed across training, 
validation, and testing datasets, with allocations of 80%, 
10%, and 10% respectively.

Data and statistical analysis

All statistical evaluations were carried out using the SPSS 
software, version 26. Continuous variables, such as patient 
age and nodule size, were expressed as mean (with standard 
deviation) or median (with minimum and maximum values), 
depending on their distribution characteristics. Categorical 
variables, including gender, nodule count, and thyroid 

nodule types (benign or malignant), were detailed using 
frequencies (and percentages).

The diagnostic performance metrics for assessing thyroid 
nodules both overall and at individual centers comprised 
sensitivity, specificity, accuracy, positive predictive value, 
negative predictive value, and their associated 95% 
confidence intervals (CIs).

For baseline comparisons across study centers, categorical 
variables like gender, nodule count, and nodule types were 
evaluated via the Chi-square test. Continuous variables, namely 
age and nodule size, were analyzed through one-way analysis 
of variance (ANOVA) and the Kruskal-Wallis test, respectively. 
Should significant discrepancies in baseline variables emerge, 
post hoc comparisons were made between centers.

Associations with malignancy were discerned through 
univariate analysis. Variables from the univariate analysis 
with a P value below 0.2 were subsequently entered into 
a multiple logistic regression model. Adjusted odds ratios 
(with 95% CIs) were then derived. Any P value below 0.05 
was considered indicative of statistical significance. We have 
specified that all P value tests conducted in our study were 
two-sided, providing clarity on our statistical approach and 
analysis framework.

To gauge the level of agreement on final diagnoses, 
the Cohen’s Kappa statistic was employed, comparing the 
assessments of the AI, experienced radiologists over 10 years 
of experience in head and neck imaging, and the resident 
radiologist.

Thyroid nodule classification system

This study’s thyroid nodule assessment system was 
developed based on clinical practices across multiple 
centers in Thailand: Siriraj Hospital, Vajira Hospital, and 

Figure 1 Transformation of ultrasound images: (A) original image as retrieved from a PACS, (B) post-processing to remove personal 
information and irrelevant regions. PACS, picture archiving and communication system.
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Figure 2 Design of the Thyroid Nodule Classification System based on clinical practices across leading Thai medical centers. ROI, region 
of interest; YOLO, You Only Look Once.
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HRH Princess Maha Chakri Sirindhorn Medical Center. 
A comprehensive illustration detailing the design and 
development process is presented in Figure 2. Sequential 
steps of this system, as outlined in the figure, will be 
elaborated upon subsequently in this section. The source 
of our input images stems from the multi-center database 
discussed in Section Materials. We will delve deeper into 
the aspects of ROI segmentation, image augmentation, and 
weakly supervised classification in the following passages.

Deep learning techniques: emphasis on WSDAN

Two deep-learning models were employed in this 
system. The first, YOLO-V5 (24), has seen progressive 
improvements for object detection and was harnessed for 
caliper mark detection to segment ROIs on ultrasound 
images. The latter model, the WSDAN (22), merits a 
deeper dive given its pivotal role in classifying fine-grained 
features in our study.

WSDAN, in  the  rea lm of  f ine-gra ined  v i sua l 
categorization, focuses intently on subtle and localized image 
differences, which are often discerned from specific image 
portions. This discernment is crucial for our study as it allows 
the model to identify intricate patterns and features associated 
with thyroid nodules. The attention maps, derived from the 
feature maps of its underlying convolutional neural network 
(CNN), highlight regions that significantly contribute to 
the model’s decision-making process. Mathematically, the 
attention map A for an image  I  can be represented as:

( ) ( )*A I f I W=
 

[1]

the attention map ( )A I  is represented mathematically, 
where f  is the feature extraction function, and  W  represents 
the learnable weights of the model. This discernment 
enhances the model’s ability to distinguish between benign 
and malignant nodules, providing a more granular and 

accurate diagnosis.
The unique advantage of WSDAN lies in its capability 

to augment these attention maps, thereby spotlighting 
discriminative regions in the image. This attention-
driven focus ensures that the model emphasizes the most 
informative parts of an image, enhancing its classification 
accuracy, especially when pitted against conventional CNNs.

In our application, WSDAN was trained for thyroid 
nodule classification. The model’s outcome furnishes a 
probability indicative of malignancy. Given the nuances in 
distinguishing benign from malignant thyroid nodules, the 
attention-centric architecture of WSDAN ensures robust 
and precise classifications.

Image transformation for system input

For effective processing and analysis by the thyroid nodule 
classification system, input images undergo a transformation 
to ensure optimization for the AI system. The original 
ultrasound images, as retrieved from the PACS, are depicted 
in Figure 1, this post-processing involves the removal of any 
personal information, annotations, and irrelevant regions 
showing in Figure 1B.

This image refinement ensures that the AI system is not 
distracted or misled by extraneous data, thereby improving 
the accuracy and consistency of nodule classification. 
Moreover, eliminating personal details from the images 
serves a dual purpose: it not only reduces potential AI 
confusion but also reinforces patient data privacy.

ROI segmentation

The YOLO-V5 algorithm was specifically designed for 
target detection (25). Notable advantages of this algorithm 
include the compactness of the model and its swift 
computational abilities. Version 5, in particular, stands out 



Quantitative Imaging in Medicine and Surgery, Vol 14, No 5 May 2024 3681

© Quantitative Imaging in Medicine and Surgery. All rights reserved.   Quant Imaging Med Surg 2024;14(5):3676-3694 | https://dx.doi.org/10.21037/qims-23-1650

for its flexibility and impressively lightweight size compared 
to its predecessors, making it a popular choice for target 
detection across various domains.

In the clinical practices across multi-centers in Thailand, 
caliper marks are typically made to demarcate the boundaries 
of thyroid nodules. Consequently, most ultrasound im- 
ages sourced from the PACS exhibit these caliper marks. As 
illustrated in Figure 3, these caliper marks served as training 
examples for the YOLO-V5 algorithm to detect caliper mark 
locations. Once detected, the boundaries of the thyroid were 
inferred based on these caliper mark positions. However, 
recognizing that these inferred boundaries might not fully 
encompass the entire thyroid nodule, we added a margin 
to each ultrasound image’s ROI. More precisely, a margin 
equivalent to 40% of the estimated boundary was introduced. 
This determination was made based on experiments assessing 
the completeness of the ROI.

Figure 4 provides visual examples of the ROI segmentation 
process for both benign and malignant nodules. Figure 4A 
and Figure 4B present the thyroid nodules as they appear 
on systematically cropped ultrasound images, representing 
benign and malignant nodules respectively. Figure 4C and 
Figure 4D showcase the estimated caliper mark boundaries 
in red, as predicted by the caliper mark detection model. 
Finally, Figure 4E and Figure 4F depict the ROIs that have 
been marginally increased by 40% from the red boundaries 
illustrated in Figure 4C and Figure 4D.

Image inpainting

Referring to the previous study utilizing a subset of 
this dataset (26), predictions were found to be more 
accurate when the caliper marks on ultrasound images 
were inpainted. Consequently, the caliper marks on the 
segmented ROIs were eliminated using a developed 
software tool for image inpainting. Algorithm 1 delineates 
the steps involved in the image inpainting process.  
Figure 5A presents examples of the inpainted images.

Algorithm 1 Algorithm for Caliper Mark Removal

Require: ultrasound (U/S) image ROI, threshold value, p(i, j) intensity

1: while each pixel p(i, j) in ROI do

2:
( ) ( )

h
1, , threshold

ot er
,

0, wise
 ≥

← 


mask i j
p i j

3: end while

4: mask ← dilation(mask)

5: mask 0
neighbo

h
,

0,
r

ot erwise


←


=


p

6: for each mark pixel (i, j) do 

7: p(i, j) ← neighbor * tensor7×7

8: end for

Figure 3 The segmentation process of thyroid nodules leveraging the caliper mark boundaries, depiction of the caliper marks (+ for caliber, 
x for caliper ratio), the red bounding box from caliper mark area detection, and the bold red bounding box for ROI. YOLO, You Only Look 
Once; ROI, region of interest.
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Figure 4 Ultrasound images depicting: (A,B) benign and malignant nodules; (C,D) predicted boundaries showing the red bounding boxes 
from caliper mark area detection; and (E,F) the increased ROI margins. ROI, region of interest.

Figure 5 Inpainted and augmented images: (A) removed caliper marks; (B) horizontal flip; (C) shear. 

Image augmentation

Our AI system employs two distinct image augmentation 
methods. The initial approach encompasses basic image 
transformations: horizontal flipping and shearing, which 
are visualized in Figure 5, with Figure 5B demonstrating the 
horizontal flip and Figure 5C highlighting a 0.15% shear 
effect.

The second technique is  embedded within the 
WSDAN (22).  In contrast to conventional random 
transformations found in earlier deep models (15,16,21,25), 
WSDAN adopts a strategic direction. It accentuates spatial 
augmentations, such as image cropping and image dropping, 
as depicted in. The Augmentation Map, kA , is derived from

( )
( ) ( )

* min
max min

k k
k

k k

A A
A

A A
−

=
−

 
[2]

where kA  represents the Attention map. The Attention 
cropping mechanism is defined as:

( ) ( )*1, , 0
,

0, otherwise
k

k
A i j

C i j
 >

= 
  

[3]

Similarly, Attention dropping is expressed as:

( ) ( )*0, , 0
,

1, otherwise
 >

= 


k
k

A i j
D i j

 

[4]

The distinguishing feature of WSDAN is its adept use 
of attention maps. It guides the model to pay attention to 
multiple regions of the nodule. This ensures optimal attention 
allocation across pivotal features. Consequently, WSDAN’s 
spatial augmentation outperforms its random counterparts, 
culminating in a richer feature extraction process. This 
fortifies the deep model’s prowess in object localization 
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and classification. The attention-focused augmentation 
mechanism is pictorially represented in Figure 6.

Predicting the likelihood of malignancy

The malignancy prediction is presented as a percentage, 
as shown in Figure 7. This prediction uses the end-to-
end fine-grained classification model, WSDAN. Notably, 
WSDAN’s capabilities extend beyond image augmentation 
to encompass fine-grained visual classification, allowing it 
to differentiate between objects with subtle differences, like 
thyroid nodules. Thyroid nodule classification is challenging 
due to its low inter-class variances. Differentiating benign 
from malignant nodules can be complex, given their 
significant similarities. Only minor differences, such as 
calcifications, echotexture, and margins, differentiate them. 
Being weakly supervised, WSDAN employs not only 
labels but also automated image cropping and dropping 
techniques for learning.

Furthermore, WSDAN’s design is versatile and can be 
combined with many pre-trained models. In this study, we 
incorporated the DenseNet121 pre-trained model, based on 

findings from previous research (26).

Performance evaluation: WSDAN in conjunction with 
DenseNet121

We assessed the performance of WSDAN when paired with 
DenseNet121, comparing it to standalone DenseNet121 
using the identical dataset referenced in (25). The results 
are tabulated in Table 1.

The combined approach,  integrat ing WSDAN 
with DenseNet121, exhibited enhanced effectiveness. 
Consequently, we utilized this combination to train our 
model using ultrasound images sourced from Siriraj 
Hospital, Vajira Hospital, and the HRH Princess Maha 
Chakri Sirindhorn Medical Center.

Heat map analysis for prediction interpretation

WSDAN employs attention maps during the training 
process to direct data augmentation. These attention maps 
highlight the most discriminative regions within nodules. 
For each case discussed below, the corresponding attention 

Figure 6 Augmentation with attention crop and drop images was performed by WSDAN. ROI, region of interest; WSDAN, Weakly 
Supervised Data Augmentation Network.
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map is presented in Figures 8-10, respectively. Light 
gray areas on these maps indicate regions of heightened 
attention. However, due to multiplication with zero values 
in the original image—a process ensuring normalization—
some of these regions become invisible in the attention 
map.

In response to this challenge, we generated heat maps 
using a methodology adapted from Kunapinun et al. (27), 
with red zones indicating high-attention regions. This dual 
analysis—attention maps complemented by heat maps—
offers nuanced insights into model interpretation, as 
discussed in the ensuing prediction results.
 Benign nodule prediction (Figure 8A,8B): the 

transverse ultrasound depicted a benign nodule, 
correctly identified by the AI with 99.99% 
confidence. Figure 8A shows the nodule image, 
and Figure 8B presents the heat map of nodule 
type detection. The corresponding attention map 
merged with the ultrasound image and heat map 
is shown in Figure 8C. This image showed an 

isoechoic mixed cystic-solid nodule with lobulated 
margins. The heat map indicated potential 
malignancy risks in the fluid and the high reflective 
tissue of the nodule. Despite these suspicions, the 
AI correctly classified the nodule as benign.

 Malignant nodule prediction (Figure 9A,9B): the 
transverse ultrasound showed a malignant nodule, 
again correctly identified by the AI with 99.99% 
confidence. Figure 9A displays the nodule image, 
and Figure 9B shows the heat map of nodule type 
detection. The attention map’s result, merged with 
the ultrasound image and heat map, is depicted in 
Figure 9C. This nodule was hypoechoic, solid, with 
microcalcifications, and ill-defined margins. The 
heat map highlighted areas of concern, especially 
around the microcalcifications. Given these 
findings, the AI correctly marked it as malignant, 
suggesting areas to monitor closely.

 False malignant prediction (Figure 10A,10B): the 
ultrasound depicted a benign nodule, but the 

Figure 7 Overview thyroid nodule assessment process of WSDAN. Whereas indicates bitwise operation. ROI, region of interest; WSDAN, 
Weakly Supervised Data Augmentation Network.
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Table 1 The evaluation metrics of DenseNet121 compared to the conjunction of WSDAN with DenseNet121

Classifier Sensitivity (95% CI) Specificity (95% CI) Accuracy (95% CI) PPV (95% CI) NPV (95% CI)

DenseNet121, % 79.92 (46.19–94.96) 78.85 (65.30–88.94) 78.46 (66.51–87.69) 47.62 (33.21–62.43) 93.18 (83.38–97.38)

WSDAN with DenseNet121, % 84.62 (54.55–98.08) 86.54 (74.21–94.41) 86.15 (75.34–93.47) 61.11 (43.17–76.48) 86.15 (75.34–93.47)

WSDAN, Weakly Supervised Data Augmentation Network; CI, confidence interval; PPV, positive prediction value; NPV, negative prediction value. 
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A B C

A B C

Figure 8 Transverse ultrasound image of a benign nodule. The image demonstrates a benign nodule confirmed by FNA, with 99.9967% 
deep learning prediction accuracy for benign pathology. (A) Isoechoic mixed cystic-solid nodule with lobulated margins. (B) Heat map 
pinpoints potential malignancy: marked risk within the nodule’s fluid and moderate risk in the hyperechoic tissue from enhanced reflection. 
Following analysis, the deep learning model confidently categorized the nodule as benign, dismissing the flagged areas as non-malignant. 
(C) Attention map integrated with the U/S image and heat map. Notably, a very hypoechoic area is indicated, which could typically suggest 
a high risk of malignancy. However, the AI discerned this area as cystic, leading to its benign classification. FNA, fine needle aspiration; U/S, 
ultrasound; AI, artificial intelligence. 

Figure 9 Transverse ultrasound image of a malignant nodule. The image illustrates a malignant nodule confirmed by FNA, with a 100% 
deep learning prediction accuracy for malignancy. (A) Hypoechoic solid nodule displaying microcalcifications, ill-defined margins, and a 
taller-than-wide appearance. (B) Heat map identifies areas of potential malignancy: significant risk associated with the white reflections from 
numerous microcalcifications, and moderate risk within the nodule’s inhomogeneous hyperechoic regions. Post-analysis, the deep learning 
model robustly classified the nodule as malignant, emphasizing the highlighted areas as key points of concern. (C) Attention map merged 
with the U/S image and heat map, emphasizing areas of primary diagnostic interest. Notably, microcalcification regions that are indicative of 
potential malignancy are clearly delineated. FNA, fine needle aspiration; U/S, ultrasound.

AI erroneously classified it as malignant with a 
confidence of 94.96%. Figure 10A illustrates the 
nodule image, and Figure 10B depicts the heat map 
of nodule type detection. The result of the attention 
map merged with the ultrasound image and heat 
map is presented in Figure 10C. This nodule 
exhibited a smooth texture, isoechoic characteristics, 

and contained a small cyst. Notably, the heat map 
highlighted suspicious regions, primarily around 
tissue reflections and macrocalcifications. The 
misclassification by the AI is likely attributed to the 
challenge of distinguishing certain macrocalcification 
points as microcalcifications, possibly influenced by 
variations in image resolution. 
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Figure 10 Transverse ultrasound image of a nodule with incorrect result. The image shows a nodule that was benign per FNA results; 
however, deep learning erroneously predicted it with a 94.9676% probability as malignant. (A) The ultrasound displays an isoechoic nodule 
with smooth margins and a small cyst. (B) The heat map highlights potential malignancy: significant risk is perceived in the white reflections 
of the tissue, and moderate risk associated with macrocalcifications. Post-analysis, the deep learning model inaccurately classified the nodule 
as malignant, potentially misinterpreting aspects of the macrocalcifications as microcalcifications. (C) Attention map superimposed on the 
U/S image and heat map, illustrating the primary regions under scrutiny. The macrocalcification, representing a medium risk of malignancy, 
is distinctly highlighted. Conversely, certain ‘white spots’ intrinsic to the nodule’s texture were misidentified by the AI as microcalcifications, 
which contributed to its erroneous malignant classification. FNA, fine needle aspiration; U/S, ultrasound; AI, artificial intelligence. 

Results

In our exploration, we sought to uncover the efficacy and 
reliability of the computer-aided diagnosis system in the 
realm of thyroid ultrasound diagnostics. Central to our 
analysis was the distribution and utilization of our datasets 
across various operational groups.

Demographic data

A total of 600 thyroid nodules were examined from the 
three centers, with participants having an average age 
of (52.72±15.30) years, spanning an age range from 15 
to 90 years. Females constituted a significant portion of 
the cohort, with 543 participants (90.5%). Out of the  
600 nodules, pathology identified 371 (61.8%) as benign 
and 229 (38.2%) as malignant. The nodules had an average 
size of 1.9 cm, with sizes ranging from 0.3 to 10.4 cm. Most 
patients presented with a single nodule, accounting for 
30.5% of the cases. The variance in the number of thyroid 
nodules, their sizes, and their type (benign or malignant) 
was statistically significant across the three centers (P<0.001 
for all three variables). These data points are tabulated in 
Table 2.

Analysis of a cohort of 600 patients, detailed in Table 2, 
reveals key demographic and clinical characteristics across 

three medical centers. The cohort had an average age 
of 52.72 years [standard deviation (SD) =15.30], with no 
significant age difference across centers (P=0.41). Females 
predominated the sample, making up 90.5% of patients, 
showing consistent gender distribution (P=0.47). Notably, 
nodule count varied significantly between centers (P<0.001), 
with most patients (86.7%) having 5 or fewer nodules. 
Tumor size also differed significantly (P<0.001), averaging 
1.9 cm across the sample. Diagnostic outcomes highlighted 
a significant variance in nodule pathology, with 61.8% 
benign and 38.2% malignant nodules, showing a distinct 
difference in the prevalence of benign versus malignant 
nodules between centers (P<0.001).

Within the test group, 60 nodules were examined, 
evenly distributed with 20 nodules from each center. 
The participants in this group had an average age of  
54.48±16.62 years and an age range between 36 and  
81 years. Females made up 86.7% of this group, represented 
by 52 patients. From these 60 nodules, 35 (58.3%) were 
identified as benign, while the remaining 25 (41.7%) were 
classified as malignant by pathology. The average nodule 
size in this subgroup was 1.75 cm, ranging from 0.5 to 
7.7 cm. Notably, the majority of these patients had two 
nodules, representing 36.7% of the cases. A comprehensive 
breakdown of the test group’s demographic data can be 
found in Table 3, highlighting no significant disparities 
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Table 2 The statistical data analysis of thyroid nodules

Variables All patients (n=600) Center A** (n=200) Center B** (n=200) Center C** (n=200) P value

Age (years) 52.72±15.30 52.08±14.92 53.89±14.55 52.19±16.36 0.41

Sex; female 543 (90.5) 180 (90.0) 178 (89.0) 185 (92.5) 0.47

No. nodule <0.001*

≤5 520 (86.7) 177 (88.5) 190 (95.0) 153 (76.5)

1 183 (30.5) 64 (32.0) 76 (38.0) 43 (21.5)

2 164 (27.3) 48 (24.0) 72 (36.0) 44 (22.0)

3 84 (14.0) 28 (14.0) 31 (15.5) 25 (12.5)

4 47 (7.8) 20 (10.0) 9 (4.5) 18 (9.0)

5 42 (7.0) 17 (8.5) 2 (1.0) 23 (11.5)

>5 80 (13.3) 23 (11.5) 10 (5.0) 47 (23.5)

Tumor long size (cm)*** 1.9 (0.3–10.4) 1.7 (0.3–6.8) 1.7 (0.4–10.4) 2.4 (0.4–9.4) <0.001*

Benign 371 (61.8) 92 (46) 174 (87) 105 (52.5) <0.001*

Malignant 229 (38.2) 108 (54.0) 26 (13.0) 95 (47.5) <0.001*

Data are represented as mean ± SD or number (%). *, significant P value <0.05; **, Center A refers to Siriraj Hospital, Center B to Vajira 
Hospital, and Center C to HRH Princess Maha Chakri Sirindhorn Medical Center; ***, tumor long size (cm) represent measurements of the 
longest dimension of thyroid nodules as observed in the transverse view on U/S images. SD, standard deviation; U/S, ultrasound. 

among the three centers.
In a focused analysis of a test group comprising  

60 patients, summarized in Table 3, we observed the 
following trends across Centers A, B, and C: The average 
age was 54.48 years (SD =16.62), without significant 
differences across centers (P=0.11). The group was 
predominantly female (86.7%), with consistent gender 
distribution among the centers (P=0.09). Most patients 
(83.3%) had five or fewer nodules, showing no significant 
variance in nodule count (P=0.79). Tumor sizes averaged 
1.75 cm, with no significant cross-center differences 
(P=0.34). Regarding diagnoses, 58.3% of nodules were 
benign, and 41.7% were malignant, indicating a balanced 
representation of nodule pathology without specifying the 
variance across centers.

Ultrasound characteristics of nodules

We have updated the manuscript to include the precision 
of the 95% CIs for the test results, which pertain to the 
ultrasound characteristics of nodules in Table 4, specifically 
for the significant association of micro-calcification 
with malignant thyroid nodules, which now reads: 
‘Micro-calcification emerged as a significant ultrasound 
characteristic associated with malignant thyroid nodules, 

with an adjusted odds ratio of 5.21 (95% CI: 1.22–21.19, 
P=0.02)’. This amendment ensures clarity and thoroughness 
in the presentation of our findings, as requested.

Dataset distribution: train, validation, and test groups

Out of 600 thyroid nodule images, we retrospectively 
selected a representative image for each nodule. These 
images were then randomly allocated to the training (80%), 
validation (10%), and testing (10%) groups. We processed 
the dataset following the workflow depicted in Figure 11, 
which outlines the stages from image selection to group 
allocation, ensuring a systematic approach to data handling 
and analysis.

Diagnostic performance: AI, experienced radiologist, and 
residents

Table 5 details the diagnostic performance in differentiating 
benign and malignant thyroid nodules across three 
diagnostic methods: AI, experienced radiologists, and 
residents.
 AI: AI demonstrated a sensitivity of 80.0% 

(59.3–93.2%), specificity of 71.4% (53.7–85.4%), 
accuracy of  75.0% (62.1–85.3%),  posit ive 
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Table 3 The statistical data analysis of thyroid nodules in the test group

Variables All patients (n=60) Center A** (n=20) Center B** (n=20) Center C** (n=20) P value

Age (years) 54.48±16.62 50.55±19.87 52.15±12.63 60.75±15.50 0.11

Sex; female 52 (86.7) 16 (80.0) 20 (100.0) 16 (80.0) 0.09

No. nodule 0.79

≤5 50 (83.3) 16 (80.0) 17 (85.0) 17 (85.0)

1 11 (18.3) 5 (25.0) 2 (10.0) 4 (20.0)

2 22 (36.7) 6 (30.0) 7 (35.0) 9 (45.0)

3 8 (13.3) 2 (10.0) 5 (25.0) 1 (5.0)

4 4 (6.7) 2 (10.0) 1 (5.0) 1 (5.0)

5 5 (8.3) 1 (5.0) 2 (10.0) 2 (10.0)

>5 10 (16.7) 4 (20.0) 3 (15.0) 3 (15.0)

Tumor long size (cm)*** 1.75 (0.5–7.7) 1.55 (0.6–4.6) 1.85 (0.7–3.6) 2.3 (0.5–7.7) 0.34

Benign 35 (58.3) 10 (50.0) 15 (75.0) 10 (50.0) 0.18

Malignant 25 (41.7) 10 (50.0) 5 (25.0) 10 (50.0) 0.18

Data are represented as mean ± SD or number (%). *, significant P value <0.05; **, Center A refers to Siriraj Hospital, Center B to Vajira 
Hospital, and Center C to HRH Princess Maha Chakri Sirindhorn Medical Center; ***, tumor long size (cm) represent measurements of the 
longest dimension of thyroid nodules as observed in the transverse view on U/S images. SD, standard deviation; U/S, ultrasound. 

predictive value of 66.7% (53.4–77.8%), and a 
negative predictive value of 83.3% (68.9–91.8%). 
Importantly, AI showcased the highest diagnostic 
performance in center A (P<0.001).

 Experienced radiologists: the metrics for this group 
were: sensitivity of 40.0% (21.1–61.3%), specificity 
of 80.0% (63.6–91.6%), accuracy of 63.3% (49.9–
75.4%), positive predictive value of 58.8% (38.7–
76.4%), and negative predictive value of 65.1% (56.5–
72.8%). Like the AI, the experienced radiologists also 
recorded optimal performance in center A (P=0.011).

 Residents: the residents posted a sensitivity of 
64.0% (42.5–82.0%), specificity of 77.1% (59.9–
89.6%), accuracy of 71.7% (58.6–82.6%), positive 
predictive value of 66.7% (50.5–79.8%), and a 
negative predictive value of 75.0% (63.3–83.9%). 
Matching the trends seen in AI and experienced 
radiologists, the residents also had their peak 
performance in center A (P<0.001).

Performance comparison: AI vs. radiologist vs. resident

Table 6 showcases the performance of AI, experienced 
radiologists, and residents in nodule classification based on 
diagnostic sensitivity and specificity.

 The AI demonstrated a significantly higher 
diagnostic sensitivity compared to the experienced 
radiologist (P=0.04). This trend was particularly 
evident in centers B and C with P values of 0.02 
and 0.02, respectively.

 There was no significant difference in diagnostic 
sensitivity when comparing AI and residents (P=0.21) 
or experienced radiologists and residents (P=0.09).

 Across all three methods, there wasn’t a significant 
difference in diagnostic specificity with P values 
ranging from 0.40 to 0.76.

Observer variability analysis

Table 7 provides a detailed breakdown of inter-observer 
variability among the AI, experienced radiologists, and 
residents.
 The agreement between AI and the experienced 

radiologist had a Kappa value of [0.37 (95% CI: 
0.16–0.58)], reflecting a fair level of agreement.

 Comparing AI and residents, the Kappa value was 
[0.33 (95% CI: 0.10–0.57)], also indicating a fair 
agreement.

 In the comparison between the radiologist and the 
resident, a Kappa value of [0.53 (95% CI: 0.31–
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Table 4 Thyroid nodule features in the test group and their associated risk factors for malignancy

Variables
Number (%) Risk factor of malignant 

Benign (n=35) Malignant (n=25) P value Adjusted OR (95% CI) P value

Margin 0.10

Well-defined 30 (85.7) 17 (68.0) 1 –

Ill-defined 5 (14.3) 8 (32.0) 2.40 (0.54–10.70) 0.25

Shape 0.31 N/A N/A

Wider 29 (82.9) 18 (72.0)

Taller 6 (17.1) 7 (28.0)

Echo 0.41 N/A N/A

Hyperechoic 0 (0.0) 0 (0.0)

Isoechoic 18 (51.4) 9 (36.0)

Hypoechoic 15 (42.9) 13 (52.0)

Marked hypoechoic 2 (5.7) 3 (12.0)

Calcification 0.01*

None 27 (77.1) 10 (40.0) 1 –

Macrocalcification 4 (11.4) 5 (20.0) 1.77 (0.35–8.83) 0.48

Microcalcification 4 (11.4) 10 (40.0) 5.21 (1.22–21.19) 0.02*

Composition 0.06

Predominate cyst 6 (17.1) 0 (0.0)

Predominate solid 9 (25.7) 5 (20.0) 1 –

Solid 20 (57.1) 20 (80.0) 2.83 (0.59–13.58) 0.19

*, significant P value <0.05. OR, odds ratio; CI, confidence interval; N/A, not applicable.

0.74)] was observed, representing a moderate level 
of agreement.

 Notably, center A consistently exhibited a higher 
Kappa value, ranging between 0.48 and 0.70, 
compared to other centers.

Discussion

Our study has successfully demonstrated the potential of an 
AI-driven computer-aided diagnosis system to significantly 
enhance diagnostic accuracy in thyroid ultrasound imaging. 
With a sensitivity of 80.0%, specificity of 71.4%, and 
overall accuracy of 75.0%, our AI system has shown 
promising results in differentiating between benign and 
malignant thyroid nodules. These findings are particularly 
noteworthy given the AI’s superior sensitivity compared to 
that of experienced radiologists, highlighting its potential 
to reduce unnecessary FNA procedures. This summary sets 
the stage for our discussion on the implications of these 

results, the comparison with existing literature, and the 
direction for future research in AI applications in thyroid 
nodule diagnostics.

The advent of computer-aided diagnosis systems 
utilizing AI has notably enhanced the diagnostic precision 
of thyroid ultrasound, providing a potential avenue to 
curtail unwarranted FNA procedures. The comprehensive 
meta-analysis by Liu et al. (6) substantiates the comparable 
diagnostic efficacy of these AI systems with veteran 
radiologists. Yet, earlier research by Gao et al. (16) and Luo 
et al. (10) spotlighted the system’s inferior specificity relative 
to its human counterparts.

Our endeavor integrated the DenseNet121 with 
WSDAN, deploying deep learning to delineate benign 
from malignant thyroid nodules. Our results—a sensitivity 
of 80.0%, specificity of 71.4%, and an accuracy of 75.0%—
though aligned in sensitivity, registered a marginal decline 
in specificity and accuracy when juxtaposed with prior 
findings from Arunrukthavon et al. (26), Ma et al. (15), and 
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Figure 11 Overview of the Thyroid nodule analysis workflow. U/S, ultrasound; ROI, region of interest. 

Kim et al. (28). A plausible explanation for this discrepancy 
is the inherent heterogeneity of ultrasound images across 
distinct centers. An insightful observation from our study 
revealed the AI’s superior diagnostic proficiency in Center 
A. This could be attributed to the AI’s familiarity with 

the substantial and congruent dataset from Center A, as 
evidenced in Arunrukthavon et al.’s work (26), rendering 
other centers with varied datasets at a comparative 
disadvantage.

Our AI system demonstrated an impressive sensitivity, 

Table 5 Diagnostic performance of the AI, experienced radiologist, and resident for differentiating benign and malignant thyroid nodules

Center Reader Sensitivity (95% CI) Specificity (95% CI) PPV (95% CI) NPV (95% CI) Accuracy (95% CI) P value

All AI 80.0% (59.3–93.2%) 71.4% (53.7–85.4%) 66.7% (53.4–77.8%) 83.3% (68.9–91.8%) 75.0% (62.1–85.3%) <0.001*

Radiologist 40.0% (21.1–61.3%) 80% (63.6–91.6%) 58.8% (38.7–76.4%) 65.1% (56.5–72.8%) 63.3% (49.9–75.4%) 0.09

Resident 64.0% (42.5–82.0%) 77.1% (59.9–89.6%) 66.7% (50.5–79.8%) 75.0% (63.3–83.9%) 71.7% (58.6–82.6%) 0.001*

Center A** AI 90% (55.5–99.8%) 100% (69.2–100.0%) 100.0% 90.9% (60.9–98.5%) 95% (75.1–99.9%) <0.001*

Radiologist 60% (26.2–87.8%) 100% (69.2–100.0%) 100.0% 71.4% (53.9–84.2%) 80% (56.3–94.3%) 0.01*

Resident 90% (55.5–99.8%) 90% (55.5–99.8%) 90% (58.1–98.3%) 90% (58.1–98.3%) 90% (68.3–98.8%)  <0.001*

Center B** AI 80% (28.4– 99.5%) 66.7% (38.4–88.2%) 44.4% (25.7–64.9%) 90.9% (62.6–98.4%) 70% (45.7–88.1%) 0.12

Radiologist 40% (5.2–85.3%) 73.3% (44.9–92.2%) 33.3% (11.4–66.1%) 78.6% (62.7–88.9%) 65% (40.8–84.6%) 0.61

Resident 60% (14.7–94.7%) 80% (51.9–95.7%) 50% (22.4–77.6%) 85.7% (66.6–94.8%) 75% (50.9–91.3%) 0.13

Center C** AI 70% (34.8–93.3%) 50% (18.7–81.3%) 58.3% (40.1–74.6%) 62.5% (34.9–83.8%) 60% (36.1–80.9%) >0.99

Radiologist 20% (2.5–55.6%) 70% (34.8–93.3%) 40% (12.3–76.0%) 46.7% (34.4– 59.3%) 45% (23.1–68.5%)  >0.99

Resident 40% (12.2–73.8%) 60% (26.2–87.8%) 50% (25.5–74.5%) 50% (32.8– 67.2%) 50% (27.2–72.8%)  >0.99

*, significant P value <0.05; **, Center A refers to Siriraj Hospital, Center B to Vajira Hospital, and Center C to HRH Princess Maha Chakri Sirindhorn Medical 
Center. AI, artificial intelligence; CI, confidence interval; PPV, positive prediction value; NPV, negative prediction value.
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Table 6 Comparison of artificial intelligence, experienced radiologist, and resident interms of diagnostic sensitivity and specificity

Performance 
comparison

All (n=60) Center A* (n=20) Center B* (n=20) Center C* (n=20)

Sensitivity Specificity Sensitivity Specificity Sensitivity Specificity Sensitivity Specificity 

AI-radiologist 0.043*  0.405 0.131 1.000 0.028* 0.829 0.029* 0.374

AI-resident 0.212 0.588 1.000 0.317 0.240 0.652 0.189 0.661

Radiologist-resident 0.093 0.769 0.131 0.317 0.282 0.812 0.342 0.648

*, Center A refers to Siriraj Hospital, Center B to Vajira Hospital, and Center C to HRH Princess Maha Chakri Sirindhorn Medical Center. AI, 
artificial intelligence.

Table 7 Inter-observer variability among AI, radiologist, and resident for differentiating benign and malignant thyroid nodules

Readers
Kappa (95% CI)

All (n=60) Center A* (n=20) Center B* (n=20) Center C* (n=20)

AI-radiologist 0.37 (0.16–0.58) 0.48 (0.11–0.85) 0.69 (0.38–1.00) 0.000 (N/A)

AI-resident 0.33 (0.10–0.57) 0.70 (0.38–1.00) 0.27 (0–0.68) 0.038 (0.0–0.44)

Radiologist-resident 0.53 (0.31–0.74) 0.60 (0.28–0.92) 0.52 (0.12–0.93) 0.44 (0.02–0.87)

*, Center A refers to Siriraj Hospital, Center B to Vajira Hospital, and Center C to HRH Princess Maha Chakri Sirindhorn Medical Center. AI, 
artificial intelligence; CI, confidence interval; N/A, not applicable. 

outpacing even experienced radiologists. However, 
specificity metrics were somewhat parallel between the AI, 
seasoned radiologists, and residents, with the latter two 
exhibiting marginally better outcomes. The distinctiveness 
of our findings when compared to earlier studies might stem 
from an unbiased, rigorous AI training protocol. Given 
its elevated sensitivity, AI holds promise in augmenting 
radiological diagnostics, particularly aiding novices in 
discerning malignant nodules, thus reducing superfluous 
FNA interventions.

It is noteworthy that the experienced radiologists’ 
specificity in our study lagged behind those documented 
by Choi et al. (10) and Yoo et al. (15), potentially due to a 
population skew. It is inferred that patients subjected to 
FNA generally present with ambiguous nodules, posing 
challenges for ultrasound-based diagnosis.

In cases where the AI misclassified a benign nodule 
with a 94.96% confidence, potential challenges emerged in 
distinguishing macrocalcifications from microcalcifications. 
The visual similarities, compounded by image resolution 
variations, pose a hurdle for precise characterization. 
The AI, relying on learned patterns, may misinterpret 
larger macrocalcifications as smaller ones, leading to 
misclassifications. Enhancing AI training protocols to 
encompass nuanced size variations in calcifications is 

crucial. Future efforts should prioritize diverse datasets 
and advanced resolution considerations for improved 
discriminatory capabilities. Collaborative research and 
ongoing algorithmic refinements are essential for advancing 
diagnostic precision in varied clinical scenarios.

The interobserver variability findings, particularly the 
AI trailing slightly behind the consensus between the 
experienced radiologist and the resident, prompt a closer 
look at the AI’s learning curve. Further exploration of these 
nuances will be crucial in optimizing the integration of AI 
in clinical practice.

In summary, the inter-observer variability analysis not 
only contributes valuable insights into diagnostic agreement 
but also underscores the need for careful consideration of 
dataset characteristics and AI learning curves in the context 
of thyroid nodule assessment.

Limitation

Our study, however, isn’t without its constraints. The 
limited dataset spanning a mere three centers might not be 
sufficiently representative. The employment of JPEG as 
the chosen format could inadvertently compromise image 
fidelity, thereby influencing AI diagnostic performance. 
Envisioned future studies should leverage larger datasets 
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from diverse centers and universal image standards, 
preferably in Digital Imaging and Communications 
in Medicine (DICOM) format, to amplify diagnostic 
precision. Our study’s retrospective nature, coupled with 
its reliance on static imagery, poses potential biases and 
could inadvertently hamper radiologist performance. 
The exclusive focus on nodules with definitive diagnoses 
inadvertently sidesteps ambiguous or nondiagnostic 
cytology, circumscribing the broader applicability of our 
findings.

Conclusions

In this study, the AI demonstrated a heightened sensitivity in 
diagnosing thyroid nodules when compared to experienced 
radiologists. However, when it came to specificity, the AI 
system mirrored the performance of both experienced 
radiologists and residents. The advantages showcased by the 
AI in terms of diagnostic sensitivity suggest its potential as 
a valuable adjunct in the clinical landscape. Deploying this 
system in con- junction with radiologists may pave the way 
for enhanced diagnostic accuracy, potentially improving 
patient care outcomes in the realm of thyroid nodule 
evaluations. As a step forward, our future research direction 
involves the incorporation of Doppler imaging into the 
model, aiming to further enhance its diagnostic capabilities 
and contribute to the evolving landscape of thyroid nodule 
assessment.
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