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a position attention module for U-Net architecture 
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Background: Brain metastases present significant challenges in radiotherapy due to the need for precise 
tumor delineation. Traditional methods often lack the efficiency and accuracy required for optimal treatment 
planning. This paper proposes an improved U-Net model that uses a position attention module (PAM) 
for automated segmentation of gross tumor volumes (GTVs) in computed tomography (CT) simulation 
images of patients with brain metastases to improve the efficiency and accuracy of radiotherapy planning and 
segmentation.
Methods: We retrospectively collected CT simulation imaging datasets of patients with brain metastases 
from two centers, which were designated as the training and external validation datasets. The U-Net 
architecture was enhanced by incorporating a PAM into the transition layer, which improved the automated 
segmentation capability of the U-Net model. With cross-entropy loss employed as the loss function, the 
samples from the training dataset underwent training. The model’s segmentation performance on the 
external validation dataset was assessed using metrics including the Dice similarity coefficient (DSC), 
intersection over union (IoU), accuracy, sensitivity, specificity, Matthews correlation coefficient (MCC), and 
Hausdorff distance (HD).
Results: The proposed automated segmentation model demonstrated promising performance on the 
external validation dataset, achieving a DSC of 0.753±0.172. In terms of evaluation metrics (including the 
DSC, IoU, accuracy, sensitivity, MCC, and HD), the model outperformed the standard U-Net, which had 
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Introduction

Brain metastases are formed by malignant tumors that 
originate from other parts of the body and metastasize to 
the brain (1). Approximately 20–40% of patients with lung 
and breast cancer develop brain metastases, which often lead 
to severe neurological impairment (2). Patients with brain 
metastases have a poor prognosis, making early detection 
and treatment particularly critical (3).

Radiotherapy is a key modality for the treatment of 
brain metastases (4), and accurate segmentation of the 
tumor volume is essential to ensuring precise and effective 
treatment (5). Computed tomography (CT) has become a 
widely used medical imaging technique for radiation therapy 
simulations (6). It provides clinicians and radiation physicists 
clear, high-resolution images that assist in determining 
the location, size, and shape of tumors (7). However, 
traditional image segmentation techniques often require 
that radiologists o spend a considerable amount of time 
and effort manually delineating the tumor boundaries (8).  
This approach is inefficient and can also result in 
inconsistencies owing to variability between operators 
or in small brain metastatic regions being missed (9). 
Consequently, the automatic and accurate segmentation of 
the gross tumor volume (GTV) in CT simulation images is 
crucial for subsequent radiation therapy.

Deep learning methods, particularly the use of 
convolutional neural networks (CNNs), have shown 
immense potential in medical image analysis (10). Previous 
studies have employed CNNs to automatically segment 
brain metastases using magnetic resonance imaging (MRI), 
achieving promising segmentation results (11,12). Almost 

all automatic segmentation studies on the GTV of brain 
metastases have been conducted using MRI. However, 
radiotherapy simulation positioning and planning are 
mostly determined based on simulated CT scans specific 
to radiotherapy (13,14). Even when MRI scans are used 
for fusion delineation, a certain degree of deviation exists. 
Consequently, the direct automatic segmentation of the 
GTV on simulated CT scans specific to radiotherapy has 
greater clinical practicality (15).

The U-Net model is a classic network designed for 
image segmentation tasks. Its impressive performance with 
small-scale datasets has garnered considerable attention in 
the field of medical image processing (16). The flexibility 
and modular design of the U-Net architecture allows for 
its seamless integration with other network architectures or 
modules, offering a pathway for further enhancement and 
customization. A previous study used the residual module 
to replace the original convolution module of U-Net in 
order to speed up the convergence of the model, which 
demonstrated faster model convergence efficiency in the 
segmentation of liver CT images (17). In recent years, in 
order to retain the features of small targets in the deep 
network, previous studies have also adopted the squeezing 
and excitation module for various image-processing tasks, 
which has improved the segmentation effect compared 
with that of the state-of-the art model (18,19). In addition, 
researchers have further extended the capabilities of the 
original U-Net by combining U-Net with Transformer in 
order to fully utilize the low-level features, which in turn 
can enhance the global features and reduce the semantic gap 
between the encoding and decoding stages (20). However, 
these methods suffer from the problems of excessive 

a DSC of 0.691±0.142. The proposed model produced segmentation results that were closer to the ground 
truth and could reveal more detailed features of brain metastases.
Conclusions: The PAM-improved U-Net model offers considerable advantages in the automated 
segmentation of the GTV in CT simulation images for patients with brain metastases. Its superior 
performance in comparison with the standard U-Net model supports its potential for streamlining and 
improving the accuracy of radiotherapy. With its ability to produce segmentation results consistent with the 
ground truth, the proposed model holds promise for clinical adoption and provides a reference for radiation 
oncologists to make more informed GTV segmentation decisions.
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parameter amount, with the large number of samples 
required for training the model hindering convergence, 
which limits the scope of potential applications in 
radiotherapy image segmentation.

In this study, we introduced a position attention module 
(PAM) into the transition layer of the U-Net structure. 
This addition allows the model to place attentional weights 
on features across channels, thereby enabling it to focus on 
spatial contextual information. The PAM learns to extract 
contextual information from spatial dimensions throughout 
the training process (21). By adding a minimal number 
of parameters, the computational precision and overall 
model performance in brain metastasis CT images can be 
improved. We present this article in accordance with the 
TRIPOD reporting checklist (available at https://qims.
amegroups.com/article/view/10.21037/qims-23-1627/rc).

Methods

Dataset preparation

This retrospective study collected the head CT images of 
123 patients with brain metastases who underwent radiation 
therapy at the Second Affiliated Hospital of Nanchang 
University between January 2017 and January 2021. 
Additionally, head CT images of 45 patients with brain 
metastases treated with radiation therapy at The Affiliated 
Hospital of Southwest Medical University between January 
2020 and January 2021 were included. This study was 
approved by the ethics review committees of The Affiliated 
Hospital of Southwest Medical University (No. KY2023041) 
and Jiangxi Cancer Hospital (No. 2023KY082). Owing to 
the retrospective nature of the study, the requirement for 
informed consent was waived. The study was conducted 
in accordance with the Declaration of Helsinki (as revised 
in 2013). The inclusion criteria were as follows: (I) age 
over 18 years, (II) no other brain lesions apart from brain 
metastases, and (III) complete CT imaging records. The 
exclusion criteria were as follows: (I) images with damage or 
artifacts, including metal shadows; (II) missing patient data, 
and (III) the presence of other brain lesions.

Scanning parameters

CT images from The Second Affiliated Hospital of 
Nanchang University were acquired using radiation 
therapy-positioned CT scans. The scans were performed 
using the SOMATOM Definition AS 20-slice CT simulator 

system (Siemens Healthineers, Erlangen, Germany) under 
the following scanning parameters: tube voltage, 120 kVp; 
tube current, 540 mAs; and a scanning range from the top 
of the skull to the third cervical vertebra. The image size 
was 512×512 pixels, and the scanning slice thickness was set 
at 3 mm with a field of view (FOV) of 250–400 mm.

CT images from the cohort of The Affiliated Hospital 
of Southwest Medical University were acquired from 
radiotherapy localization CT scans performed before 
radiotherapy. Radiotherapy localization CT was performed 
using a LightSpeed RT 4 scanner (GE HealthCare, 
Chicago, IL, USA). The scanning parameters used were as 
follows: tube voltage, 120 kVp; FOV, 250–400 mm; image 
size, 512×512 pixels; and slice thickness, 3 mm.

Image preprocessing and region of interest segmentation

All images were subjected to histogram equalization and 
median filtering to reduce the noise. The images were 
augmented by flipping and rotation for data enhancement. 
Before analysis, all images were resampled to a voxel size of 
1×1×1 mm3 and saved in *.NII format. Before being saved, 
the images were deidentified to protect patient privacy. 
Segmentation of regions of interest (ROIs) in all images was 
jointly performed by two radiation therapists and radiation 
physicists, each with over five years of experience. In cases 
of disagreement, the decision was made by another two 
radiation therapists and physicists, each with more than  
10 years of experience. The regions segmented by radiation 
therapists and radiation physicists served as the ground 
truth for this study.

PAM-improved U-Net architecture

In this study, we used the U-Net model as the foundational 
model framework. By incorporating the PAM into the U-Net 
transition layer, we aimed to enhance the performance of 
the standard U-Net model. The architecture of the U-Net 
model used in this study is shown in Figure 1.

Downsampling section
The images first underwent two convolution and activation 
operations to convert the original 3-channel image into  
64 channels.  The initial  three channels are three 
consecutive axial sections of CT imaging. This approach 
imparts extended spatial context understanding on the 
model, thus facilitating enhanced recognition of anatomical 
and pathological patterns that persist through adjacent cross 

https://qims.amegroups.com/article/view/10.21037/qims-23-1627/rc
https://qims.amegroups.com/article/view/10.21037/qims-23-1627/rc


Wang et al. PAM U-Net brain metastasis GTV automatic segmentation4

© Quantitative Imaging in Medicine and Surgery. All rights reserved.   Quant Imaging Med Surg 2024 | https://dx.doi.org/10.21037/qims-23-1627

sections. Subsequently, a downsampling pooling operation 
was performed, reducing the image size from 512×512 to 
256×256 pixels while increasing the feature map channels to 
128. This downsampling process was executed four times, 
each operation halving the feature map size and doubling 
the channel number. After the final downsampling process, 
the feature map size was 32×32 pixels, with the channel 
count reaching 1,024.

Transition layer
In this study, the PAM was incorporated into the transition 
layer. Following the final downsampling process, the feature 
map underwent two convolution operations for further 
extraction of the high-level features, with a consistent 
channel count of 1,024 being maintained. Subsequently, 
it was entered into the PAM for attention-information 
extraction. The detailed structure of the PAM is shown in 
Figure 2.

In this process, the input feature map undergoes 
a convolution operation complemented by a batch 
normalization layer and a nonlinear activation function, 

resulting in two novel feature maps, X  and Y . These maps, 

{ }, C H WX Y R × ×∈ , are reshaped into { }, C MX' Y' R ×∈ , where 
M H W= × . After this, matrix multiplication is applied to X'  
(after transposition) and Y' . The resultant spatial attention 
feature map M MT R ×∈  can be obtained after passage through 
a softmax activation layer, as follows:

( )
( )1

exp

exp
i k

ik M
i il

X Y
T

X Y
=

⋅
=

⋅∑
	 [1]

where ikT  denotes the influence of the thi  position on the thk  
position. A higher similarity between the features of the two 

positions results in a stronger impact on ikT . 1
 M

l=∑  denotes 
the summation that runs over all positions from 1l =  to 
M , where M  denotes the total number of positions. The 
denominator normalizes these scores across all positions, 
ensuring that the scores are in the [0,1] range and sum to 1.

Moreover, the feature map Z  is generated by feeding 
the feature map Q into a convolution layer equipped with 
batch normalization and a nonlinear activation function, 
producing C H WZ R × ×∈ . This is further reshaped to ' C MZ R ×∈ .  

Figure 1 Architecture of the PAM-improved U-Net model. CT, computed tomography; Conv, convolution; ReLU, rectified linear unit; 
PAM, position attention module.
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After matrix multiplication of 'Z  with T , the output is 
reshaped back to C H WR × × . After the result is multiplied with 
factor β , it is element-wise added to Q to procure the final 
output C H WF R × ×∈ , as follows:

( )1

M
k ik i ki

F T Z Qβ
=

= +∑ 	 [2]

where β  is initialized to zero and gradually learned 
throughout the training process. 

From Eq. [2], it is evident that each position in F  is 
an aggregation of the weighted sum of the features from 
all positions combined with the original feature. This 
ensures that the output captures comprehensive semantic 
information.

Upsampling section
The feature map obtained from the transition layer was 
subjected to a transposed convolution operation for 
upsampling. The image size increased from 32×32 to  
64×64 pixels, and the number of channels decreased from 
1,024 to 512. This was then concatenated along the channel 
dimensions with the corresponding feature map from the 
downsampling path. After concatenation, the number of 
channels was 1,024. Following the two convolution and 
activation operations, the number of channels was reduced to 
512. This process was repeated four times; with each iteration, 
the feature map size doubled and the number of channels 
was halved. Upon completion of the final upsampling 
operation, the feature map size was 512×512 pixels.  
After passage through the output convolution layer, there 

were two channels. 

Loss function
Given the nature of this study, which focused on the 
automated segmentation of the GTV, we opted for cross-
entropy loss as our loss function due to its efficacy in 
capturing pixel-wise discrepancies between the predicted 
outcomes and actual labels. This loss quantifies how well 
the predicted probability distribution matches the true 
distribution. For binary classification tasks that distinguish 
between tumor and nontumor regions, the mathematical 
representation of the cross-entropy loss can be expressed as 
follows:

( ) ( ) ( )
1

log 1 log 1
N

CE i i i i
i

L y p y p
=

 = − + − − ∑ 	 [3]

where N  denotes the total number of pixels in the image; 
iy  denotes the ground truth label of the thi  pixel; which 

takes a value of 1 if the pixel belongs to the tumor region 
and 0 otherwise; and ip  denotes the predicted probability 
that the thi  pixel belongs to the GTV region. The sum runs 
over all the pixels in the image, and the loss value provides a 
measure of the dissimilarity between the predicted and true 
labels.

Model training and validation

This study was conducted using the PyTorch framework 
with the experimental environment set up on an AMD R7 
5950X CPU and an RTX 4090 24G GPU. The maximum 
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Figure 2 Architecture of the position attention module. A, input feature map; C, number of channels in the feature map; H, height of 
the feature map; W, width of the feature map; X, new feature map obtained after convolution operation, batch normalization layer, and 
nonlinear activation function; Y, new feature map obtained after convolution operation, batch normalization layer, and nonlinear activation 
function; Q, new feature map obtained after convolution operation, batch normalization layer, and nonlinear activation function; M, the 
size of the resulting matrix after transformation, equivalent to Height times Width (H×W); T, attention map generated after the softmax 
operation on the matrix product of X' (transposed) and Y'; F, final output feature map after the attention.
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number of training epochs was set to 1,000. An early-
stopping strategy was used to prevent overfitting. The 
Adam optimizer was used with a batch size of 16, an 
initial learning rate of 0.0001, and a learning rate decay of 
10−6. The dataset from The Second Affiliated Hospital of 
Nanchang University (n=123) was used for model training, 
whereas the independent dataset from The Affiliated 
Hospital of Southwest Medical University (n=45) served as 
the external validation dataset. 

Model evaluation

In assessing the performance of the proposed model in 
the segmentation of the GTV, we used multiple metrics to 
provide a comprehensive evaluation of segmentation quality 
and accuracy. These metrics are described below.

(I)	 Dice similarity coefficient (DSC): the DSC is a 
widely adopted metric for image segmentation 
tasks, particularly for medical imaging (22). It is 
a measure of the set similarity commonly used to 
compute the similarity between two masks. It can 
be defined as follows:

2 P G
DSC

P G
× ∩

=
+

	 [4]

where P denotes the predicted segmentation, and 
G denotes the ground truth.

(II)	 Intersection over union (IoU): the IoU measures the 
overlap between the predicted segmentation and the 
ground truth (23). It can be expressed as follows:

P G
IoU

P G
∩

=
∪

	 [5]

(III)	 Accuracy: this is a straightforward metric that 
calculates the ratio of correctly predicted pixels to 
the total number of pixels (24), as follows:

TP TNAccuracy
TP FP TN FN

+
=

+ + +
	 [6]

where TP , TN , FP , and FN  denote the true 
positives, true negatives, false positives, and false 
negatives, respectively.

(IV)	 Matthews correlation coefficient (MCC): the MCC 
is a metric that provides insight into the quality 
of binary classification. It returns a value between 
−1 and 1, where 1 indicates a perfect prediction, 0 
indicates a random prediction, and −1 indicates an 
inverse prediction (25). It can be defined as follows:

( ) ( )
( )( )( )( )

TP TN FP FN
MCC

TP FP TP FN TN FP TN FN

× − ×
=

+ + + +
	 [7]

(V)	 Hausdorff distance (HD): the HD measures the 
extent to which each point in a segmented image 
can be closely matched by a point in the ground 
truth, and vice versa. This is a measure of the 
largest of all directed distances from one point in 
one set to the closest point in the other set (26). 
Mathematically, given two nonempty sets P (the 
predicted segmentation) and G (the ground truth), 
the directed distance from set P to set G can be 
defined as follows:

( ) ( ), max min ,p P g Gh P G d p g∈ ∈= 	 [8]

where ( ),d p g  denotes the Euclidean distance 
between points p and g. 

The HD can then be expressed as follows:

( ) ( ) ( ){ }, max , , ,HD P G h P G h G P= 	 [9]

The resul ts  of  convent ional  U-Net  automat ic 
segmentation on the external validation dataset and those 
of the PAM U-Net model on the external validation dataset 
were evaluated using the above-described evaluation metrics.

In this study, the gradient-weighted class activation 
mapping (Grad-CAM) algorithm was used to visualize the 
contribution distribution of CNN prediction outputs for 
selected samples. The Grad-CAM algorithm calculates 
the weight of each feature map in the last convolutional 
layer relative to the image class. The weighted sum of each 
feature map is then computed, and finally, the weighted 
sum feature map is mapped back to the original image. The 
Grad-CAM algorithm can be represented by the following 
formula:

( )-
c u v c k
Grad CAM kk

L R ReLU Aα×∈ = ∑ 	 [10]

Where -
c
Grad CAML  is the Grad-CAM heatmap for class c; 

c
kα  represents the weight of the k-th feature map for class c, 

calculated as the global average-pooling for the gradients of 
the score for class c with respect to the feature map kA ; and 

kA  is the k-th feature map of the last convolutional layer.

Reader study

Fifty samples from the internal validation set were 
randomly selected for a prospective reader study. Five 
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radiation oncologists participated in the study, including 
one with 10 years of experience (radiation oncologist 1), 
one with 5 years of experience (radiation oncologist 2), 
one with 3 years of experience (radiation oncologist 3), and 
one with 1 year of experience (radiation oncologist 4). All 
radiation oncologists performed GTV delineation on the 
selected dataset without knowing the ground truth or the 
results of the automatic segmentation model. After a 4-week 
washout period, the segmentation results of PAM U-Net 
were provided to all participants as an auxiliary reference. 
The participants then resegmented the GTV of the selected 
dataset cases, integrating their judgment with the assistance 
provided by the PAM U-Net. Finally, the Dice coefficients 
from both segmentation rounds were compared to evaluate 
the applicability of PAM U-Net. Additionally, in order to 
compare segmentation results under different assistance 
conditions and to verify whether the proposed model 
provided meaningful enhancement, we recruited another 
radiation oncologist with 1 year of clinical experience 
(radiation oncologist 5) to perform GTV delineation every 
4 weeks after a washout under a unassisted condition, a 
standard U-Net assistance condition, and a PAM U-Net 
assistance condition.

Statistical analysis

The segmentation capabilities of the PAM-improved 
U-Net and standard U-Net models were assessed using 
the DSC, IoU, accuracy, MCC, and HD metrics. The 
metrics averaged across patients were analyzed using a 
two-tailed paired t-test. Paired t-test was used to compare 
between manual segmentation of oncologists with and 

without the assistance of the proposed model. Additionally, 
the consistency between the manually annotated and 
algorithmically predicted volumes was ascertained using the 
Linear regression analysis.

Results

GTV segmentation performance

The study population consisted of 79 females (47%) and  
89 males (53%), with a median age of 61 years [interquartile 
range (IQR) 54–69 years]. The overall segmentation 
performances of the PAM-improved U-Net and standard 
U-Net models on the GTV of patients with brain 
metastases are presented in Table 1. The patient-averaged 
Dice coefficient for the PAM-improved U-Net model 
was 0.753±0.172 (median 0.786, IQR 0.69–0.85). For the 
standard U-Net model, the average Dice coefficient was 
0.691±0.142 (median 0.73, IQR 0.61–0.80). Moreover, 
the segmentation results exhibited a significant difference 
between the two groups (P<0.001). The average HD for 
the standard U-Net model was 8.2±0.8 mm (median 8.6, 
IQR 7.3–9.0 mm), whereas for the PAM-improved U-Net 
model, the average HD was 6.9±0.6 mm (median 7.5, IQR 
5.9–7.7 mm), implying a significant improvement with 
the inclusion of the PAM (P<0.001). The slices from the 
automatic segmentation results of the proposed PAM-
improved U-Net and the standard U-Net models were 
assembled to form three-dimensional (3D) volumes and 
analyzed for Linear regression analysis with the ground 
truth (manual volume). The Linear regression coefficients 
for the PAM-improved U-Net and standard U-Net models 
were 0.926 and 0.874, respectively (both P values <0.001), 
demonstrating that the segmentation results from the PAM-
improved U-Net model exhibited a better correlation with 
the manual volume (Figure 3).

Qualitative performance

In this study, three samples from the external validation 
dataset were randomly selected to observe the quality of 
the automatic segmentation masks and the qualitative 
differences between the models for some patients (Figure 4).  
For samples Figure 4A-4C, the DSC values of the standard 
U-Net automatic segmentation results were 0.625, 0.690, 
and 0.608, respectively, whereas those for the PAM-
improved U-Net automatic segmentation results were 
0.716, 0.747, and 0.782, respectively. It is evident that the 

Table 1 Automatic segmentation evaluation metrics

Evaluation metric PAM U-Net U-Net

Dice coefficient 0.753±0.172 0.691±0.142

Intersection over union 0.672±0.159 0.597±0.163

Accuracy 0.948±0.125 0.865±0.074

Sensitivity 0.721±0.116 0.669±0.127

Specificity 0.963±0.104 0.975±0.110

Matthews correlation 
coefficient

0.759±0.108 0.673±0.138

HD (mm) 6.9±0.6 8.2±0.8 

All data are presented as mean ± standard deviation. PAM, 
position attention module; HD, Hausdorff distance.
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Figure 3 Scatter plot of the Linear regression analysis between the two models and the manual volume. (A) PAM-improved U-Net model. 
(B) Standard U-Net model. The solid line represents the ideal scenario where predicted volumes perfectly match the manual volumes. 
The dashed line represents the linear regression fit of the data points, indicating the actual relationship between the predicted and manual 
volumes. PAM, position attention module. 

Figure 4 Results mask of automatic segmentation. Sample (A) is from the internal validation set, and (B,C) are from the external validation 
set. The blue and red regions are the ground truth represented in the original image. PAM, position attention module.
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Figure 5 Visualization of the predictive outputs of the convolutional neural networks. PAM, position attention module.

automatic segmentation results of the PAM-improved 
U-Net model for smaller brain metastases are closer to the 
ground truth, with improvements from the U-Net model 
incorporating the PAM being more pronounced. 

We also employed Grad-CAM algorithm to visualize 
the contribution distribution of the predictive outputs of 
the CNNs (Figure 5). In the Grad-CAM attention maps, 
the PAM U-Net model exhibited distinctly concentrated 
hotspots (notably marked by red regions) in contrast to the 
standard U-Net. These focal areas signify the regions where 
PAM U-Net allocated heightened attention, indicative 
of their perceived importance in the prediction process. 
Conversely, the standard U-Net displayed a more diffuse 
pattern of attention, suggesting a less targeted area of 
interest. Such a pattern might reflect a diminished precision 
in tumor localization. The attention maps for PAM U-Net 
demonstrated an increased localization surrounding the 
tumor areas. This focused attention is emblematic of the 
model’s enhanced sensitivity to tumor-specific features, 
a testament to the efficacy of the PAM in guiding the 
network toward the salient spatial characteristics essential 
for accurate segmentation. Further scrutiny of the Grad-
CAM visualizations revealed that PAM U-Net consistently 
highlighted the tumor regions with greater intensity 
and precision compared to U-Net. This observation is 
indicative of the model’s sophisticated ability to discern and 

emphasize pertinent tumor regions, which is paramount for 
segmentation and radiotherapy planning. These findings 
not only underscore the augmented capability of PAM 
U-Net in accurately identifying and segmenting tumor 
areas but also demonstrate the practical applicability of 
attention mechanisms in improving the interpretability and 
performance of CNN models in medical imaging tasks. 
However, it should be noted that the Grad-CAM attentional 
map has not been qualitatively studied at present and can 
only be judged by intuitive visual observation. Therefore, 
the Grad-CAM results merely represents a supplementary 
explanation for the quantitative analysis results.

Prospect reader study: the effect of automated segmentation 
model assistance on the segmentation results of the 
radiation oncologists

Figure 6 illustrates the comparison of the Dice coefficients 
between manual segmentation with and without the 
proposed model assistance. The experienced oncologists 
showed a nonsignificant (ns) change in performance, 
suggesting their expertise may enable them to achieve high 
segmentation accuracy without assistance. However, a 
statistically significant improvement (*P<0.05, ***P<0.001) 
was observed with the less experienced oncologists, 
highlighting the PAM U-Net’s utility in enhancing 
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segmentation precision for less experienced practitioners. 
Table 2 depicts the segmentation performance of radiation 
oncologist 5 under unassisted conditions, standard U-Net 
assistance, and PAM U-Net assistance. The improved 
metrics with the PAM U-Net assistance across all measured 
parameters—DSC, IoU, accuracy, sensitivity, specificity, 
MCC, and HD—attest to the model’s effectiveness. 
Notably, the substantial reduction in HD when assisted 
by PAM U-Net reflects a more precise alignment with the 
ground truth, indicating a meaningful clinical impact on 
segmentation accuracy. Figure 7 provides further evidence 
of the automated segmentation model’s impact, displaying 
the boxplots of Dice coefficients under unassisted, standard 
U-Net-assisted, and PAM U-Net-assisted scenarios 
of radiation oncologist 5 (1 year of experience). PAM 
U-Net assistance produced higher median DSC values 

(0.767±0.125) and narrower quartile spacing, indicating a 
statistically significant improvement in the segmentation 
effect compared to unassisted and standard U-Net-assisted 
descriptions (***P<0.001).

Comparative analysis with other U-Net variants

The evaluation metrics in Table 3 offer insight into the 
comparative analysis with various U-Net variants, each with 
specific modifications. The DSC of PAM U-Net’s indicates 
its effectiveness in segmentation, slightly outperforming 
the Swin Transformer U-Net (ST-U-Net) and showing 
improvement compared to residual U-Net (ResU-Net). 
This progress is clinically relevant, as it can potentially 
increase the segmentation reliability for treatment planning. 
The IoU metric achieved by PAM U-Net supports its 

Table 2 Segmentation results of radiation oncologist 5 (1 year of experience) under different conditions of segmentation model assistance 

Metric PAM U-Net-assisted Standard U-Net-assisted Unassisted

DSC 0.767±0.125 0.701±0.180 0.593±0.222

IoU 0.681±0.127 0.602±0.172 0.518±0.195

Accuracy 0.955±0.119 0.881±0.150 0.699±0.207

Sensitivity 0.741±0.115 0.680±0.168 0.611±0.215

Specificity 0.965±0.130 0.968±0.183 0.806±0.180

MCC 0.773±0.122 0.714±0.161 0.598±0.193

HD (mm) 8.8±1.6  10.2±4.8  17.5±6.9 

All data are presented as the mean ± standard deviation. DSC, Dice similarity coefficient; IoU, intersection over union; MCC, Matthews 
correlation coefficient; HD, Hausdorff distance. 
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Figure 6 Comparison of Dice coefficients for manual segmentation with and without assistance from the proposed model performed by 
radiation oncologist 1 (10 years of experience), radiation oncologist 2 (5 years of experience), radiation oncologist 3 (3 years of experience), 
and radiation oncologist 4 (1 years of experience). Group a represents segmentation without the use of the proposed model for assisted 
segmentation, and group b represents segmentation with the use of the proposed model for assisted segmentation. *, P<0.05; ***, P<0.001. 
ns, not statistically significant.
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capability to precisely segment tumor boundaries, a critical 
attribute for ensuring accuracy in medical applications. In 
terms of overall accuracy, PAM U-Net exhibited a superior 
ability in differentiating between tumor and nontumor 
regions, which is crucial for radiotherapy planning. 
Although the specificity of PAM U-Net was marginally 
lower than the squeeze-and-excitation and attention 
module U-NET (SEA-U-Net), it effectively identified 

true negative cases, essential for minimizing overtreatment 
risks. The sensitivity of PAM U-Net was slightly below 
that of ST-U-Net, indicating areas where ST-U-Net may 
have a marginal advantage in detecting tumors. The MCC 
confirmed PAM U-Net as a robust segmentation tool, 
although it ranks just below ST-U-Net in this metric. Taken 
together, the evaluated metrics confirm PAM U-Net to be 
a comprehensive model capable of effectively managing 
binary classification challenges in medical imaging. Lastly, 
PAM U-Net yielded the lowest HD among the compared 
models, suggesting its segmentation contours align closely 
with actual tumor margins, an essential factor for precision 
in treatment planning and execution.

Discussion

In  th i s  s tudy,  the  PAM-improved  U-Net  model 
demonstrated promising automatic segmentation 
performance on GTV segmentation tasks for patients with 
brain metastasis on an external validation dataset, achieving 
a DSC of 0.753±0.172. Moreover, the proposed automatic 
segmentation model outperformed the standard U-Net 
model in terms of the DSC, IoU, accuracy, sensitivity, and 
MCC metrics.

This study is the first to employ CNNs for the automatic 
segmentation of brain metastasis CT images. Previous 
research on the automatic segmentation of brain metastases 
has been conducted on MRI images. Cao et al. (27)  
adopted an asymmetric U-Net architecture for the 
automatic segmentation of T1 sequence MRI scans, 
achieving a DSC of 0.84 in internal validation. Hsu et al. (28) 
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Table 3 Comparison of the U-Net variants 

Metrics PAM U-Net ST-U-Net (20) SEA-U-Net (19) SERR-U-Net (18) ResU-Net (17)

DSC 0.753±0.172 0.747±0.158 0.730±0.135 0.718±0.156 0.706±0.163

IoU 0.672±0.159 0.667±0.143 0.648±0.150 0.625±0.141 0.610±0.157

Accuracy 0.948±0.125 0.930±0.131 0.919±0.118 0.898±0.122 0.881±0.117

Sensitivity 0.721±0.116 0.749±0.120 0.702±0.131 0.694±0.126 0.690±0.123

Specificity 0.963±0.104 0.951±0.112 0.978±0.106 0.946±0.114 0.921±0.110

MCC 0.759±0.108 0.768±0.105 0.730±0.097 0.714±0.119 0.696±0.133

HD (mm) 6.9±0.6 7.2±0.8 7.5±0.5 7.7±0.7 8.1±0.9

All data are presented as the mean ± standard deviation. PAM U-Net, positional attention module U-Net; ST-U-Net, Swin Transformer 
U-Net; SEA-U-Net, squeeze-and-excitation and attention module U-Net; SERR-U-Net, squeeze-and-excitation residual and recurrent 
block-based U-Net; ResU-Net, residual U-Net; DSC, Dice similarity coefficient; IoU, intersection over union; MCC, Matthews correlation 
coefficient; HD, Hausdorff distance. 

Figure 7 Comparison boxplots of Dice coefficient results for GTV 
segmentation by radiation oncologist 5 in unassisted, standard 
U-Net-assisted, and PAM U-Net-assisted, conditions, respectively. 
**, P<0.01; ***, P<0.001. GTV, gross tumor volume; PAM, position 
attention module.
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conducted research using the V-Net structure for automatic 
segmentation of contrast-enhanced T1 MRI scans. They 
reported a DSC of 0.97 on their training dataset and 0.76 on 
their validation dataset, providing a reference for automatic 
segmentation of brain metastases. Synthetic CT from MRI 
is emerging as a valuable tool for precise segmentation in 
clinical settings. A previous study examined the automatic 
segmentation of brain metastases by generating synthetic 
CT from MRI, yet its integration into radiotherapy 
planning faces hurdles due to the discrepancies in patient 
positioning and support systems between MRI and CT 
scans (29). Variations in positioning devices such as RT flat 
tabletops, thermoplastic masks, and coil setups during MRI 
and CT procedures can introduce anatomical shifts, which 
may crucially effect brain radiotherapy in which millimeter 
accuracy is vital for targeting metastases and safeguarding 
vital structures (30). Additionally, the specialized MRI 
simulation equipment needed for consistent positioning 
is not universally accessible, particularly in resource-
constrained environments, restricting synthetic CT’s 
widespread adoption. These obstacles need to be overcome 
in order for synthetic CT to have comparable reliability in 
radiotherapy to that of traditional CT, which continues to 
be the standard care of treatment planning (31). Enhancing 
CT-based automatic segmentation algorithms could thus 
ensure broader access to high-quality care and promote 
global equity in care.

This study used a PAM-improved U-Net model for 
the task of segmenting the GTV in CT simulation images 
for brain metastases, achieving a DSC of 0.753±0.172 on 
the external validation dataset. This was comparable to 
the automatic segmentation on the MRI GTV validation 
datasets results of Hsu et al. (28). Moreover, the proposed 
model was directly applied to CT simulation imaging tasks, 
eliminating potential errors that could arise when MRI 
scans are merged with CT simulation images for GTV 
segmentation. Consequently, the proposed model could 
offer greater clinical utility for GTV segmentation in 
radiation therapy simulations.

In this study, the PAM significantly enhanced the classical 
U-Net architecture. The PAM-improved U-Net model 
generally outperformed the standard U-Net model across 
most metrics, although the specificity score of the standard 
U-Net model was slightly higher (0.975±0.110) than that 
of the PAM-improved U-Net model (0.963±0.104). This 
suggests that while the PAM-improved U-Net model was 
more adept at identifying positive cases, the standard U-Net 
model proved marginally better at excluding negative cases. 

The sensitivity score of the PAM-improved U-Net model 
exceeded that of the standard U-Net model, indicating its 
superior ability to correctly identify true-positive cases, 
which is particularly beneficial for the detection of brain 
metastases. 

The underlying mechanism of the PAM involves the 
selective emphasis on spatial relationships within feature 
maps, enabling the capture of long-range dependencies 
without the need to rely on an increased receptive field, 
thereby ensuring that the model gathers global contextual 
information from different spatial positions (32,33). 
This attention mechanism aids in refining local features 
using more globally aggregated features (34,35). A key 
advantage of integrating the PAM is its ability to weigh 
the importance of various spatial positions differently, 
thereby enabling the network to focus on regions with 
higher contextual relevance (36,37). This leads to improved 
segmentation performance, especially in intricate medical 
images, where tumors and other features may differ based 
on their spatial context (38). In our study, the PAM was 
strategically incorporated into the final block of the U-Net 
architecture to enhance its segmentation capabilities. 
This decision was driven by a careful balance between 
model complexity and performance efficiency. While it 
is feasible to integrate PAM after each block, similar to 
the application of squeeze-and-excitation or Res-Net 
modules in other U-Net variants, our approach aimed to 
optimize the tradeoff between computational burden and 
segmentation accuracy. Incorporating PAM at every stage 
would significantly increase the number of parameters, 
leading to a more complex model that requires more 
computational resources and training time. Such an increase 
in model complexity might not necessarily translate into a 
proportional improvement in segmentation performance, 
especially given the inherent challenges of medical image 
analysis. Additionally, excessive complexity could lead to 
overfitting, particularly when limited training data are 
used, a common scenario in medical imaging studies. By 
positioning the PAM in the final block, we aimed to capture 
the most relevant spatial contextual information at a stage 
where the feature maps are already highly refined. This 
strategic placement allows the PAM to focus on enhancing 
the feature representation with a global perspective, 
thereby improving the model’s ability to highlight crucial 
areas for segmentation without overwhelming the network 
with redundant computations. With minimal addition 
of parameters, the PAM demonstrated an efficient and 
effective method for enhancing the spatial discernment 
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abilities of CNNs. Accurate and precise tumor delineation 
is critical to effective radiotherapy planning, in which the 
goal is to maximize the radiation dose to the tumor while 
minimizing exposure to the surrounding healthy tissues. 
The enhanced segmentation accuracy provided by the 
PAM U-Net model could lead to more precise targeting of 
brain metastases, potentially improving treatment efficacy 
and reducing the risk of radiation-induced side effects. 
Furthermore, the reduction in segmentation variability and 
the need for manual corrections can significantly streamline 
the treatment-planning process, enhancing overall clinical 
workflow efficiency.

Although the model constructed in this study achieved 
promising results on an external independent validation set, 
further validation of the model generalization performance 
is needed. Although the integration of PAM into the last 
module of the U-Net architecture in this study can reduce 
the number of model parameters to improve operational 
efficiency, it still has the potential to reduce the performance 
of model segmentation, especially under conditions of 
detecting micro brain metastases. In the future, we will 
use multiple centers and larger sample sizes in order to 
validate the model’s generalizability. In addition, since this 
study is the first conduct automatic segmentation with CT 
simulation images of brain metastases, there is still a lack of 
data from other algorithms used for similar segmentation of 
brain metastasis images with which to compare the results 
of this study. Nonetheless, we compared the segmentation 
performances of several mainstream variants of the U-Net 
algorithm. In future studies, we will further use state-of-
the-art algorithms such as Vision Transformer for automatic 
segmentation of CT simulation images of brain metastases.

Conclusions

We developed an automatic segmentation model based 
on the PAM-improved U-Net architecture, designed for 
automatic segmentation of the GTV in CT simulation 
images of patients with brain metastasis. The model 
demonstrated promising performance on an external 
validation dataset, offering valuable automated segmentation 
references for radiation oncologists to delineate the GTV in 
CT simulation images.
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