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Background: Three-dimensional (3D) magnetic resonance imaging (MRI) can be acquired with a high 
spatial resolution with flexibility being reformatted into arbitrary planes, but at the cost of reduced signal-to-
noise ratio. Deep-learning methods are promising for denoising in MRI. However, the existing 3D denoising 
convolutional neural networks (CNNs) rely on either a multi-channel two-dimensional (2D) network or 
a single-channel 3D network with limited ability to extract high dimensional features. We aim to develop 
a deep learning approach based on multi-channel 3D convolution to utilize inherent noise information 
embedded in multiple number of excitation (NEX) acquisition for denoising 3D fast spin echo (FSE) MRI. 
Methods: A multi-channel 3D CNN is developed for denoising multi-NEX 3D FSE magnetic resonance 
(MR) images based on the feature extraction of 3D noise distributions embedded in 2-NEX 3D MRI. The 
performance of the proposed approach was compared to several state-of-the-art MRI denoising methods 
on both synthetic and real knee data using 2D and 3D metrics of peak signal-to-noise ratio (PSNR) and 
structural similarity index measure (SSIM). 
Results: The proposed method achieved improved denoising performance compared to the current state-
of-the-art denoising methods in both slice-by-slice 2D and volumetric 3D metrics of PSNR and SSIM. 
Conclusions: A multi-channel 3D CNN is developed for denoising of multi-NEX 3D FSE MR images. 
The superior performance of the proposed multi-channel 3D CNN in denoising multi-NEX 3D MRI 
demonstrates its potential in tasks that require the extraction of high-dimensional features.
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Introduction

Magnetic resonance imaging (MRI) is one of the most 
widely used noninvasive diagnostic modalities, providing 
superior soft tissue contrast. Compared to two-dimensional 
(2D) MRI, three-dimensional (3D) MRI can provide 
higher through-plane spatial resolution and reduced partial 
volume effect, making it particularly suited for visualizing 
complex anatomical structures. However, increasing spatial 
resolution leads to diminished signal-to-noise ratio (SNR) 
in MRI, causing challenges to various MRI applications. 
Thus, denoising plays a major role in enhancing the clinical 
utilities of MRI. 

Denoising of MRI is often performed through 2D 
operations (1-4). Although proven efficient, these methods 
do not fully exploit the through-plane signal correlations 
inherent in 3D MRI (5). In contrast, 3D denoising methods 
can naturally utilize the 3D features of volumes of MR 
images, providing a more comprehensive representation of 
the denoising problem and better utilization of inter-slice 
signal correlations. Therefore, it is desirable to employ 3D 
denoising algorithms for denoising tasks of 3D MR images.

Many methods have been proposed for 3D MR image 
denoising, most of which are extensions of traditional 2D 
denoising methods. These methods typically utilize image 
characteristics such as self-similarity in the image domain 
or sparse representation in the transform domain. Typical 
algorithms include spatial domain method nonlocal means 
(NLM) (6,7), transform domain method discrete cosine 
transform (DCT) (8), sparse representation method singular 
value decomposition (SVD) (9,10), and local principal 
component analysis (PCA) method (11,12). Among the 
traditional denoising methods, block matching with 4D 
filtering (BM4D) (13), an extension of block-matching 3D 
collaborative filtering (BM3D) (2), is widely regarded as 
a state-of-the-art approach. BM4D is capable of directly 
handling Rician noise and exhibits excellent performance in 
denoising MR images through the application of a variance 
stabilizing transformation prior to the denoising process.

Recently, deep learning-based models have emerged as 
highly effective approaches for image denoising. When it 
comes to processing 3D MR volumes, there are two groups 
of deep learning approaches. One group of approaches 
involves stacking multiple slices along the channel axis of a 
2D network. For example, methods like McDnCNN (14)  
and DABN (15) leverage adjacent slices to denoise the 
central slice of a 3D MR volume. Compared to 3D models, 
these multi-channel 2D models offer advantages of 

memory efficiency and pre-trained 2D models. However, 
they have limitations in fully capturing the through-plane 
information, as they primarily learn weighted features from 
neighboring slices in the initial layer.

An alternative group of approaches involves the 
utilization of 3D convolutional neural networks (CNNs) 
for processing volumetric data. It enables learning in three 
dimensions through the employment of 3D operations, such 
as 3D convolution (16). With the significant advancements 
in the graphics processing unit (GPU) power over the 
past decade, 3D CNNs have gained popularity, and their 
applications in MRI denoising have yielded promising 
results. Several studies have demonstrated its potential in 
denoising MR images (17-21). For example, Manjón et al.  
proposed a 9-layer 3D CNN PRI-PB-CNN (17) for 
denoising both Gaussian and Rician noise. By combing 
the multi-layer perceptron (MLP) and CNN, the 5-layer 
3D-WRN-VGG (18) and the Residual-MLP-CNN- 
Mixer (19) have been proposed for Rician noise. 
Additionally, under the parallel CNN structure with normal 
and dilated convolutions, both Gaussian-impulse noise and 
Rician noise of MR images can be effectively suppressed 
(20,21). These advancements underscore the superiority of 
3D CNN in MRI denoising.

The aforementioned 3D CNN MRI denois ing 
approaches primarily rely on a single-channel 3D input/
output structure for spatial feature extraction. However, 
MRI acquisitions are often conducted with additional 
dimensions beyond spatial ones, thus encapsulating a richer 
set of information than mere spatial features. For example, 
multiple number of excitation (NEX) acquisition is a 
widespread technique to enhance the image SNR through 
time integration (22) especially in low-field MRI (23).  
Studies have revealed that the inter-NEX information 
embedded in multi-NEX images could also be valuable for 
denoising tasks (4). Therefore, it becomes crucial to devise 
a network that can efficiently process both 3D spatial and 
inter-NEX information.

To address this need, we propose a novel multi-channel 
3D denoising CNN. This network aims to harness the 
benefits of both 3D spatial and inter-NEX information 
within a single architecture. In this study, we investigate 
the effectiveness of our proposed network in reducing 
noise in 3D fast spin echo (FSE) images. We demonstrated 
the superiority of our proposed network over the state-
of-the-art 3D denoising methods both in terms of 2D and 
3D evaluation metrics, offering a promising solution for 
processing 3D spatial and inter-NEX correlated MRI data.
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The contributions of this work can be summarized as 
follows:

(I) Given the spatially varying nature of noise, 
existing 3D denoising methods often fail to 
comprehensively address non-stationary noise 
distribution. This study fills this gap by exploring 
and demonstrating the capabilities of 3D CNNs 
in handling non-stationary 3D noise. Through 
experiments using both synthetic data and real data, 
we confidently demonstrate the adaptability and 
robustness of our model in enhancing the quality of 
MRI images in practical applications.

(II) Our proposed method outperforms the existing 
state-of-the-art denoising methods in denoising 
3D FSE MR images.  We demonstrate this 
quantitatively using both 2D and 3D metrics. 

(III) We introduce a theoretical framework that 
establishes the alignment between the multi-
channel 3D CNN and the multi-NEX 3D MR 
images. This alignment underscores the advantages 
of our approach, further validating its applicability 
in enhancing the quality of MRI scans. 

Methods

Network and implementation details

Multi-NEX 3D MR images exhibit correlated features on 
two levels. Firstly, the 3D spatial information is directional 
in three dimensions, which is better extracted by 3D sliding 
convolution kernels than the 2D ones. Secondly, the inter-
NEX images have no rank or directionality. For a neural 

network, it is more appropriate to process this relationship 
along the channel dimension at the lowest computation 
cost. In this study, we employed a multi-channel 3D CNN 
to process both types of information in multi-NEX 3D MR 
images.

We extended our previously proposed denoising CNN (4)  
to 3D, with the filter number halved. The proposed 3D 
CNN has 14 layers, consisting of 3D convolution, 3D batch 
normalization (BN), and rectified linear unit (ReLU) (24). 
Each convolution has a filter size of 3×3×3, stride 1, and 
padding 1. As shown in Figure 1, the model is composed of 
three modules: the feature extraction module, the bridge 
module, and the assembly module. To learn noise residuals, 
a two-step residual learning approach was employed over 
the parallel transporting and residual blocks. This structure 
enables the model to handle imbalanced input/output 
channels. In this experiment, we trained our network, 
denoted as 3D-Proposed, with an input channel of 4 to 
separately process the real and imaginary parts of each 
complex-valued NEX image. The whole network has about 
1.2M trainable parameters. Our code is publicly available at 
https://github.com/ShutianZ/Denoising3DFSE.

In our experiments, we compared the proposed 
approach to BM4D (11), the 3D extension of DnCNN (3), 
3D-EnsembleNet (20), and 3D-Parallel-RicianNet (21). 
BM4D supports blind-denoising of the Rician noise with 
two cascades of hard thresholding and Wiener filtering. 
DnCNN (3) is a thriving 2D denoiser proposed by Zhang 
et al., with efficient and robust performance in MRI (25). In 
this work, we implemented 3D-DnCNN using 3D CNNs 
with a fourteen-layer architecture. 3D-EnsembleNet (20) is 
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Figure 1 An illustration of the proposed multi-channel 3D denoising network. CR, 3DConv + ReLU; CBR, 3DConv + 3DBN + ReLU; 
NEX, number of excitation; avg, average; 3DConv, three-dimensional convolution; 3DBN, three-dimensional batch normalization; ReLU, 
rectified linear unit; 3D, three-dimensional.

https://github.com/ShutianZ/Denoising3DFSE


Zhao et al. Denoising using multi-channel 3D CNN 6520

© Quantitative Imaging in Medicine and Surgery. All rights reserved.   Quant Imaging Med Surg 2024;14(9):6517-6530 | https://dx.doi.org/10.21037/qims-24-625

proposed by Aetesam et al. which incorporates two parallel 
models using normal and dilated convolutions. 3D-Parallel-
RicianNet (21) is a 19-layer 3D CNN with parallel residual 
learning architecture proposed by Wu et al. Among the 
above-mentioned 3D MRI denoising models, the input 
data format in 3D-Parallel-RicianNet (64×64×64 voxels)’s 
original settings is the closest to ours. Thus, it requires a 
minimum change in implementing this approach to process 
the data used in this study. Note that all the existing 3D 
MRI denoising CNNs, including the three implemented 
here, can only process the input and output with equal 
channels. Therefore, the input of these compared models is 
the real and imaginary parts of the averaged 2-NEX image 
in 2 separate channels, respectively. 

We trained the networks with the Adam optimizer and the 
ReduceLROnPlateau monitor with an initial learning rate of 
0.001, decaying by 0.2 when the loss stops decreasing for ten 
epochs. The batch size is eight. The model was optimized 
using the combination of L2 loss and 3D structural similarity 
index measure (SSIM) loss, as shown below:

( ) ( )( )( )2
2 8 2 82

argmin 1-3DSSIM ,f NEX NEX NEX NEXf I I f I I− ∗  [1]

Here 2NEXI  is the input, and 8NEXI  is the high SNR 

images acquired using 8 NEX, which serves as the target in 
training. All experiments were implemented in Python 3.9.7 
with Pytorch 1.10.0 on two NVIDIA (Santa Clara, CA, 
USA) RTX A6000 GPUs (48 GB).

Metrics

In our experiments, we implemented both slice-by-slice 
2D and volumetric 3D metrics to evaluate the performance 
of 3D denoising methods. These metrics include the peak 
signal-to-noise ratio (PSNR), SSIM (26), and multiscale 
SSIM (MS-SSIM) (27). PSNR can be calculated in 2D 
and 3D. SSIM measures the perceived 2D image quality in 
luminance, contrast, and structure. MS-SSIM can be used 
to assess 3D volumetric data, and is calculated by:

( ) ( ) ( ) ( )1
MS-SSIM , , , ,

j jM M
M j jj

f g l f g c f g s f g
β γα

=
   = ⋅      ∏  [2]

where the index M is the number of scales with a default 
setting of 5 in our experiment. Images are scaled (M-1) 
times by a downsampling factor 2 each time to incorporate 
image details at different resolutions. The luminance 
comparison is calculated only at scale M, denoted as 
lM(f,g). cj(f,g) and sj(f,g) refer to the contrast and structure 
comparison measures at scale j, respectively. αM, βj, and γj 

are parameters to define the relative importance of three 
measures. The closer the SSIM or MS-SSIM values to 1, 
the more similar the two images are.

For clarity, we use the terms 2D PSNR and 2D SSIM 
to refer to the slice-by-slice 2D evaluations of PSNR and 
SSIM, respectively. Similarly, we use the terms 3D PSNR 
and 3D SSIM to refer to the volumetric measurements of 
PSNR and MS-SSIM, respectively. We used a paired sample 
t-test to compare the difference, with a P value of less than 
0.001 indicating a significant difference after Bonferroni 
correction for multiple comparisons.

Dataset

In this work, we acquired multi-NEX 3D MR images with 
isotropic resolution for training and testing. These multi-
NEX 3D images can be considered as 4D data with both 3D 
spatial features and 4th dimension along the NEX direction 
carrying inter-NEX information. Our datasets include 
68 proton density-weighted 3D FSE knee MRIs. The 
datasets were collected using a 3D proton density-weighted 
VISTATM pulse sequence on a Philips Achieva TX 3.0T 
MRI (Philips Healthcare, Best, Netherlands) with an eight-
channel receiver knee coil (Invivo, Gainesville, FL, USA). 
All MRI examinations were conducted under the approval 
of the Institutional Review Board. The MRI parameters 
were as follows: repetition time/echo time 900/33.6 ms; 
excitation flip angle 90; FOV 160×160×120 mm3; 150 slices 
with a 3D isotropic acquisition resolution 0.8×0.8×0.8 mm3;  
echo train length 42; sensitivity encoding (SENSE) 
acceleration factor 2×2 (AP × RL); and spectral attenuated 
inversion recovery (SPAIR) for fat suppression. Complex 
images were reconstructed for each NEX acquisition using 
the standard post-processing pipeline including the SENSE 
reconstruction provided by the vendor. These complex 
images were subsequently used for the denoising process 
in our study. Totally 8-NEX images were acquired for 
each subject with a total scan duration of 23.3 minutes. As 
it is assumed that the multi-NEX data can provide intact 
information about the inherent noise distribution, we used 
the first 2-NEX acquisitions in the 8-NEX acquisition as 
the low SNR 2-NEX input, and the high-SNR 8-NEX as 
the target to train the network. All voxels are interpolated 
to the same resolution of 0.714 mm3 with 168 slices of 
each dataset. We used the cubic voxel of 64×64×64 with 
a sliding stride of 32×32×32 for input. Outputs are 3D 
volumes instead of only the central slice. The output 
volume is generated with the same shape as the input for 
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computational efficiency. In total, 7,200 patches from  
50 datasets were used for training. The other 18 3D datasets 
were cropped to a size of 168×168×168 used for testing.

We also conducted experiments with synthetic noise. For 
the experiments with synthetic noise, we had ground truth 
to compare the performance of denoising methods. As the 
noise distribution in real MR images is spatially variant, we 
generated the 3D datasets incorporating Gaussian white 
noise with a non-stationary noise pattern to both the real 
and imaginary parts of the image. To approximate the real 
situation as much as possible, the noise level of the Gaussian 
noise is scaled by a factor between 0.8 and 1.2 among 
NEXs. The noise pattern we used was shown in three planes 
in Figure 2, generated using MATLAB R2021b (Mathworks, 
Natick, MA, USA). Note the noise distribution varies in  
3D space. 

Results

Results on synthetic data

Tables 1,2 present the performance of 3D denoising 
methods on synthetic data with non-stationary noise. 
The performance is measured using slice-by-slice 2D and 
volumetric 3D metrics, respectively. Compared to the noisy 
input, all approaches significantly improved 2D and 3D 

PSNR and SSIM (P<0.001). The deep learning methods 
outperformed the traditional denoising algorithm BM4D 
(P<0.001). Among these methods, our proposed multi-
channel model achieved the best performance in both 
metrics. 

Figures 3-5 display typical slices of the denoising results 
and the corresponding differences to the ground truth 
image in the axial, coronal, and sagittal planes, respectively. 
Our proposed model achieved the best performance in 
all three planes. Compared to 3D-Parallel-RicianNet, 
3D-EnsembleNet ,  and  3D-DnCNN, th i s  model 
generated a better denoising result with an even reduced 
computational load. 

Results on real data

Tables 3,4 present the models’ performance on real data 
using both slice-by-slice 2D and volumetric 3D metrics. The 
four deep learning approaches achieved better denoising 
performance compared to both the noisy input (P<0.001) 
and the conventional method BM4D (P<0.001). Compared 
to 3D-Parallel-RicianNet,  3D-EnsembleNet,  and 
3D-DnCNN, the proposed 3D network shows improved 
performance in all metrics measured in 2D and 3D. 

Figures 6-8 show typical slices in axial, coronal, and 
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Figure 2 The synthetic 3D spatial-variant noise map considered in our experiments. From top to bottom row: the axial, coronal, and sagittal 
planes. Typical slices from the 3D noise map were arranged in the directions marked in the figure. 3D, three-dimensional.
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Table 1 The performance of 3D denoising methods measured using 2D metrics on synthetic data with non-stationary noise 

Plane Metric Input BM4D 3D-Parallel-RicianNet 3D-DnCNN 3D-EnsembleNet 3D-Proposed

Axial PSNR 28.44±0.23 33.19±1.53 38.52±1.14 38.52±1.15 38.52±0.94 38.74±1.03

SSIM 0.5459±0.0404 0.7578±0.0443 0.9405±0.0061 0.9398±0.0064 0.9418±0.0060 0.9427±0.0060

Coronal PSNR 28.54±0.23 33.37±1.60 39.43±1.47 39.47±1.52 39.51±1.35 39.74±1.47

SSIM 0.5285±0.0394 0.7425±0.0444 0.9394±0.0064 0.9387±0.0067 0.9407±0.0063 0.9415±0.0062

Sagittal PSNR 30.20±0.19 34.37±1.37 40.95±1.36 41.02±1.38 41.03±1.18 41.22±1.27

SSIM 0.5491±0.0391 0.7570±0.0424 0.9402±0.0062 0.9395±0.0064 0.9415±0.0061 0.9422±0.0060

The PSNR and SSIM refer to the mean ± standard deviation of the PSNR and SSIM of all 2D slices. 3D, three-dimensional; 2D, two-
dimensional; BM4D, block matching with 4D filtering; PSNR, peak signal-to-noise ratio; SSIM, structural similarity index measure.

Table 2 The performance of 3D denoising methods measured using 3D metrics on synthetic data with non-stationary noise

Metric Input BM4D 3D-Parallel-RicianNet 3D-DnCNN 3D-EnsembleNet 3D-Proposed

3D PSNR 28.35±0.24 33.05±1.49 38.46±1.13 38.46±1.14 38.45±0.94 38.68±1.02

3D SSIM 0.9456±0.0075 0.9773±0.0041 0.9926±0.0008 0.9925±0.0009 0.9926±0.0007 0.9929±0.0007

The 3D PSNR and 3D SSIM are calculated volumetrically and presented as mean ± standard deviation. 3D, three-dimensional; BM4D, 
block matching with 4D filtering; PSNR, peak signal-to-noise ratio; SSIM, structural similarity index measure.

sagittal planes, with annotated 2D PSNR and 2D SSIM 
values. Among these models, our approach 3D-Proposed 
achieved the best denoising performance in both metrics, 
which is consistent with the results obtained from the 
synthetic data. In regions such as the cartilage, 3D-Proposed 
not only effectively suppressed the noise but also preserved 
the intricate details.

Discussion

Clinical FSE sequences are often collected in 2D slices 
repeated in different planes for an overall visualization 
of anatomical structures, particularly in musculoskeletal 
applications. In contrast, 3D FSE with isotropic resolution 
can be acquired in a single acquisition and reformatted to 
arbitrary planes, providing the possibility of reducing the 
total scan time and flexibility of visualization. Additionally, 
3D FSE can generate thinner slices, thereby reducing partial 
volume effects along slice direction, potentially improving 
sensitivity in detecting lesions. These advantages highlight 
the potential benefits of 3D FSE in clinical utilities. 
However, reduced SNR is a common drawback of 3D FSE 
compared to 2D FSE due to its high spatial resolution. To 
address this issue, we proposed a multi-channel 3D CNN 
and demonstrated its superior denoising performance in 3D 

FSE. We believe that this multi-channel multi-dimensional 
network not only helps with denoising of 3D images, but 
also serves as a hint for processing MRI data in higher 
dimensions, such as quantitative MRI based on FSE (28,29). 
As there are few systematic studies of denoising of 3D MRI 
using multi-channel 3D CNN, below we provide further 
discussions of the underlying mechanism.

3D MRI naturally possesses redundant anatomy 
information along adjacent areas along both in-plane and 
through-plane directions. 3D MRI provides features that 
can be extracted in 3D volume, which fits well with 3D 
convolution. By applying 3D convolution, the image quality 
of 3D MRI can be boosted in both in-plane and through-
plane directions by utilizing such redundancy. Therefore, 
3D CNN can offer improved feature extraction to 3D MRI 
compared to 2D CNN.

In addition to 3D CNN, another key point in this 
experiment is the multi-channel design. In a standard multi-
channel convolution, multi-channel kernels are employed 
to convolve with the multi-channel input or feature maps. 
The filtered outputs are then summed over the channels 
to yield a new feature map. This process is known as cross-
correlation. It corresponds to the channel-wise summation 
of the convolution output where each input channel is 
convolved with an independent kernel. If these kernels 
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Figure 3 A typical axial slice of denoised results on synthetic 3D FSE data using different 3D denoising methods. Image (A) is the input 
with the non-stationary noise. Images (B-F) are the corresponding denoised images of (A), including (B) BM4D, (C) 3D-Parallel-RicianNet, 
(D) 3D-DnCNN, (E) 3D-EnsembleNet, and (F) our proposed 3D model. (A’-F’) refer to their difference to the ground truth (G). The 2D 
PSNR and SSIM values are displayed on the plots. 3D, three-dimensional; FSE, fast spin echo; BM4D, block matching with 4D filtering; 
2D, two-dimensional; PSNR, peak signal-to-noise ratio; SSIM, structural similarity index measure. 

employ the same weights, the channel-wise summation 
can be considered as occurring prior to convolution, 
corresponding to directly filtering on a single-channel input 
that is channel-wise summed. However, in the proposed 
approach, the kernels in a multi-channel cross-correlation 
do not have the same weights and are independently 
updated towards a canonical expression of the fused feature 
map, tending to have different focuses. Therefore, a multi-
channel input could support a more representative feature 
map than its channel-wise summated single-channel 
counterparts. 

It is important to note that the number of model 
parameters increases with input channels, as well as the 
model complexity. Due to the complexity of processing 
3D data, 3D networks naturally require more computing 
resources compared to 2D networks. Such increased 

computational burden is typically noteworthy not only 
in the training phase but also in the testing phase, which 
may be unaffordable using the computer configurations in 
clinical environment. Therefore, it is important to develop 
a lightweight architecture for the 3D network. In this 
experiment, we introduced a 3D structure designed for 
multi-channel inputs with an asymmetric parallel bridge 
module that could efficiently extract comprehensive noise 
features with minimum computational memory usage. 
Table 5 shows a comparison of computer consumption of 
3D models, including the forward/backward pass size, the 
number of trainable parameters, and the floating point of 
operations (FLOPs). Forward/backward pass size refers 
to the amount of data processed during the forward and 
backward passes in the training process. It is typically 
measured in terms of the amount of memory required to 
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store the intermediate results and gradients during the 
computation. Trainable parameters refer to the adjustable 
weights and biases in the model that are updated during 
the training process. FLOPs refer to the total number of 
floating-point operations required to run the model. A 
higher number of trainable parameters and FLOPs are 
generally associated with improved model performance, 
but they also signify the model’s computational complexity. 
Among all the 3D models compared, our model stands out 
as the one with the smallest forward/backward pass size and 
the second-lowest FLOPs and trainable parameters. Our 
method is relatively efficient in terms of both computing 
and storage resources. With such lightweight architecture, 
our proposed network structure works well with the 2-NEX 
input data through its multi-channel design, providing 
efficient 3D MRI denoising.

Due to the challenge to collect high SNR in vivo data to 
train the neuro network, the existing 3D MRI denoising 
CNNs were trained using data with synthetic Gaussian or 
Rician noise (15-21). When applying these methods on 
real MRI data (17,20,21), their performance was measured 
either qualitatively (17,20) or compared to the pseudo-
labels generated from pre-trained models (21) due to the 
lack of high SNR in vivo images serving as the target. 
Such evaluation criteria may be subjective. Therefore, it is 
important to explore the generalizability of 3D CNN with 
real noise and measure its performance quantitatively. In 
this work, the performance of the proposed multi-channel 
3D CNN and other methods in denoising 3D MR images 
is quantitatively evaluated on high SNR real 3D FSE 
datasets acquired using 8 NEXs. Experiments show that our 
proposed model outperforms the state-of-the-art 3D MRI 
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Figure 4 A typical coronal slice of denoised results on synthetic 3D FSE data using different 3D denoising methods. Image (A) is the input 
with the non-stationary noise. Images (B-F) are the corresponding denoised images of (A), including (B) BM4D, (C) 3D-Parallel-RicianNet, 
(D) 3D-DnCNN, (E) 3D-EnsembleNet, and (F) our proposed 3D model. (A’-F’) refer to their difference to the ground truth (G). The 2D 
PSNR and SSIM values are displayed on the plots. 3D, three-dimensional; FSE, fast spin echo; BM4D, block matching with 4D filtering; 
2D, two-dimensional; PSNR, peak signal-to-noise ratio; SSIM, structural similarity index measure.
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Figure 5 A typical sagittal slice of denoised results on synthetic 3D FSE data using different 3D denoising methods. Image (A) is the input 
with the non-stationary noise. Images (B-F) are the corresponding denoised images of (A), including (B) BM4D, (C) 3D-Parallel-RicianNet, 
(D) 3D-DnCNN, (E) 3D-EnsembleNet, and (F) our proposed 3D model. (A’-F’) refer to their difference to the ground truth (G). The 2D 
PSNR and SSIM values are displayed on the plots. 3D, three-dimensional; FSE, fast spin echo; BM4D, block matching with 4D filtering; 
2D, two-dimensional; PSNR, peak signal-to-noise ratio; SSIM, structural similarity index measure.

Table 3 The performance of 3D networks measured using 2D metrics on real data 

Plane Metric Input BM4D 3D-Parallel-RicianNet 3D-DnCNN 3D-EnsembleNet 3D-Proposed

Axial PSNR 34.89±2.10 35.75±1.84 37.78±1.92 38.07±2.12 38.14±1.97 38.31±2.43

SSIM 0.9103±0.0258 0.9279±0.0165 0.9501±0.0133 0.9505±0.0146 0.9518±0.0133 0.9532±0.0144

Coronal PSNR 36.01±2.53 36.64±2.18 38.82±2.43 39.17±2.70 39.20±2.50 39.44±2.98

SSIM 0.9099±0.0261 0.9267±0.0169 0.9500±0.0135 0.9504±0.0147 0.9516±0.0136 0.9531±0.0147

Sagittal PSNR 37.55±2.35 38.04±1.99 40.08±2.10 40.50±2.44 40.46±2.23 40.68±2.72

SSIM 0.9101±0.0261 0.9266±0.0170 0.9501±0.0133 0.9506±0.0146 0.9517±0.0135 0.9532±0.0145

The PSNR and SSIM refer to the mean ± standard deviation of the PSNR and SSIM of all 2D slices. 3D, three-dimensional; 2D, two-
dimensional; BM4D, block matching with 4D filtering; PSNR, peak signal-to-noise ratio; SSIM, structural similarity index.
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Table 4 The performance of 3D networks measured using 3D metrics on real data

Metric Input BM4D 3D-Parallel-RicianNet 3D-DnCNN 3D-EnsembleNet 3D-Proposed

3D PSNR 34.77±2.12 35.58±1.88 37.63±1.96 37.92±2.15 37.98±2.00 38.16±2.45

3D SSIM 0.9852± 0.0054 0.9882±0.0038 0.9916±0.0027 0.9918±0.0030 0.9921±0.0028 0.9924±0.0030

The 3D PSNR and 3D SSIM are calculated volumetrically and presented as mean ± standard deviation. 3D, three-dimensional; BM4D, 
block matching with 4D filtering; PSNR, peak signal-to-noise ratio; SSIM, structural similarity index.
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Figure 6 Representative denoised results and the corresponding differences to the target high-SNR image in an axial plane reformatted 
from a 3D FSE knee volume acquired in sagittal plane. (A) 2-NEX input, and denoised results obtained using (B) BM4D, (C) 3D-Parallel-
RicianNet, (D) 3D-DnCNN, (E) 3D-EnsembleNet, and (F) our proposed 3D model. (G) refers to the 8-NEX target high-SNR image. (A’-F’) 
refers to the corresponding difference to the target image. The 2D PSNR and SSIM values are displayed on the plots. SNR, signal-to-noise 
ratio; 3D, three-dimensional; FSE, fast spin echo; BM4D, block matching with 4D filtering; 2D, two-dimensional; PSNR, peak signal-to-
noise ratio; SSIM, structural similarity index measure.

denoising methods in both 2D and 3D metrics. 
Although the proposed method achieved satisfactory 

performance, there are several limitations of this work. 
First, the types of synthetic noise we employed were limited. 
We trained the network with only one nonstationary noise 
pattern. More noise patterns can be incorporated in future 

work for comprehensive studies. Second, our proposed 
model is a supervised network that requires a training 
target. Note more training data is needed to train a 3D 
model compared to a 2D model to avoid overfitting. In this 
work, the 8-NEX 3D FSE volumes served as the target 
high SNR images, which takes over twenty minutes to 
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acquire one dataset. Further work is needed to investigate 
self-supervised or unsupervised (30) approaches using the 
proposed multi-channel 3D CNN for denoising MRI. 
Third, the application of 3D CNN together with 3D 
datasets significantly increases the computational burden 
compared to 2D denoising. To build resource-efficient 3D 
CNNs, group convolutions (31) and depthwise separable 
convolutions (32) could be considered. If the computation 
burden is relieved, better performance can be expected by 
utilizing deeper models with more training data. Fourth, we 
demonstrated the denoising performance of the proposed 
method on 3D FSE knee MRI. Further work is needed to 
validate its performance on other anatomies or using other 
3D MRI pulse sequences. Additionally, the generalization 

capability of the network needs to be verified on datasets 
with varying acquisition parameters.

Conclusions

In this work, we proposed a multi-channel 3D CNN 
for denoising multi-NEX 3D FSE MR images and 
quantitatively measured its performance. Experiments on 
synthetic and real knee MRI data showed that our proposed 
multi-channel 3D CNN outperformed the state-of-the-
art methods in denoising 3D FSE images. Our work 
demonstrated the potential of the proposed method in knee 
imaging and provided valuable guidance for extending its 
application in other anatomies. 
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Figure 7 Representative denoised results and the corresponding differences to the target high-SNR image in a coronal plane reformatted 
from a 3D FSE knee volume acquired in sagittal plane. (A) 2-NEX input, and denoised results obtained using (B) BM4D, (C) 3D-Parallel-
RicianNet, (D) 3D-DnCNN, (E) 3D-EnsembleNet, and (F) our proposed 3D model. (G) refers to the 8-NEX target high-SNR image. (A’-F’) 
refers to the corresponding difference to the target image. The 2D PSNR and SSIM values are displayed on the plots. SNR, signal-to-noise 
ratio; 3D, three-dimensional; FSE, fast spin echo; BM4D, block matching with 4D filtering; 2D, two-dimensional; PSNR, peak signal-to-
noise ratio; SSIM, structural similarity index measure.
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Figure 8 Representative denoised results and the corresponding differences to the target high-SNR image in a sagittal plane from a 3D FSE 
knee volume acquired in sagittal plane. (A) 2-NEX input, and denoised results obtained using (B) BM4D, (C) 3D-Parallel-RicianNet, (D) 
3D-DnCNN, (E) 3D-EnsembleNet, and (F) our proposed 3D model. (G) refers to the 8-NEX target high-SNR image. (A’-F’) refers to the 
corresponding difference to the target image. The 2D PSNR and SSIM values are displayed on the plots. SNR, signal-to-noise ratio; 3D, 
three-dimensional; FSE, fast spin echo; BM4D, block matching with 4D filtering; 2D, two-dimensional; PSNR, peak signal-to-noise ratio; 
SSIM, structural similarity index measure.

Table 5 The comparison of the computer consumption of 3D deep learning models 

Resource requirements 3D-Parallel-RicianNet 3D-DnCNN 3D-EnsembleNet 3D-Proposed

Forward/backward pass size (MB) 7,797.21 3,359.64 3,175.09 3,028.29

Trainable Parameters (M) 0.276 1.336 1.182 1.179

FLOPs (G) 73 351 310 309

The input size was set to (1, 2, 64, 64, 64). 3D, three-dimensional; FLOPs, floating points of operations.
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