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Background: Cardiac ultrasound is one of the most important examinations in cardiovascular medicine, 
but the technical requirements for the operator are relatively high, which to some extent affects the scope 
of its use. This study was dedicated to investigating the agreement of ejection fraction between coronary 
computed tomography (CT) and cardiac ultrasound and diagnostic performance in evaluating the clinical 
diagnosis of patients with chronic heart failure.
Methods: We conducted a single-center-based retrospective study including 343 consecutive patients 
enrolled between January 2019 to April 2020, all of whom presented with suspected symptoms of heart 
failure within one month. All enrolled cases performed cardiac ultrasound and coronary CT scans. The CT 
images were analyzed using accurate left ventricle (AccuLV) artificial intelligence (AI) software to calculate 
the ejection fraction-computed tomography (EF-CT) and it was compared with the ejection fraction (EF) 
obtained based on ultrasound. Cardiac insufficiency was determined if the EF measured by ultrasound was 
below 50%. Diagnostic performance analysis, correlation analysis and Bland-Altman plot were used to 
compare agreement between EF-CT and CT. 
Results: Of the 319 successfully performed patients, 220 (69%) were identified as cardiac insufficiency. 
Quantitative consistency analysis showed a good correlation between EF-CT and EF values in all cases 
(R square =0.704, r=0.837). Bland-Altman analysis showed mean bias of 6.6%, mean percentage error of 
27.5% and 95% limit of agreement of −17% to 30% between EF and EF-CT. The results of the qualitative 
diagnostic study showed that the sensitivity and specificity of EF measured by coronary CT reached a high 
level of 91% [95% confidence interval (CI): 86–94%], and the positive diagnostic value was up to 96% (95% 
CI: 92–98%).
Conclusions: The EF-CT and EF have excellent agreement, and AccuLV-based AI left ventricular 
function analysis software perhaps can be used as a clinical diagnostic reference.
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Introduction

The human heart, nestled between the lungs above the 
diaphragm, pumps vital nutrients and oxygen to the 
body through four chambers: the left and right atria and 
ventricles, which connect to major arteries and veins (1). 
With the improvement of people’s living standards, the 
incidence of heart diseases such as coronary heart disease, 
cardiomyopathy and arrhythmia is increasing yearly (2). 
Therefore, evaluating the cardiac function, especially left 
ventricular function, is becoming increasingly important. 
Function indicators of the left ventricle (LV) include cardiac 
output, cardiac index, and ejection fraction (EF) (3). EF 
refers to the percentage of the stroke output in the left 
ventricular end-diastolic volume. To ascertain a dependable 
measurement of the left ventricular function, it is imperative 
to precisely ascertain the volume of the LV across various 
phases, with particular emphasis on the end-diastolic and 
end-systolic periods.

There are several methods available to measure the 
LV volume, including echocardiography, radionuclide 
angiography and left ventricular angiography by cardiac 
catheter, etc. (4) These methods have their advantages and 
disadvantages, among which echocardiography is the most 
convenient and widely used. Radionuclide angiography 
is of limited use because of its contamination, while 
cardiac catheterization is invasive. Echocardiography 
methods mainly include M-type and two-dimensional 
echocardiography (5). M-type echocardiography assumes 
the LV as a geometry of a certain shape. By measuring 
the inner diameter of each section, it is substituted into 
the corresponding formula to calculate the LV volume. 
However, in practical application, the shape of the LV is 
changeable. It is difficult to be represented by a single-
shape geometry, so this method is simple to operate, but its 
accuracy is unreliable. The commonly used algorithms of 
two-dimensional echocardiography include the Simpson 
method and the area-length method. The most commonly 
used method in clinical practice is the area-length method, 
which calculates the left ventricular volume by marking the 
endocardium and measuring its area and inner diameter, 
which is greatly affected by the geometric shape and image 
quality of the LV.

Recent years have seen rapid developments in artificial 
intelligence (AI) in cardiac medical imaging, making it 
possible to automate methods for segmenting the LV based 
on deep learning (6). Current AI-based LV-EF studies are 
mainly based on echocardiography and digital subtraction 
angiography (DSA), with relatively few based on computed 
tomography (CT) (7,8). There are even fewer comparative 
studies of EF calculation based on AI for echocardiography 
and CT (9). Furthermore, there is almost no agreement 
analysis research involving AI software, which has largely 
hindered the advancement of CT-based automated heart 
function analysis research. Accurate left ventricle (AccuLV, 
ArteryFlow Technology, Hangzhou, China) software is a 
fully automatic left ventricular functional analysis system 
based on cardiac CT images. In this study, the agreement 
of the AI-based AccuLV-measured EF for clinical diagnosis 
was evaluated, and the accuracy and reliability of the clinical 
use of AccuLV were further assessed. We present this article 
in accordance with the STARD reporting checklist (available 
at https://qims.amegroups.com/article/view/10.21037/
qims-23-1864/rc).

Methods

Study design

In this retrospective study, we estimated the agreement of 
the left ventricular ejection fraction derived from coronary 
CT (EF-CT) according to a gold standard defined by 
cardiac ultrasound (EF) (10). There were 321 cases who 
underwent cardiac CT and ultrasound examination within 
one month for suspected symptoms of heart failure screened 
and enrolled for further analysis. Cardiac insufficiency 
was determined if the EF measured by ultrasound was 
below 50%, and the diagnostic performance of cardiac 
insufficiency between EF-CT and EF was evaluated. The 
study was conducted in accordance with the Declaration 
of Helsinki (as revised in 2013). The study was approved 
by the Medical Ethics Committee of the Second Affiliated 
Hospital of Zhejiang University School of Medicine (No. 
I2021001277). As a retrospective study based on historical 
patient images, no contact with patients was required, so 
the requirement of informed consent for this retrospective 

Submitted Dec 29, 2023. Accepted for publication Mar 29, 2024. Published online Apr 26, 2024.

doi: 10.21037/qims-23-1864

View this article at: https://dx.doi.org/10.21037/qims-23-1864

https://qims.amegroups.com/article/view/10.21037/qims-23-1864/rc
https://qims.amegroups.com/article/view/10.21037/qims-23-1864/rc


Quantitative Imaging in Medicine and Surgery, Vol 14, No 5 May 2024 3621

© Quantitative Imaging in Medicine and Surgery. All rights reserved.   Quant Imaging Med Surg 2024;14(5):3619-3627 | https://dx.doi.org/10.21037/qims-23-1864

Figure 1 Flow diagram for the inclusion and exclusion of patients. CT, computed tomography; AccuLV, accurate left ventricle. 

All collected patients with CT and 
ultrasound examination (n=343)

Included patients (n=321)

Calculated successful by AccuLV  
(n=319)

Cardiac insufficiency 
(n=220)

Without Cardiac 
insufficiency (n=99)

Exclusion criteria:
(I) Chronic diseases and life 

expectancy was ≤12 months (n=11)
(II) Difficult to follow up (n=4)
(III) Ongoing participation in 

interventional clinical studies (n=1)
(IV) Poor CT imaging quality (n=6)

 AccuLV calculation failed (n=2)

analysis was waived. 

Participants

The patient inclusion criteria were clinical symptoms 
of heart failure, such as chest tightness and shortness of 
breath after exertion. The coronary CT examination was 
completed and the time was within three months from the 
ultrasound. All CT scans were performed on a CT scanner 
(SOMATON Force, Siemens, Munich, Germany), the 
scanning parameters were as follows: slice thickness ≤1 mm, 
image matrix 512×512. low-dose scanning or standard-dose 
scanning (combination of tube voltage 70–140 kV and tube 
current 84–2,300 mA). The patient exclusion criteria were 
complicated with chronic diseases (such as hypertension, 
diabetes, etc.) and life expectancy of ≤12 months or the 
conditions that researchers thought it difficult to follow 
up (such as due to travel, speech or mental disorders, etc.) 
or the patient who was participating in an interventional 
clinical study or with poor CT imaging quality. The time 
interval for all enrolled patients was from January 2019 
to April 2020. A flow diagram of patient inclusion and 
exclusion is shown in Figure 1.

Working principle of AccuLV and EF-CT calculation 

AccuLV is an image processing software based on AI for 

cardiac CT image analysis of patients running on Ubuntu. 
The software provides a semi-automated analysis process, 
mainly including LV segmentation and calculation of 
functional parameters of the LV. 

An 8-layer U-Net segmentation network was applied to 
the LV segmentation module (9,11). Cardiac CT images 
were input into the U-Net model, including an encoder 
for semantic condensation and a decoder for image size 
restoration. The encoder networks consisted of nine 
encoding blocks, each containing two 3×3 convolutional 
layers. Each convolutional layer was followed by a batch 
normalization layer and a rectified linear unit (ReLU) 
activation layer, and the encoding blocks were followed by a 
2×2 max pooling layer used for downsampling. The decoder 
networks included eight decoding blocks; each decoding 
block contained two 3×3 convolutional layers, each 
convolutional layer was followed by a batch normalization 
layer and a ReLU activation layer, and 2×2 deconvolutional 
layers preceded each decoding block for upsampling. The 
feature maps of the corresponding blocks in the encoder 
and the decoder were skip-connected according to the 
channel dimension. In each block of the U-Net model 
networks, a residual structure was incorporated, and in 
the decoder, an auxiliary path was added to the first seven 
upsampling operations (12). Based on the 8-layer U-Net 
segmentation network structure described above, the left 
ventricular region can be segmented accurately and quickly.
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Figure 2 The four main interfaces of AccuLV. (A) Cardiac CT images, (B) binary segmentation of LV, (C) three-dimensional view of the left 
ventricular wall and (D) cavity. AccuLV, accurate left ventricle; CT, computed tomography; LV, left ventricle. 

After the deep learning automatic segmentation of 
the cardiac CT image, the LV segmentation results 
were superimposed according to the three-dimensional 
coordinates. While obtaining the three-dimensional model 
of the LV, the mass and volume of the LV were automatically 
calculated. Then according to the LV volume at the end 
of systole and end of diastole, automatic calculation of 
left ventricular functional parameters such as cardiac 
output, cardiac index, and EF were completed. EF-CT 
values were calculated by AccuLV in all cases and analyzed 
in comparison with EF values from cardiac ultrasound.  
Figure 2 shows a three-dimensional (3D) rendering of the 
left ventricular segmentation, left ventricular wall and cavity 
of the AccuLV. 

Statistical analysis

The primary endpoint analysis was to assess the diagnostic 
specificity of EF-CT. Estimation of sample size calculation 
was based on the non-inferior test for one proportion using 
PASS 15 software (NCSS, LLC., Utah, USA), the expected 
proportion was evaluated as 0.4, and the target value for 
EF-CT was set as 0.3, with a power of 0.9, one-sided alpha 
of 0.025 (13). With a 20% loss rate, approximately 321 cases 
would be required. 

The diagnostic metrics mainly included the sensitivity, 
specificity, positive predictive value (PPV) and negative 
predictive value (NPV) of EF-CT compared to EF. 
Regression analysis between proportions of patients 
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Table 1 Study population characteristics

Baseline character Outcomes (N=321), N (%)

Age (years) (mean ± SD) 68.43±38.57

Female 98 (30.5)

Smoke 102 (31.8)

Hypertension 169 (52.6)

Diabetes 64 (19.9)

CVD 158 (49.2)

PVD 26 (8.1)

Pulmonary heart disease 36 (11.2)

Previous

Stroke 14 (4.4)

Myocardial infarction 9 (2.8)

Pacemaker implantation 14 (4.4)

Valve replacement 6 (1.9)

SD, standard deviation; CVD, cerebrovascular disease; PVD, 
peripheral vascular disease.

Table 2 Treatments of study population

Treatments Value (N=321), n (%)

SCA 125 (38.9)

PCI 101 (31.5)

Pacemaker implantation 33 (10.3)

Valve replacement 15 (4.7)

Drugs

Platelet inhibitors 198 (61.7)

Beta-blockers 146 (45.5)

ACEI 160 (49.8)

Sacubitril/valsartan 32 (10.0)

Diuretics 125 (38.9)

Statins 180 (56.1)

Calcium antagonists 52 (16.2)

Nitrates 42 (13.1)

SCA, selective coronary angiography; PCI, percutaneous 
coronary intervention; ACEI, angiotensin-converting enzyme 
inhibitors.

with an EF value <50% and reduced patient-level EF-
CT value was conducted using weighted linear regression 
with robust estimation. We used correlation analysis and 
Bland-Altman plot to perform agreement analysis of EF 
and EF-CT. A P value <0.05 (two-tailed) was considered 
statistically significant for Kendall’s tau-b trend test. All the 
above statistical analyses were performed using statsmodels 
package in Python 3.9.0.

Results

Clinical characteristics

Basic characteristics of the study cohort are shown in  
Table 1. The mean age was 68.43 years, 223 (69.5%) were 
men and 98 (30.5%) were women, 64 (19.9%) had diabetes, 
169 (52.6%) had hypertension, 102 (31.8%) smoked, 158 
(49.2%) had cerebrovascular disease (CVD), 26 (8.1%) had 
peripheral vascular disease, and 36 (11.2%) had pulmonary 
heart disease. Of those with a previous medical history, 14 
(4.4%) had a stroke, 9 (2.8%) had a myocardial infarction, 
14 (4.4%) had pacemaker implantation, and 6 (1.9%) had a 
heart valve replacement.

Median [interquartile range (IQR)] time delay between 
coronary CTA and cardiac ultrasound was 2 (1 to 7) days. 
Selected characteristics of treatment of the study population 
are presented in Table 2. There were 125 (38.9%) cases 
of selective coronary angiography, 101 (31.5%) cases of 
percutaneous coronary intervention, 33 (10.3%) with 
pacemaker implantation, 15 (4.7%) with heart valve 
replacement, 198 (61.7%) with platelet inhibitors, 146 
(45.5%) with Beta-blockers, 160 (49.8%) with angiotensin-
converting enzyme inhibitors, 32 (10.0%) with the 
application of sacubitril-valsartan, 125 (38.9%) of diuretics, 
180 (56.1%) of statins, 52 (16.2%) of calcium antagonists, 
and 42 (13.1%) of nitrates.

EF-CT for evaluating the clinical diagnostics

EF-CT analysis was performed successfully on 319 patients 
(99%). Patients were classified as having significant 
cardiac dysfunction if the EF-CT value measured by 
echocardiography was <50%. Our results showed that the 
sensitivity and specificity of EF measured by cardiac CT 
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reached a high level of more than 90%, and the positive 
diagnostic value was up to 96% (Table 3).

Upon stratifying patients based on their EF-CT values, 
a pronounced upward trend in the proportion of true 
positive cases was observed as the interval value diminished. 

This trend not only underscores the precision of CT in 
gauging the left ventricular EF but also highlights its 
clinical relevance (Table 4). Analysis of the data revealed 
that when the EF-CT value fell below 50%, the prevalence 
of true positives exceeded 80%, affirming the efficacy of 
this diagnostic criterion. High consistency was also shown 
when EF-CT was greater than 60%. Figure 3 shows a good 
correlation and regression results between EF-CT and EF 
values in all cases (R square =0.704, r=0.837), and Figure 4 
shows the Bland-Altman analysis between EF and EF-CT 
(mean bias 6.6%, mean percentage error 27.5%, 95% limit 
of agreement −17% to 30%). The overall distribution of 
patient-level EF-CT values is shown in Table 4.

Discussion

In this study, cardiac CT-based measurements of left 
ventricular EF and its diagnostic performance with heart 
failure were compared with cardiac ultrasound. The results 
demonstrated good agreement between EF-CT and EF for 
evaluating cardiac insufficiency. 

The agreement between the EF-CT and EF can be 
interpreted in two ways. The first is a direct comparison 
of quantitative results of EF values. Regression analysis 
based on ordinary least squares (OLS) and Bland-Altman 
analysis showed excellent agreement between EF-CT 
and EF (Figures 3,4), confirming the high consistency and 
reliability of EF values calculated from AccuLV based 
on CT images and EF values calculated from ultrasound 

Table 4 Association between patient-level EF-CT value and EF

EF-CT range, % Patients, n EF <50%, n (%)

≥60 77 4 (5.2)

50–59.9 34 16 (47.1)

40–49.9 31 25 (80.6)

30–39.9 40 39 (97.5)

20–29.9 51 51 (100)

<20 86 85 (98.8)

Kendall’s tau-b test for trend (P<0.05). EF-CT, ejection fraction-
computed tomography; EF, ejection fraction. 

Table 3 Diagnostic performance of EF-CT for prediction of EF-
guided heart failure

Metrics Values, % (95% CI)

Sensitivity 91 (86–94)

Specificity 92 (86–96)

Positive predictive value 96 (92–98)

Negative predictive value 82 (73–88)

Data in square brackets are 95% confidence intervals for the 
current metric. EF-CT, ejection fraction-computed tomography; 
EF, ejection fraction.
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Figure 4 The Bland-Altman analysis plot between EF and EF-
CT. EF, ejection fraction; EF-CT, ejection fraction-computed 
tomography; SD, standard deviation. 

Figure 3 Correlation analysis between EF-CT and EF. EF-CT, 
ejection fraction-computed tomography; EF, ejection fraction. 
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images. The second aspect is based on the qualitative 
assessment of the diagnostic performance of heart failure, 
mainly involving the evaluation of diagnostic consistency. 
In this regard, EF-CT achieved a sensitivity and specificity 
of 0.9 or more for the diagnosis of heart failure (Table 3), 
and post-stratification patient statistics also showed that 
the difference between them was not significant, especially 
for EF-CT values in the lower intervals (Table 4). Nearly 
half of heart failure cases among patients are attributed 
to a diminished left ventricular EF, increasingly emerging 
as a critical and conspicuous issue within public health. 
Conversely, while cardiac ultrasound stands as the most 
expedient and swift method for assessing cardiac function at 
present, it frequently encounters challenges such as the poor 
reproducibility of outcomes and a significant dependency 
on the operator’s practical expertise. Consequently, from 
a standpoint of consistency, EF-CT emerges as a viable 
alternative diagnostic criterion for evaluating cardiac 
functionality.

Recent advances in deep learning for medical imaging 
have led to the emergence of an AI-based method for 
automatically segmenting the contour of the LV and 
calculating EF using convolutional neural networks (14-17). 
These approaches are not limited to any specific imaging 
modality, providing strong adaptability to different types 
of images. Compared to traditional methods, the AI-based 
approach is faster and more accurate and can continuously 
improve its performance with increasing data, making it a 
promising alternative for EF calculation (18-20). Although 
most of the algorithms have achieved good performance, 
most of these studies have been limited to the thesis 
research stage. Very few have successfully transitioned to 
software tools that can be used in medical imaging-assisted 
diagnosis. In contrast, AccuLV is a left ventricular function 
assessment software that employs deep learning algorithms 
for clinical practice. The research presented in this paper 
demonstrates that AccuLV has high accuracy and reliability, 
making it a suitable tool for clinical use.

There are some limitations to our study. Firstly, this is 
a single-center study, which makes the generalizability of 
the findings questionable. In fact, some of the results in 
Table 4 also show that EF-CT still has some deviation with 
EF, especially in the range of 50–59.9%, demonstrating 
significant inconsistency. We will extend this study to 
multiple centers in the future to further validate our 
findings. Secondly, we used the EF calculated based 
on cardiac ultrasound as the standard value for EF-CT 
rather than cardiac magnetic resonance (CMR), which is 

recognized as the gold standard for judging the structural 
and functional assessment of the heart (21-25). However, 
in cases where CMR examinations are uncommon, there 
is nothing particularly inappropriate about using the more 
convenient and widely accepted cardiac ultrasound as the 
reference standard. Finally, the AccuLV automated coronary 
CT analysis software developed based on the deep learning 
U-Net network may be biased due to factors such as 
inadequate model training samples and poor generalization 
of the segmentation algorithm. However, this is only a 
potential shortcoming, and the results of our validation 
show that AccuLV’s calculations have excellent accuracy 
and reliability. We will follow up with further validation of 
AccuLV on data from multiple centers.

Conclusions

CT-based calculations yielded EF with excellent correlation 
and agreement with ultrasound-based EF, especially using 
the AI model-driven AccuLV-based software. As for the 
diagnostic performance of EF-CT, further validation in a 
multicenter prospective study is needed.
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