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Background: Accurate and reproducible assessment of left ventricular (LV) volumes is important in 
managing various cardiac conditions. However, patients are required to hold their breath multiple times 
during data acquisition, which may result in discomfort and restrict cardiac motion, potentially compromising 
the accuracy of the detected results. Accelerated imaging techniques can help reduce the number of breath 
holds needed, potentially improving patient comfort and the reliability of the LV assessment. This study 
aimed to prospectively evaluate the feasibility and accuracy of LV assessment with a model-based low-rank 
plus sparse network (L+S-Net) for accelerated magnetic resonance (MR) cine imaging.
Methods: Fourty-one patients with different cardiac conditions were recruited in this study. Both 
accelerated MR cine imaging with L+S-Net and traditional electrocardiogram (ECG)-gated segmented cine 
were performed for each patient. Subjective image quality (IQ) score and quantitative LV volume function 
parameters were measured and compared between L+S-Net and traditional standards. The IQ score and LV 
volume measurements of cardiovascular magnetic resonance (CMR) images reconstructed by L+S-Net and 
standard cine were compared by paired t-test. The acquisition time of the two methods was also calculated. 
Results: In a quantitative analysis, L+S-Net and standard cine yielded similar measurements for all 
parameters of LV function (ejection fraction: 35±22 for standard vs. 33±23 for L+S-Net), although L+S-Net 
had slightly lower IQ scores than standard cine CMR (4.2±0.5 for L+S-Net vs. 4.8±0.4 for standard cine; 
P<0.001). The mean acquisition time of L+S-Net and standard cine was 0.83±0.08 vs. 6.35±0.78 s per slice 
(P<0.001).
Conclusions: Assessment of LV function with L+S-Net at 3.0 T yields comparable results to the reference 
standard, albeit with a reduced acquisition time. This feature enhances the clinical applicability of the L+S-
Net approach, helping alleviate patient discomfort and motion artifacts that may arise due to prolonged 
acquisition time. 
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Introduction

Cardiovascular disease (CVD) stands as the principal 
cause of global mortality (1), and the diagnosis of cardiac 
ailments has emerged as a pivotal undertaking within global 
healthcare. Accurate and reproducible assessment of left 
ventricular (LV) volumes is important in managing various 
cardiac conditions, given its status as one of the most 
influential prognostic factors for patient outcomes (2-5). 
The progression of advanced cardiac diagnostic techniques 
is crucial for LV function assessment. 

Cardiovascular magnetic resonance (CMR) imaging is 
recognized as the gold standard for non-invasive evaluation 
of biventricular volume and function. The clinical standard 
for data acquisition is the retrospective electrocardiogram 
(ECG)-gated two-dimensional (2D) segmented breath-hold 
(SegBH) cardiac cine imaging. This technique captures the 
k-space data across multiple cardiac cycles to achieve high 
spatial and temporal resolution. Consequently, patients are 
required to hold their breath multiple times during data 
acquisition, which may result in discomfort and restrict 
cardiac motion, potentially compromising the accuracy of 
the detected results. Furthermore, the need for multiple 
breath-holds may lead to hypoxemia in some patients, 
complicating workflow and prolonging examination 
duration. Fast cardiac cine imaging can significantly 
accelerate scan speed and allow free-breathing acquisition, 
simplifying the clinical examination.

Linear  reconstruct ion methods  us ing  para l le l 
imaging (PI), such as SENSE, and GRAPPA, have been 
commercially available for accelerated cine magnetic 
resonance imaging (MRI) (6,7). Adaptive methods such as 
TSENSE or TGRAPPA (8,9), allow the acquisition with a 
spatial and temporal resolution that shows cardiac anatomy 
and motion, the artifacts in the form of noise enhancement 
and residual aliasing can be prominent and detracted from 
the overall image quality (IQ), especially for acceleration 
rates above R=4. Methods like UNFOLD, k-t BLAST, k-t 
SENSE, or k-t GRAPPA (10-12), with the advantage of 
the spatiotemporal correlations inherent in the semiregular 
cardiac movement, have been shown to offer even higher 
acceleration rates, but are plagued by temporal blurring. 
Besides, the undersampled radial trajectory combined with 
PI, such as the radial GRAPPA method, was described 

and applied to accelerated real-time, free-breathing in vivo 
cardiac images (13). However, this method fails at high 
acceleration rates due to the assumptions that the GRAPPA 
weight sets must be calibrated. 

Compressed sensing (CS) has also shown promise to 
accelerate CMR, which utilizes a non-linear algorithm 
to reconstruct the images from undersampled k-space 
data with sparse representations of the cine images (14). 
Sparse transforms such as temporal frequency, spatial 
wavelet, and spatiotemporal finite difference have been 
previously explored (15,16). Instead of using a single 
sparsity constraint, adaptive methods relying on transforms 
derived from the data itself, such as k-t PCA, k-t SLR, 
LLR, LOST, blind CS, which exploit sparsity and low-
rank structure of the image matrix, were then proposed 
(17-20). They all enforce a global model on every time 
profile being expressed as a combination of a few temporal 
basis functions. These basis functions can be orthogonal 
(e.g., estimated using singular value decomposition), or 
non-orthogonal (e.g., estimated via dictionary learning) 
(21,22). Among these methods, a CS-based method using 
the low-rank plus sparse (L+S) decomposition model has 
been recently proposed to accelerate the CMR acquisition. 
It decomposes an observation matrix X into the sum of 
a low-rank component L and a sparse component S. L 
captures the highly correlated background common to 
temporal frames. S models sparsely distribute dynamic 
changes between frames. This decomposition naturally fits 
dynamic MRI where the background is slowly varying and 
dynamics appear locally. To recover X from undersampled 
measurements,  L+S reconstruction formulates an 
optimization problem that minimizes the nuclear norm of 
L and l1-norm of S, subject to data consistency constraints. 
By separately modeling background and dynamics, L+S 
has been shown to better compress dynamic image series 
than low-rank reconstruction alone. This enables higher 
acceleration and improved reconstruction of highly 
undersampled dynamic MRI datasets.

Generally, the acceleration rate of linear reconstruction 
methods is limited, as it relies on the fixed architecture of 
the receiver coil array and the associated g-factor signal-
to-noise ratio (SNR) losses, which restricts the achievable 
acceleration factors. In contrast, CS-based methods 
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suffer from long reconstruction time due to the iterative 
reconstruction process, and can only be used for random 
undersampling patterns, which do not support equispaced 
acceleration as effectively as PI techniques. 

In recent years, deep learning (DL)-based methods have 
become increasingly popular in image reconstruction and 
shown great potential in significantly speeding up MRI 
(23,24). DL-based methods can complete the reconstruction 
within seconds for a new scan, overcoming the issue of CS 
reconstructions that require prolonged computation time. 
Therefore, they are more suited for clinical scenarios and 
time-sensitive imaging scans. Generally speaking, two main 
categories of DL methods have been explored: unsupervised 
learning and supervised learning. Unsupervised learning 
methods aim to train the networks without fully sampled 
k-space data. They either learn the probability distribution 
of images by network and enforce this network-based image 
prior as an explicit constraint into the image reconstruction 
framework (25-27) or use the sampled data to train the 
networks (28,29). Supervised learning methods typically 
require training pairs to train the network in an end-to-
end fashion during the training stage. There are roughly 
two types of supervised learning methods: unrolling-based 
methods and those not based on unrolling. One type of 
supervised learning method leverages a vanilla network 
to learn a mapping from undersampled data to the fully 
sampled versions. The architectures commonly used in 
MR image reconstruction are fully connected (FC) (30), 
convolutional neural network (CNN) (31-33), multi-layer 
perceptron (MLP) (34), U-Net (a type of CNN) (35-37), 
and generative adversarial network (GAN) (38-40). The 
second type of supervised learning method utilizes the 
unrolling-based methods networks for accelerated cardiac 
cine MRI. The unrolling-based methods networks (also 
referred to as physics-guided DL reconstruction) unroll 
the existing iterative reconstruction algorithms to deep 
networks in which the hyper-parameters and regularizations 
can be learned through network training (41-48). Unrolled 
networks leverage the structure of iterative optimization 
algorithms and integrate them into deep neural network 
architectures, enabling efficient and interpretable 
reconstruction. Examples of unrolled network approaches 
include iterative shrinkage-thresholding algorithm-network 
(ISTA-Net), Cine-net, MoDL, ADMM-Net, variational 
networks, and deep cascade networks (41,42,47-50). For 
example, ISTA-Net employs the unrolling-based framework 
to solve CS reconstruction models (50). It outperforms 
existing state-of-the-art optimization-based CS methods 

and maintains fast computational speed (50). Cheng  
et al. proposed a DL network to implicitly learn the data 
consistency in accordance with the underlying probability 
distribution of system noise (referred to as learned data 
consistency network) (51). The efficacy of this approach has 
been demonstrated in dynamic imaging applications. 

Recently, an unrolled network, known as low-rank plus 
sparse network (L+S-Net), has been proposed by Huang  
et al. (52). It exhibits strong interpretability and delivers 
high-quality images. However, this approach has not yet 
been optimized or prospectively evaluated in a clinical 
setting. The purpose of this study was to prospectively 
validate the performance of the highly accelerated 
cardiac cine imaging with L+S-Net in clinical scenarios. 
The conventional segmented balanced steady-state free 
precession (bSSFP) was used as the reference standard. 
We present this article in accordance with the STROBE 
reporting checklist (available at https://qims.amegroups.
com/article/view/10.21037/qims-24-17/rc).

Methods

The study was conducted in consistent with the Declaration 
of Helsinki (as revised in 2013). It was approved by the 
Ethics Committee at the Shenzhen Institute of Advanced 
Technology, Chinese Academy of Sciences (No. YSB-
2022-Y07066), and written informed consent was obtained 
from all participants.

Accelerated cine sequence and DL reconstruction

A  t w o - d i m e n s i o n a l  ( 2 D )  b S S F P  s e q u e n c e  w a s 
implemented for the accelerated cine acquisition using 
an undersampling pattern in phase-encoding and 
temporal dimensions with a net acceleration rate of 
14.2. The variable spatial-temporal Latin hypercube 
and echo-sharing sampling scheme (VALAS) (53) was 
employed for the undersampling pattern of the bSSFP 
sequence, with the center k-space 4-fold accelerated, 
transition region 6-fold accelerated, and outer region  
14-fold accelerated (Figure 1). This VALAS sampling 
scheme has less statistical fluctuation along time direction 
than the traditional variable density random sampling, 
and may achieve better IQ and temporal profile (54). The 
frequency encoding direction was fully sampled, while the 
undersampling was applied in the phase encoding direction. 

Figure 1 illustrates the framework of the L+S-Net 
employed to reconstruct the accelerated cine MRI data. 

https://qims.amegroups.com/article/view/10.21037/qims-24-17/rc
https://qims.amegroups.com/article/view/10.21037/qims-24-17/rc
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The network used was the same as that described by Huang  
et al. (52). The L+S-Net is an unrolled deep-learning 
network based on the L+S method (55). First, the dynamic 
MR image is formulated as a low-rank plus sparse model 
under the CS framework. It can be solved using an 
alternating linearized minimization method to recover the 
low-rank (L) and sparse (S) components iteratively. Then, 
this complex iterative procedure is unrolled into an N-block 
network using the following equation, with each block 
representing an iteration and N being a relatively small 
integer:
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where kL , kS , kX  represents the low-rank prior layer, 
sparse prior layer, and data consistency layer, respectively. 

( )kH
λ β  represents the learned singular value thresholding 

(LSVT) operator which forces the matrix to be low-rank 
by eliminating small singular values with a threshold of 

( )kλ β . kθ
  is a residual 3D CNN used to learn a customized 

proximal operator for each unrolling block. kθ  is the set of 
CNN parameters. kγ  is the learnable update step size for 
the kth iteration block. ( )F∇ ⋅  represents the gradient of the 
data fidelity term ( )F ⋅ . More details can be found in the 
work proposed by Huang et al. (52). All the regularization 
parameters are designated as learnable in the L+S-Net, 
encompassing the LSVT, the update step size, and the 

proximal operator, eliminating the need for empirical 
selection. The network inputs are the undersampled k-space 
data and the corresponding coil sensitivity maps estimated 
using ESPIRiT implemented in BART (56). 

The L+S-Net was implemented in Tensor Flow2.2, using 
an exponentially decayed learning rate during the training 
process. The initial learning rate is set to 0.001, and the 
attenuation coefficient is set to 0.95. The model is trained 
by the Adam optimizer. 

Study population

Three cardiac cine datasets were used in this work, two for 
the training dataset and test dataset in the retrospective 
study, and the third one for the prospective study.

Training dataset for the retrospective study 
The training data were the fully sampled cine data acquired 
from 29 healthy volunteers on a 3T scanner (MAGNETOM 
Trio, Siemens Healthcare, Erlangen, Germany) with a 
multichannel receiver coil array (20 coils), corresponding 
to a total of 386 cardiac slices. All in vivo experiments 
were conducted with IRB approval and informed consent. 
For each subject, 10 to 13 short-axis slices were imaged 
with the retrospective ECG-gated segmented bSSFP 
sequence during breath holding, with a field of view (FOV) 
of 330×330 mm, acquisition matrix of 256×256, slice 
thickness of 6 mm, repetition time (TR)/echo time (TE) of  
3.0 ms/1.5 ms. The acquired temporal resolution was  
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Figure 1 The framework of L+S-Net for accelerated MR cine imaging. The sampling mask in the ky-t direction used in the VALAS 
method is shown as an example. L+S-Net, low-rank plus sparse network; MR, magnetic resonance; VALAS, variable spatial-temporal Latin 
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40.0 ms, and each data point had approximately 25 phases 
that covered the entire cardiac cycle. To augment the 
dataset for DL training, we applied stride and cropping 
to the dynamic images, sliding a 192×192×18 (x×y×t) box 
with a stride of 25, 25, and 7 along the x, y, and t directions, 
respectively. 

Testing data for the retrospective study
To test the performance of the L+S-Net, fully sampled 
cine data were acquired from 5 healthy volunteers on a 3T 
MR scanner (uMR790, United Imaging, Shanghai, China) 
with 24 channels in our local institute. During breath-
holding, each subject imaged 10 to 12 short axis slices with 
retrospective ECG gated segmented bSSFP sequence. 
The readout direction resolution is 256 and the phase 
coding resolution is 226, with a FOV of 384×339 mm, slice 
thickness of 8 mm, and TR/TE of 3.2 ms/1.5 ms. The 
acquired temporal resolution was 40.0 ms. The testing data 

were retrospectively undersampled with the predefined 
undersampling mask and reconstructed with the L+S-Net. 
The fully sampled images served as the references. We also 
compared the results of L+S-Net with those using the L+S 
method, as well as state-of-the-art DL-based reconstruction 
methods, such as ISTA-Net and learned data consistency 
network (DC-Net). 

Testing data for the prospective study
To prospectively validate the L+S-Net, 41 patients (28 male, 
age: 52±17 years; 13 female, age: 53±20 years) with different 
cardiac conditions were recruited at a single tertiary hospital 
from May 2022 through May 2023. Inclusion criteria were 
patients clinically scheduled for CMR assessment. Exclusion 
criteria included general contraindications to MRI (e.g., 
cardiac implantable electronic device and claustrophobia) or 
refusal to participate. The details of the patient population 
are summarized in Table 1. 

CMR acquisitions were performed on clinical 3T MR 
scanners (either uMR780 or uMR890, United Imaging, 
Shanghai, China) with a 24-channel cardiac coil. The 
parameters of accelerated cine imaging were: FOV 
=320×360 mm; slice thickness =8 mm; matrix size =192×210; 
flip angle =45°; TE/TR =1.29/2.78 ms; temporal resolution 
=37.6 ms; acceleration factor =14.2; 8–12 short axis slices 
were acquired depending on the heart size of participants. 
The average acquisition time was 6.70±0.30 s for the whole 
heart (0.83±0.08 s per slice). Standard cine was also acquired 
using the segmented bSSFP sequence at the same locations 
as the accelerated cine with the following parameters: 
FOV =320×360 mm; slice thickness =8 mm; matrix size 
=199×224; flip angle =45°; TE/TR =1.29/2.76 ms. The 
acquisitions for the accelerated cine were performed under 
breath-hold conditions and prospective ECG triggering. 
Breath-holding is primarily to obtain a more accurate 
quantitative cardiac function assessment. For patients who 
cannot tolerate breath-holding, free-breathing acquisition 
can also be performed. The average acquisition time was 
176.00±18.46 s including the resting time between the 
successive acquisitions, (6.35±0.78 s per slice).

IQ assessment

For retrospectively undersampled data, the IQ was assessed 
using two metrics: peak signal-to-noise ratio (PSNR) and 
structural similarity index measure (SSIM). PSNR indicates 
the PSNR of an image, with the fully sampled image 
as the reference, while SSIM represents the structural 

Table 1  Summary of study population and cardiac MRI 
characteristics (n=41)

Variable Value

Sex (female/male) 13/28

Age (years) 52.4±17.5

Height (cm) 162.3±6.4

Weight (kg) 62.4±14.0

BMI (kg/m2) 23.4±4.9

Heart rate (bpm) 77.3±10.9

Cardiovascular disease 

Dilated cardiomyopathy 12

Hypertensive heart disease 2

Cardiomegaly 2

AMI 2

Heart failure 2

Myocarditis 3

SLE cardiomyopathy 1

ACS 1

Chest pain 1

Other 15

Data are presented as mean ± standard deviation and number. 
MRI, magnetic resonance imaging; BMI, body mass index; 
bpm, beats per minutes; AMI, acute myocardial infarction; SLE, 
systemic lupus erythematosus; ACS, acute coronary syndrome.
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similarity index for a grayscale image relative to the fully 
sampled image. Furthermore, an evaluation metric for 
image blurring, which relies on the maximum gradient and 
gradient variability, was employed (57).

For the prospective study, two radiologists (7 and 4 years 
of CMR experience, respectively) assessed images of the two 
cine sequences independently, focusing on the myocardial 
border and artifacts. General IQ was evaluated visually 
using a European five-point Likert scale: 5 = excellent IQ,  
4 = normal IQ, 3 = presence of artifacts but sufficient IQ,  
2 = severe artifacts around ventricles, and 1 = completely 
non-diagnostic images. The scoring criteria are listed in 
Table 2. 

Quantitative measurements of cardiac function were 
performed using the cardiac analysis software Segment 
v4.0 R11044c (Academic Research only version) (https://
medviso.com/). Six quantitative values were measured, 
including end-diastolic volume (EDV), end-systolic volume 
(ESV), stroke volume (SV), LV mass (LVM), LV ejection 
fraction (LVEF), and cardiac output (CO). 

Statistical analysis

For retrospectively undersampled data, we have conducted 
statistical hypothesis tests to demonstrate the significance 
of two indicators (PSNR and SSIM) for L+S-Net, DC-Net, 
ISTA-Net, and L+S. None of the indicators (PSNR and 
SSIM) for L+S-Net, DC-Net, ISTA-Net, and L+S, except 
for the SSIM of L+S-Net, followed a normal distribution. 
Therefore, we used quartiles to describe the distribution 
of both SSIM and PSNR metrics and conducted Wilcoxon 

Signed Ranks tests.
For prospectively accelerated cine, the IQ scores were 

compared using the paired t-test. The LV function of CMR 
images reconstructed by L+S-Net and standard cine was 
also quantified and compared by paired t-test. Bland-Altman 
analysis was used to evaluate the agreement of quantitative 
LV function parameters between different techniques. A 
P value <0.05 was considered statistically significant. All 
statistical analyses were performed with IBM SPSS Statistics 
25 software.

Results

Retrospective experiment

Figure 2 shows the reconstructed images of L+S-Net, 
L+S, ISTA-Net, and DC-Net methods, along with the 
reference images from fully sampled data. The rows 
represent the diastole and systole cardiac phases of the 
same subject. PSNR and SSIM values are shown in the left 
corners. The y-t image (extraction of the 92nd slice along 
the y and temporal dimensions) is also given to show the 
reconstruction performance in the temporal dimension. 
The L+S-Net demonstrates the highest SSIM score among 
the four methods. From the y-t view, the L+S-Net captures 
the dynamic information comparable to the reference. 
Compared with the DL-based methods, the CS-based L+S 
method visually shows the most blurry reconstructions and 
obvious stripes can be observed in the y-t image, which 
may indicate the artifacts in the reconstructed images. In 
terms of PSNR and SSIM, L+S-Net and DC-Net had 
similar values, both outperforming ISTA-Net. The values 
of blurring assessment for the L+S-Net, L+S, ISTA-Net, 
and DC-Net are 2.1050, 2.1965, 2.1836, and 2.1107, 
respectively. In terms of the blurring metric, the L+S-Net 
shows a value closest to the reference value of 2.0456 among 
the four methods. This comparative blurring analysis result 
reveals the superiority of the L+S-Net in preserving image 
sharpness (57).

Figure 3 presents the statistical results of PSNR and 
SSIM among the three DL-based methods and the L+S 
method. Similar to Figure 2, the reconstructions of the 
L+S method show the lowest PSNR and SSIM. L+S-
Net demonstrates the highest SSIM score with statistical 
significance (P<0.05). Specifically, the PSNR of L+S-Net 
was compared to the L+S method, ISTA-Net, and DC-
Net using statistical tests. The P value for the comparison 
between L+S-Net and the L+S method was P<0.001, while 

Table 2 Image quality scoring criteria for cardiac cine

Score Overall image quality criteria

1 Nondiagnostic—evident motion-related artifacts or 
distortions, with poor contrast and clarity

2 Fair—obvious motion-related artifacts or image 
distortion are present. The contrast and clarity are 
below par 

3 Adequate—moderate motion-related artifacts or image 
distortion. The contrast and clarity are average but 
still sufficient to depict the ventricular outline without 
affecting clinical diagnosis

4 Good—mild motion-related artifacts or image distortion 
with good contrast and clarity

5 Excellent—minimal to no motion-related artifacts or 
image distortion with excellent contrast and clarity

https://medviso.com/
https://medviso.com/
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Fully sampled 
reference

PSNR
38.534
SSIM
0.983

PSNR
38.345
SSIM
0.982

PSNR
35.803
SSIM
0.975

PSNR
35.590
SSIM
0.973

PSNR
37.490
SSIM
0.980

PSNR
37.532
SSIM
0.980

Phase 16 
diastole

Phase 8 
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t

y

L+S-Net ISTA-Net DC-NetL+S

PSNR
38.475
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0.983

PSNR
38.312
SSIM
0.982

Figure 2 Reconstruction results for a single subject at end-diastole and end-systole using the L+S-Net, L+S, ISTA-Net, and DC-Net 
approaches. The first row displays the images of the cardiac diastolic phase, the second row shows the images of the cardiac systolic phase of 
the same subject, and the third row presents the y-t view. The y-t images (extraction of the 92nd slice along the y and temporal dimensions) 
demonstrate the reconstruction performance in the temporal dimension. L+S-Net, low-rank plus sparse network; L+S, low-rank plus sparse; 
ISTA-Net, iterative shrinkage-thresholding algorithm network; DC-Net, learned data consistency network; PSNR, peak signal-to-noise 
ratio; SSIM, structural similarity index measure.

Figure 3 Comparisons of different methods for the retrospective reconstructions. PSNR: DC-Net > ISTA-Net > L+S, L+S-Net > L+S; 
SSIM: L+S-Net > DC-Net > ISTA-Net > L+S. *, P<0.05; **, P<0.001. L+S-Net, low-rank plus sparse network; ISTA-Net, iterative 
shrinkage-thresholding algorithm network; DC-Net, learned data consistency network; L+S, low-rank plus sparse; PSNR, peak signal-to-
noise ratio; SSIM, structural similarity index measure.
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Table 3 Training time and average reconstruction time for different 
methods 

Method Training time (s)
Average reconstruction 

time (s)

L+S-Net 93,465.5 1.5

L+S Not available 112.6

ISTA-Net 49,502.5 1.0

DC-Net 252,692.2 1.4

Data are presented as mean. L+S-Net, low-rank plus sparse 
network; L+S, low-rank plus sparse; ISTA-Net, iterative 
shrinkage-thresholding algorithm network; DC-Net, learned data 
consistency network.

Table 4 LV volume measurements between standard cine and 
L+S-Net

Parameters Standard cine L+S-Net P

LVM 121±49 122±51 0.891

EDV 190±93 175±86 0.467

ESV 139±101 131±95 0.730

SV 51±22 44±23 0.188

EF 35±22 33±23 0. 685

CO 3.8±1.4 3.3±1.5 0.091

Data are presented as mean ± standard deviation. LV, left 
ventricular; L+S-Net, low-rank plus sparse network; LVM, left 
ventricular mass; EDV, end-diastolic volume; ESV, end-systolic 
volume; SV, stroke volume; EF, ejection fraction; CO, cardiac 
output. 

the comparisons between L+S-Net and ISTA-Net, and 
L+S-Net and DC-Net, yielded P values of 0.055 and 0.136, 
respectively, neither of which were statistically significant. 

Table 3 shows the training and average reconstruction 
times for each technique. The training times for L+S-
Net, ISTA-Net, and DC-Net were 93,465.5, 49,502.5, and 
252,692.2 s, respectively. The average reconstruction times 
for L+S-Net, L+S, ISTA-Net, and DC-Net were 1.5, 112.6, 
1.0, and 1.4 s, respectively.

Prospective experiment

Standard cine CMR images served as the reference 
standard for measuring LV function. Six metrics were 
measured, including LVM, EDV, ESV, SV, EF and CO. 
Table 4 displays the analysis results of the LV function of 

the standard cine and L+S-Net. There were no significant 
differences between standard cine and L+S-Net for any of 
the LV function metrics.

The Bland-Altman plots revealed no significant 
differences for the L+S-Net and standard cine concerning 
corresponding LVM, EDV, ESV, SV, EF, and CO (shown 
in Figure 4). The mean differences of parameters are as 
follows: LVM, bias: 3.1, 95% CI: −16.0 to 22.3; EDV, bias: 
−9.8, 95% CI: −41.5 to 21.9; ESV, bias: −2.6, 95% CI: −34.7 
to 29.5; SV, bias: −7.0, 95% CI: −24.2 to 10.1; EF, bias: −2.4, 
95% CI: −16.1 to 11.3; CO, bias: −0.6, 95% CI: −1.8 to 0.7. 
The Bland-Altman plots revealed acceptable agreement for 
the L+S-Net and standard cine concerning corresponding 
LVM, EDV, ESV, SV, EF, and CO.

Figure 5 shows representative images of standard cine 
and L+S-Net from four patients. All images showed 
adequate diagnostic IQ. A contrast difference can be 
observed between images of the standard cine and L+S-
Net for patient 3. It may result from the intensity 
inhomogeneity caused by the B1 inhomogeneity and the 
spatial inhomogeneity of coil sensitivity of surface coils 
during the acquisition. Since the images of standard cine 
were obtained from the MRI scan system with intensity 
inhomogeneity correction, the reconstructions of L+S-Net 
haven’t undergone this process.

Figure 6 shows the stacked bar plot of the distribution 
of IQ ratings of the reconstructions of the L+S-Net and 
the standard cine. The L+S-Net yielded slightly worse 
IQ scores than standard cine CMR (4.2±0.5 for L+S-
Net vs. 4.8±0.4 for standard cine; P<0.001), which further 
confirms that the L+S-Net can achieve clinically acceptable 
reconstructions.

Discussion

In the retrospective study, L+S-Net performed excellently 
in terms of PSNR and SSIM compared to DC-Net, ISTA-
Net, and L+S method. As shown by Huang et al. (52), L+S-
Net exhibits better performance in detail reconstruction 
and contrast, resulting in lower errors in edge and high-
frequency regions, indicating the importance of the low-
rank and sparse prior. While L+S-Net outperformed the 
other methods in terms of SSIM, the differences in PSNR 
were not as dramatic. PSNR is a SNR-based metric that 
is sensitive to overall image fidelity, whereas SSIM focuses 
more on perceptual similarity. The lack of statistical 
significance in the PSNR differences between L+S-Net 
and the other methods could be attributed to the inherent 
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Figure 4 Bland-Altman plots applied to evaluate LV functional parameters including  (A) LVM, (B) EDV, (C) ESV, (D) SV, (E) EF and 
(F) CO. Mean differences between L+S-Net techniques and standard cine. The solid line indicates the bias between the two techniques; 
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Figure 5 Case examples show the diagnostic image quality of standard cine and L+S-Net. L+S-Net, low-rank plus sparse network.

trade-offs between different quality metrics. L+S-Net may 
have prioritized preserving structural and textural details, 
leading to superior SSIM performance, while the PSNR 
scores were more comparable to the other approaches. In 
the prospective study, L+S-Net showed high agreement for 
the volumetric analysis of the left ventricle, compared to 
the standard cine CMR. The quality scores for all images 

exceeded a value of 3, indicating their adequacy. This 
outcome implies that the L+S-Net is capable of producing 
images of satisfactory diagnostic quality.

In previous studies, the subjective IQ scores of DL-based 
cine techniques were consistently lower than conventional 
methods, which is consistent with our results (58-62). As 
demonstrated by the case examples in our study, there were 
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noticeable differences in image contrast and clarity with the 
L+S-Net, most likely attributable to undersampling and the 
image reconstruction process. This likely contributed to the 
marginally lower IQ scores when compared to the reference 
standard. With further refinement, especially in addressing 
the disparities in image contrast and clarity, the L+S-Net 
demonstrates significant potential for enabling swifter data 
acquisitions for quantitative analysis. This could lead to 
less burdensome examinations for patients requiring such 
assessments.

In a quantitative analysis, L+S-Net and standard cine 
yielded similar measurements for all parameters of LV 
function. Many studies demonstrated strong agreement 
in quantitat ive measurements between DL-based 
cine techniques and traditional techniques, although 
statistically significant differences were still observed in 
some parameters. These variations are inconsistent across 
different studies. Kido et al. (62) used CS real-time cine 
sequence for LV analysis in healthy controls and patients. 
They demonstrated CS real-time cine accurately measured 
RV volumetry. Zucker et al. (61) assessed the IQ and 
performance of a DL-based cine sequence reconstruction 
compared with reference standard bSSFP. There were 
small but statistically significant volumetric differences 
between DL-based cine and the reference bSSFP cine for 
LVEF and RVEF. Yan et al. (58) applied CS-cine and AI-
cine sequences to evaluate biventricular cardiac function 
analysis in a patient cohort at 3.0 T. Compared with 
conventional segmented, retrospectively gated cine, the CS-
cine and AI-cine yielded similar LVESV, LVEF, RVEDV, 
RVESV, and RVEF but slightly smaller and statistically 
significant LVEDV. Our results did not show LVEDV 
underestimation, perhaps because with the low-rank and 
sparse prior, L+S-Net exhibits better performance in detail 

reconstruction and contrast, which leads to a lower error 
level around edges and high-frequency areas.

Conclusions

In conclusion, L+S-Net is proved to be a promising method 
for cardiac cine imaging in a clinical setting and it yields 
good IQ and highly accurate volumetric and functional 
measures relative to standard segmented cine acquisition.
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