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Background: Follicular thyroid carcinoma (FTC) and follicular thyroid adenoma (FTA) present diagnostic 
challenges due to overlapping clinical and ultrasound features. Improving the diagnosis of FTC can enhance 
patient prognosis and effectiveness in clinical management. This study seeks to develop a predictive model 
for FTC based on ultrasound features using machine learning (ML) algorithms and assess its diagnostic 
effectiveness.
Methods: Patients diagnosed with FTA or FTC based on surgical pathology between January 2009 and 
February 2023 at Zhejiang Provincial Cancer Hospital and Zhejiang Provincial People’s Hospital were 
retrospectively included. A total of 562 patients from Zhejiang Provincial Cancer Hospital comprised the 
training set, and 218 patients from Zhejiang Provincial People’s Hospital constituted the validation set. 
Subsequently, clinical parameters and ultrasound characteristics of the patients were collected. The diagnostic 
parameters were analyzed using the least absolute shrinkage and selection operator and multivariate logistic 
regression screening methods. Next, a comparative analysis was performed using seven ML models. The 
area under the receiver operating characteristic (ROC) curve (AUC), accuracy, sensitivity, specificity, positive 
predicted value (PPV), negative predicted value (NPV), precision, recall, and comprehensive evaluation 
index (F-score) were calculated to compare the diagnostic efficacy among the seven models and determine 
the optimal model. Further, the optimal model was validated, and the SHapley Additive ExPlanations (SHAP) 
approach was applied to explain the significance of the model variables. Finally, an individualized risk 
assessment was conducted.
Results: Age, echogenicity, thyroglobulin antibody (TGAb), echotexture, composition, triiodothyronine 
(T3), thyroglobulin (TG), margin, thyroid-stimulating hormone (TSH), calcification, and halo thickness  
>2 mm were influential factors for diagnosing FTC. The XGBoost model was identified as the optimal 
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Introduction

Thyroid follicular tumors, including malignant follicular 
thyroid carcinoma (FTC) and benign follicular thyroid 
adenoma (FTA), originate from thyroid follicular epithelial 
cells. FTC is the second most common subtype of thyroid 
cancer after papillary thyroid cancer, accounting for 
10–15% of all thyroid cancers (1). Moreover, patients 
with FTC have a higher risk of developing lung and 
bone metastases (two- and 10-fold higher, respectively) 
than those with papillary thyroid cancer (2,3). The only 
criteria for distinguishing between benign and malignant 
thyroid follicular tumors are tumor capsular invasion and/
or vascular invasion in surgical specimens. However, FTA 
and FTC have been shown to have overlapping clinical, 
ultrasound, and molecular biological features (4). Further, 
the current ultrasound risk stratification systems for thyroid 
nodules exhibit poor diagnostic performance for thyroid 
follicular tumors (5). For example, most ultrasound signs 
of FTC do not have or possess only one or two malignant 
features. Additionally, FTCs are easily misdiagnosed as 
benign tumors, such as FTA and nodular goiter, due to the 
low Thyroid Imaging Reporting and Data System (TI-
RADS) scores (6,7). Similarly, thyroid puncture biopsy 
cannot accurately confirm a diagnosis of FTC, and the 
corresponding characteristic tumor markers of FTC are 
yet to be identified. All these challenges make the early 
diagnosis of FTC challenging. Improving the preoperative 
diagnosis rate and reducing the misdiagnosis rate of FTC 
can significantly enhance the prognosis and quality of 
life of the patients and greatly contribute to the clinical 
management of this disease.

Machine learning (ML),  a  branch of  art i f ic ia l 
intelligence, encompasses two primary types of actions: 

classification and regression. In classification tasks, ML 
algorithms categorize data into predefined classes based 
on patterns identified in the training data. Meanwhile, 
in regression tasks, ML algorithms predict continuous 
numerical values by establishing relationships between 
input features and output variables. In the medical field, ML 
can be applied to build models via data sets obtained from 
various sources (e.g., clinical data, laboratory results, and 
medical images) for the identification, diagnosis, treatment, 
and prognosis prediction of diseases (8,9). Therefore, ML 
has been increasingly employed as a non-invasive method in 
radiology to reveal medical imaging-based tumor features 
(10,11). Furthermore, various ML algorithms have been 
utilized to construct classifier models for thyroid ultrasound 
imaging (12-14). To date, only a few studies have used 
ML to differentiate the benign and malignant nature 
of thyroid follicular tumors according to preoperative 
clinical parameters and ultrasound features (15). Existing 
models are based on radiomics, which have poor biological 
interpretability, and the black box problem in ML remains 
unresolved. Hence, in this study, we investigated the use of 
ML model to distinguish between benign and malignant 
thyroid follicular tumors based on preoperative clinical 
parameters and ultrasound imaging features. We interpreted 
the model using SHapley Additive ExPlanations (SHAP). 
We present this article in accordance with the TRIPOD-
AI reporting checklist (available at https://qims.amegroups.
com/article/view/10.21037/qims-24-601/rc).

Methods

Research patients

From January 2009 to February 2023, a total of 562 

model after a comprehensive evaluation. The AUC of this model in the validation set was 0.969 [95% 
confidence interval (CI), 0.946–0.992], while its precision sensitivity, specificity, and accuracy were 0.791, 
0.930, 0.913 and 0.917, respectively.
Conclusions: XGBoost model based on ultrasound features was constructed and interpreted using the 
SHAP method, providing evidence for the diagnosis of FTC and guidance for the personalized treatment of 
patients.
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patients diagnosed with FTA or FTC based on their 
surgical pathology were consecutively included from 
Zhejiang Provincial Cancer Hospital for the training 
set, and 218 patients were consecutively included from 
Zhejiang Provincial People’s Hospital for the external 
validation set. The study was conducted in accordance 
with the Declaration of Helsinki (as revised in 2013). The 
study design and protocol were approved by the Ethics 
Committees of Zhejiang Cancer Hospital (No. IRB-2020-
287) and Zhejiang Provincial People’s Hospital (No. QT-
2024-023). Individual consent for this retrospective analysis 
was waived.

The patient inclusion criteria were as follows: (I) thyroid 
ultrasonography in the hospital 2 weeks before surgery and 
(II) no other treatment modality before surgery. The patients 
were excluded if they met any of the following exclusion 
criteria: (I) poor or missing ultrasound images or other 
incomplete clinical data or (II) the location of thyroid lesions 
on preoperative ultrasound examination did not coincide 
with the location of postoperative surgical gross pathology.

Clinical information

Ten clinical indicators (including age and gender) and eight 
thyroid serological indicators [i.e., thyroid-stimulating 
hormone (TSH), free triiodothyronine (FT3), free 
tetraiodothyronine (FT4), triiodothyronine (T3), thyroxine 
(T4), thyroglobulin antibody (TGAb), thyroid peroxidase 
antibody (TPOAb), and thyroglobulin (TG)], were included 
in this study.

Ultrasound features 

Ultrasonography was performed using Esaote MyLab90, 
Logiq E9, Philips iU22, and Toshiba 790A ultrasound 
systems equipped with LA523, ML6-15, L12-5, and PLT-
805AT linear array probes, respectively, at a frequency 
range of 5–13 MHz. In this procedure, the patients were 
placed in a supine position (without a pillow) to fully expose 
the neck region. Next, the probes were placed on the 
thyroid and neck regions for multisection scanning. Further, 
two senior ultrasonographers recorded the parameters of 
all nodule ultrasound features with reference to the thyroid 
TI-RADS grading criteria published by the American 
College of Radiology in 2017, without knowledge of the 
postoperative pathology of the thyroid nodules. These 
parameters comprised the thyroid nodule size (maximum 

tumor diameter), location (left lobe, right lobe, or isthmus), 
composition (cystic, mixed cystic-solid, or solid), internal 
echogenicity (hypo- or isoechoic, hypoechoic, or extremely 
hypoechoic), echogenicity texture (homogeneous or 
inhomogeneous), margins (smooth or ill-defined, lobular 
or irregular, or extra-thyroidal invasion), calcifications 
(no or large comet tail, gross calcification, peripheral 
cyclic calcification, or microcalcification), and an acoustic 
halo of >2 mm (yes or no). In the case of inconsistency in 
interpreting the images, a third senior sonographer was 
consulted to confirm the diagnosis.

Feature screening and the development, validation, and 
evaluation of the predictive model

The 10 clinical and eight ultrasound parameters were 
screened using least absolute shrinkage and selection 
operator (LASSO) and multivariate logistic regression. 
Seven ML methods, including logistic regression model 
(LM), Light Gradient Boosting Machine (LightGBM), 
k-nearest neighbor (KNN), support vector machine 
(SVM), eXtreme Gradient Boosting (XGBoost), random 
forest (RF), and decision tree (DT), were employed for 
comprehensive analysis based on the training set data. 
We used 5-fold cross-validation, repeated five times to 
compare the competing models. Subsequently, the area 
under the receiver operating characteristic (ROC) curve 
(AUC), accuracy, sensitivity, specificity, positive predicted 
value (PPV), negative predicted value (NPV), precision, 
recall, and comprehensive evaluation index (F-score) were 
calculated to compare the diagnostic efficacy among the 
seven models. The model with the highest AUC in the 
validation set was chosen as the optimal model. Additionally, 
the optimal model was evaluated using five-fold cross-
validation to determine the predictive ability of the model and 
ensure its stability. Next, model discrimination was quantified 
via ROC, calibration, and decision curve analysis (DCA) 
curve analyses, and the model’s predictive performance 
was evaluated using the obtained AUC. Finally, feature 
importance was examined by applying the SHAP method. 
SHAP based on cooperative game theory, has global and local 
interpretability, interpreting the predicted value of the model 
as the sum of the contribution values of each input feature, 
that is, the shapley value. Compared with other explanation 
methods in previous literature, SHAP can visualize the 
prediction process of complex ML prediction models.  
Figure 1 illustrates the flowchart in the present study.
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Statistical analysis

All statistical analyses were performed using the Python 
(version 3.9.19), Scikit-learn (version 1.4.2), XGBoost 
(version 2.0.3), LightGBM (version 4.3.0) and Shap (version 
0.42.1). Data that were normally distributed according to 
the Kolmogorov–Smirnov normality test were expressed as 
mean ± standard deviation, and between-group comparisons 
were conducted using Student’s t-test or the Mann-Whitney 
U test. Non-normally distributed data were presented as 
median (lower quartile, upper quartile), while between-
group comparisons were performed utilizing the rank-sum 

test. Categorical variables were described as the number of 
patients (rate), with between-group comparisons conducted 
via the Chi-squared test. Statistical significance was set at 
P<0.05.

Results

Clinical characteristics of patients and baseline ultrasound 
parameters of the thyroid nodules

A total of 780 patients were included in this study, including 
562 in the training set (362 with benign nodules and 200 

Figure 1 Displays the entire flowchart of the present study. The specific steps in the development of the predictive model were as follows: 
(I) screening of feature factors via LASSO and logistic regression methods, (II) comprehensive analysis of the multiple ML models by 
performing a comparative analysis of the seven ML models, (III) construction and validation of the optimal model by selecting the model 
showing the best performance in the validation set and conducting a five-fold cross-validation test, (IV) interpretation of the model by 
plotting SHAP values associated with the importance and contribution of the model, and (V) generation of SHAP single-sample feature 
influence plots for individual samples. FTA, follicular thyroid adenoma; FTC, follicular thyroid carcinoma; LASSO, least absolute shrinkage 
and selection operator; ML, machine learning; LM, logistic regression model; LightGBM, light gradient boosting machine; KNN, k-nearest 
neighbour; SVM, support vector machine; XGBoost, extreme gradient boosting; RF, random forest; DT, decision tree; AUC, area under the 
curve; CI, confidence interval; TGAb, thyroglobulin antibody; TT3, total triiodothyronine; TG, thyroglobulin; TSH, thyroid-stimulating 
hormone; SHAP, SHapley Additive ExPlanations.
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with malignant nodules) and 218 in the validation set (161 
with benign nodules and 57 with malignant nodules). The 
patients had a mean age of 52.5 [40.0, 61.0] years and a 
mean nodule size of 30.0 [18.0, 40.0] mm. The baseline 
comparisons of the clinical characteristics (e.g., gender, age, 
and serological data) and ultrasonographic features of the 
patients in the training and validation sets are provided in 
Table 1.

Screening of risk factors for FTC

A total of 18 variables from the clinical parameters and 
ultrasound characteristics underwent LASSO regression 
analysis (Figure 2). After selecting lambda.min, which is 
the optimal regularization parameter selected through 
cross-validation that minimizes the mean squared error 
(MSE), the number of variables was reduced from 18 
to 15, consisting of sex, age, composition, echotexture, 
echogenicity,  halo thickness >2 mm, TGAb, TG, 
TPOAb, TSH, T4, T3, FT3, margin, and calcifications. 
Subsequently, the effect of confounders was controlled 
for by performing backward stepwise multivariate logistic 
regression analysis on the 15 variables. The confounders 
that were controlled included sex, TPOAb, T4, and 
FT3. Finally, 11 variables were retained, comprising age, 
composition, echotexture, echogenicity, halo thickness  
>2 mm, TGAb, TG, TSH, T3, margin, and calcifications 
(Table 2).

Integrated analysis of the seven ML models

Seven models, including LM, DT, RF, XGBoost, SVM, 
KNN, and LightGBM, were constructed and trained using 
the training set (562 patients). In the training set, the KNN 
and RF models had relatively high AUCs of 1.000 each. 
Moreover, eight indicators of the KNN and RF models, 
including precision, sensitivity, specificity, accuracy, PPV, 
NPV, recall, and F1 score, were all equal to 1.000. In the 
validation set (218 patients), the XGBoost model had the 
highest AUC (Figure 3) of 0.969 [95% confidence interval 
(CI), 0.946–0.992], along with good accuracy, sensitivity, 
specificity, PPV, NPV, precision, recall, and F1 score of 
0.917, 0.930, 0.913, 0.791, 0.974, 0.791, 0.930, and 0.855, 
respectively (Table 3), among the seven models. The 
heatmap of the confusion matrix for XGBoost is shown in 
Figure 4.

Validation and evaluation of the optimal model

In the external validation set, there was no evidence 
of a difference for AUC values between XGBoost and 
RF, LightGBM, or KNN (P=0.285, 0.363, and 0.477, 
respectively, DeLong test). However, there was evidence 
of a difference for AUC values between XGBoost and LM, 
DT, and SVM (P=0.014, 0.022, and <0.001, respectively, 
DeLong test). After comprehensive comparison of other 
diagnostic metrics of the models, the XGBoost model was 
selected as the best model for predicting FTC. Next, the 
robustness of the XGBoost model was examined by merging 
the data from the training and validation sets and subjecting 
them to five-fold cross-validation, resulting in an average 
AUC of 0.96. Finally, the calibration and DCA curves were 
plotted (Figure 5).

Furthermore, a SHAP summary plot of the XGBoost 
model was generated using the SHAP interpretability 
analysis method. The top 10 feature contributions were as 
follows: echogenicity, TGAb, echotexture, composition, 
T3, age, TG, margin, TSH, calcifications, and halo 
thickness >2 mm. On each line of feature importance, 
all patient attributions for the outcome are plotted with 
differently colored dots, wherein red dots represent high-
risk values and blue dots denote low-risk values. For 
predicting the benign and malignant nature of the thyroid 
follicular tumors, a SHAP value of >0 for samples in the 
red distribution region indicated a positive impact on the 
model, whereas a SHAP value of <0 for samples in the 
blue distribution region signified a negative impact on the 
model. In the XGBoost model, echogenicity, echotexture, 
and composition contributed positively to the model  
Figure 6. An example plot of SHAP values for a single 
sample is depicted in. The SHAP force plots illustrate 
explanations for all samples (Figure 7) as well as individual 
samples (Figure 8).

Discussion

Preoperative ultrasonography and fine-needle aspiration 
cytology exhibit good performance in identifying papillary 
thyroid carcinoma (16,17). However, these methods have 
limited performance in distinguishing between benign 
and malignant thyroid follicular tumors. The diagnosis of 
malignant thyroid follicular neoplasms (FNs) relies on the 
histological confirmation of tumor/peritumoral invasion 
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Table 1 Baseline clinical and ultrasound characteristics of patients with thyroid follicular tumors in the training and validation sets

Characteristic Total patients (N=780) Training cohort (N=562) Validation cohort (N=218) P value

Sex 0.635

Men 208 (26.7) 153 (27.2) 55 (25.2)

Women 572 (73.3) 409 (72.8) 163 (74.8)

Age (years) 52.5 [40.0, 61.0] 53.0 [41.0, 61.0] 52.0 [37.0, 62.0] 0.602

Diameter (mm) 30.0 [18.0, 40.0] 28.0 [18.0, 40.0] 32.0 [19.2, 43.0] 0.076

Nodule location 0.350

Left lobe of the thyroid gland 364 (46.7) 268 (47.7) 96 (44.0)

Right lobe of the thyroid gland 407 (52.2) 289 (51.4) 118 (54.1)

Thyroid-isthmus 9 (1.15) 5 (0.89) 4 (1.83)

Composition 0.804

Mixed solid-cystic 272 (34.9) 194 (34.5) 78 (35.8)

Solid 508 (65.1) 368 (65.5) 140 (64.2)

Echotexture 0.178

Homogeneous 270 (34.6) 186 (33.1) 84 (38.5)

Heterogeneous 510 (65.4) 376 (66.9) 134 (61.5)

Echogenicity 0.842

Isoechoic/hyperechoic 502 (64.4) 360 (64.1) 142 (65.1)

Hypoechoic 278 (35.6) 202 (35.9) 76 (34.9)

Margin 0.481

Smooth 687 (88.1) 491 (87.4) 196 (89.9)

Irregular/lobulated 36 (4.62) 26 (4.63) 10 (4.59)

Extrathyroidal extension 57 (7.31) 45 (8.01) 12 (5.50)

Calcifications 0.075

None 586 (75.1) 423 (75.3) 163 (74.8)

Macrocalcification 112 (14.4) 75 (13.3) 37 (17.0)

Rim calcification 70 (8.97) 52 (9.25) 18 (8.26)

Microcalcification 12 (1.54) 12 (2.14) 0 (0.00)

Halo thickness >2 mm 0.367

No 721 (92.4) 516 (91.8) 205 (94.0)

Yes 59 (7.56) 46 (8.19) 13 (5.96)

TGAb (U/mL) 15.0 [15.0, 27.1] 15.0 [15.0, 26.5] 15.0 [15.0, 33.3] 0.971

TG (ng/mL) 61.2 [23.2, 260] 63.8 [23.7, 272] 53.3 [22.4, 243] 0.438

TPOAb (U/mL) 28.0 [19.3, 38.2] 28.0 [18.3, 38.0] 28.0 [28.0, 38.6] 0.244

TSH (μIU/mL) 1.43 [0.92, 2.17] 1.40 [0.92, 2.15] 1.51 [0.93, 2.20] 0.431

T4 (μg/dL) 8.10 [7.09, 9.25] 8.10 [7.00, 9.30] 8.12 [7.10, 9.19] 0.844

FT4 (ng/dL) 1.19 [1.07, 1.32] 1.20 [1.08, 1.33] 1.15 [1.02, 1.30] 0.002

T3 (ng/mL) 1.11 [0.98, 1.24] 1.11 [0.98, 1.24] 1.11 [0.98, 1.26] 0.735

FT3 (pg/mL) 3.26 [2.98, 3.53] 3.25 [2.98, 3.52] 3.26 [2.98, 3.61] 0.461

Numbers in brackets indicate percentages, and numbers in square brackets denote quartiles. TGAb, thyroglobulin antibody; TG, 
thyroglobulin; TPOAb, thyroid peroxidase antibody; TSH, thyroid-stimulating hormone; T4, thyroxine; FT4, free tetraiodothyronine; T3, 
triiodothyronine; FT3, free triiodothyronine.
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Figure 2 Screening of variables using LASSO regression analysis. (A) Vertical lines are plotted at selected values using 10-fold cross-
validation, where the optimal lambda yielded 16 non-zero coefficients. (B) Coefficient profiles of 18 textural features were extracted from 
the log(λ) series in the LASSO model. Vertical dashed lines are plotted with minimum mean square error (λ=0.005) and minimum distance 
standard error (λ=0.033). LASSO, least absolute shrinkage and selection operator.
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 Table 2 Multivariate analysis for identifying risk factors for follicular thyroid carcinoma

Characteristics B SE OR (95% CI) Z P

Intercept −11.433 1.74771 1.083 (0.000–2.660) −6.542 0

Age (years) −0.023 0.01342 0.977 (0.951–1.002) −1.73 0.084

Composition 2.931 0.47992 18.74 (7.657–50.81) 6.107 <0.001

Echotexture 2.261 0.45288 9.592 (4.073–24.32) 4.993 <0.001

Echogenicity 3.612 0.40064 37.04 (17.51–85.03) 9.016 <0.001

Margin 16.788 1,197.84102 19,542 (3.851–3.937) 0.014 0.989

Calcifications 0.808 0.27094 2.242 (1.338–3.890) 2.981 0.003

Halo thickness >2 mm 3.369 0.80714 29.03 (6.085–146.9) 4.174 <0.001

TGAb 0.003 0.00159 1.002 (0.999–1.005) 1.722 0.085

TG 0.003 0.00093 1.003 (1.001–1.005) 3.651 <0.001

TSH 0.09 0.04634 1.093 (1.003–1.266) 1.936 0.053

T3 −1.236 0.84061 0.290 (0.053–1.470) −1.47 0.142

TGAb, thyroglobulin antibody; TG, thyroglobulin; TSH, thyroid-stimulating hormone; T3, triiodothyronine; SE, standard error; OR, odd ratio; 
CI, confidence interval; B, regression coefficient. 

and/or vascular invasion in surgically resected specimens. 
Therefore, the preoperative differential diagnosis of benign 
and malignant FNs remains challenging. In this study, 
seven ML algorithms were developed based on clinical 
parameters and ultrasound features. Further comparative 
analysis showed that the XGBoost model achieved the 
best performance in the validation set, and this model 
was selected to predict the benign and malignant nature 

of thyroid follicular tumors. Subsequently, automatic 
parameter tuning and internal cross-validation were 
employed to optimize the accuracy and clinical validity of 
the model. Additionally, the model was explained using the 
SHAP interpretability approach. The XGBoost prediction 
model found that several risk factors for malignant 
thyroid follicular tumors, including echogenicity, TGAb, 
echotexture, composition, T3, age, TG, margin, TSH, 
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Figure 3 Diagnostic performance of seven machine-learning algorithms for predicting benign and malignant thyroid follicular tumors. (A,B) 
AUCs of seven machine-learning algorithms were evaluated in the training cohort (A) and validation cohort (B). (C,D) Calibration curves 
of seven machine-learning algorithms were assessed in the training cohort (C) and validation cohort (D). (E,F) DCAs of seven machine-
learning algorithms for predicting benign and malignant thyroid follicular tumors were evaluated in the training cohort (E) and validation 
cohort (F). DT, decision tree; AUC, area under the curve; KNN, k-nearest neighbour; LGBM, light gradient boosting machine; LM, 
logistic regression model; RF, random forest; SVM, support vector machine; XGBoost, extreme gradient boosting; DCA, decision curve 
analysis.
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calcifications, and halo thickness >2 mm, were the most 
critical predictors of FTC.

Previous studies (18,19) on thyroid follicular tumors 
have suggested that the internal echogenicity of the 
nodules has diagnostic value in distinguishing benign from 
malignant thyroid follicular tumors. FTC is generally more 
hypoechoic than FTA, while FTA tends to have greater 
isoechoicity. A recent study (6) on the risk stratification 
system for thyroid follicular tumors reported that nodal 
hypoechoicity is associated with an increased malignancy 
risk in cases where thyroid fine-needle aspiration is 
suggestive of follicular tumors, consistent with our study 
findings. A multicenter Korean study (20) showed that more 
than 50% of follicular tumors have a solid component. 
Although follicular thyroid lesions may present with similar 
structural growth patterns, FTAs typically exhibit a normal 
follicular growth pattern, whereas FTCs usually display 
a parenchymal/trabecular growth pattern. This finding 
potentially explains the echogenic heterogeneity within 
these tumors. Further, the echogenic heterogeneity in the 

tumors could be attributed to necrosis or hemorrhage in 
FTC.

In the XGBoost prediction model, TG and TGAb levels 
were considered crucial features for distinguishing between 
benign and malignant thyroid follicular tumors. TG is a 
specific protein produced by the thyroid gland. However, 
the lack of specific serum TG values for establishing the 
etiological diagnosis of thyroid diseases has hindered 
the general application of preoperative serum TG levels 
as a criterion in the clinical diagnosis of thyroid cancer. 
Nevertheless, serum TG levels are a critical indicator 
for detecting residual, recurrent, or metastatic tumors in 
patients after surgery (21). Additionally, previous studies 
(22,23) have revealed that preoperative serum TG levels 
are significantly elevated in patients with FTC and that 
these levels increase dramatically according to follicular 
carcinoma severity. In the case of suspected follicular 
tumors, preoperative TG levels are highly specific in 
predicting thyroid cancer. Furthermore, elevated TG 
concentration may indicate the early tearing of the lesion 

Table 3 Comparison of prediction performance of the seven machine learning models in the training and validation sets

Variables AUC Accuracy Sensitivity Specificity PPV NPV Precision Recall F1

Training cohort

LM 0.974 0.929 0.925 0.931 0.881 0.957 0.881 0.925 0.902 

LightGBM 0.977 0.948 0.915 0.967 0.939 0.954 0.939 0.915 0.927 

KNN 1.000 1.000 1.000 1.000 1.000 1.000 1.000 1.000 1.000 

SVM 0.970 0.921 0.924 0.872 0.878 0.872 0.878 0.924 0.878 

XGBoost 0.996 0.980 0.980 0.981 0.966 0.989 0.966 0.980 0.973 

RF 1.000 1.000 1.000 1.000 1.000 1.000 1.000 1.000 1.000 

DT 0.911 0.920 0.910 0.925 0.860 0.953 0.860 0.910 0.884 

Validation cohort

LM 0.963 0.876 0.930 0.857 0.697 0.857 0.697 0.930 0.797 

LightGBM 0.959 0.904 0.860 0.919 0.790 0.949 0.790 0.860 0.824 

KNN 0.956 0.899 0.860 0.913 0.778 0.948 0.778 0.860 0.817 

SVM 0.961 0.882 0.656 0.871 0.884 0.716 0.884 0.656 0.751 

XGBoost 0.969 0.917 0.930 0.913 0.791 0.974 0.791 0.930 0.855 

RF 0.959 0.881 0.825 0.901 0.746 0.936 0.746 0.842 0.825 

DT 0.886 0.858 0.691 0.933 0.824 0.870 0.824 0.691 0.752 

AUC, areas under the curve; PPV, positive predicted value; NPV, negative predicted value; F-score, comprehensive evaluation index; 
LM, logistic regression model; LightGBM, Light Gradient Boosting Machine; KNN, k-nearest neighbor; SVM, support vector machine; 
XGBoost, eXtreme Gradient Boosting; RF, random forest; DT, decision tree.
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Figure 4 The heatmap of the confusion matrix for XGBoost. The heatmap of the confusion matrix for XGBoost predicting benign and 
malignant thyroid follicular tumors were evaluated in the training cohort (A) and validation cohort (B). XGBoost, extreme gradient boosting.
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Figure 6 SHAP summary plots for the XGBoost model. (A) SHAP feature importance plot for the XGBoost model. (B) Scatterplot of 
SHAP feature density for the XGBoost model. Each row represents a feature, and the horizontal coordinate indicates the SHAP value. 
A dot in the plot denotes a sample, with red dots indicating higher variable values and blue dots implying lower variable values. TGAb, 
thyroglobulin antibody; TT3, total triiodothyronine; TG, thyroglobulin; TSH, thyroid-stimulating hormone; SHAP, SHapley Additive 
ExPlanations; XGBoost, extreme gradient boosting.

Figure 7 SHAP force plots for the XGBoost model. Stacked SHAP interpretations cluster by similarity. Each position on the X-axis is a 
sample of the data. Red represents a positive contribution to the forecast results; blue represents a negative contribution to the forecast 
results. The Y-axis is the sum of the SHapley values (each feature value × the SHAP value for each feature). SHAP, SHapley Additive 
ExPlanations; XGBoost, extreme gradient boosting.

capsule, which leads to TG entry into the bloodstream. 
TGAb is an immunoglobulin that specifically binds to 
TG, the target antigen of TGAb. Similar to TG levels, 
persistently high or escalating levels of TGAb after surgery 
often indicate persistent disease or a higher recurrence risk.

FTC exhibits peak incidence rates in two age groups, 
i.e., 45–49 and 60–70 years (24). Moreover, the median age 
of patients with FTC is significantly higher than that of 

those with FTA (18). In contrast, another study observed 
no significant differences in the mean age between the 
patients with FTC and those with FTA (19). In the current 
study, the mean age of the patients in the FTC group was 
52.0 [37.0, 62.0] years. Based on all these findings, the 
significance of age in the preoperative diagnosis of follicular 
thyroid tumors is still debated.

The definition of margin irregularity is ambiguous in the 
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Figure 8 SHAP single-sample feature impact plot for the XGBoost model. F(X) is the log ratio for each observation. Red features signify an 
increased malignancy risk, while blue features suggest a decreased malignancy risk. The arrow length helps to visualize the extent to which 
the prediction is affected, with a longer arrow indicating a greater impact. TSH, thyroid-stimulating hormone; T3, triiodothyronine; TGAb, 
thyroglobulin antibody; TG, thyroglobulin; SHAP, SHapley Additive ExPlanations; XGBoost, extreme gradient boosting.

context of thyroid nodules. Nevertheless, a prior study (25) 
has suggested that margin irregularity may be an indicator 
to differentiate FTA from FTC. Another investigation 
demonstrated (26) a significant difference in the tumor 
margins between FTA and FTC. In terms of the mechanism 
related to this feature, localized cancer cells repeatedly 
break through the thyroid capsule in FTC, which is then 
covered with fibrous tissue. The deeper invasion of the 
cancer cells into the surrounding normal tissue further leads 
to irregular nodular margins on the ultrasonogram.

Microcalcifications are considered a typical sign 
of thyroid malignancy, whereas gross calcifications or 
macrocalcifications are more prevalent in benign nodules. 
An earlier study (27) proposed that calcification on 
ultrasound images is an independent predictor of FTC. 
Conversely, other research (28) indicated that calcifications 
with a comet tail sign in the cystic component were 
predictors of benign thyroid nodules, while calcifications 
in the solid component were not absolute predictors of 
benign thyroid nodules. Therefore, calcification foci with 
a comet tail sign may be useful in identifying the benign 
or malignant nature of thyroid nodules. However, the 
diagnostic value of calcification in FTC requires further 
exploration.

An additional approach in differentiating FTA from 
FTC involves the detection of the “halo”. The halo or 
hypoechoic margin surrounding the nodule is histologically 
composed of the nodal capsule or pseudocapsule, fibrous 

connective tissue, compressed thyroid parenchyma, and 
chronic inflammatory infiltrate. Thus, identifying a halo via 
needle biopsy may be valuable in the differential diagnosis 
of follicular lesions (7).

There are several limitations in this study that should 
be considered. First, this study had a retrospective design. 
Second, we only included patients who had undergone 
total thyroidectomy with complete follow-up. Therefore, 
selection bias may have occurred. Finally, elastography 
and rheography were not included in the ultrasound 
characteristics.

Conclusions 

In conclusion, our study developed seven ML models based 
on the preoperative clinical parameters and ultrasound 
features of patients with follicular thyroid tumors. 
Additionally, an optimal model was validated and explained 
using the SHAP interpretability method. The model 
showed high clinical applicability and potential to aid in the 
preoperative differentiation between benign and malignant 
thyroid follicular tumors.
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