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Introduction

Osteoporosis is characterized by a decreased bone 
mass and quality resulting in an increased fracture risk. 
Quantitative imaging methods are of utmost importance 
in the diagnosis and follow-up of treatment effects in 
osteoporosis. The World Health Organization’s (WHO) 
fracture risk assessment tool (FRAX®) is one of the well-
established clinical risk score estimators enabling physicians 
to calculate the future risk of osteoporotic fractures in 
patients (1). Prior fracture (2-4) and bone mineral density 
(BMD) as quantitative parameters (5) are particularly strong 
predictors of future osteoporotic fractures. Therefore, 
when this information is available, these data can be 
entered into FRAX® along with epidemiological and 

clinical parameters to guide individualized therapeutic 
decision-making for patients. A high predicted risk justifies 
preventative treatment with anti-osteoporotic drugs. 
Although algorithms such as FRAX® represent major 
advances in clinical practice, clinicians should be aware 
that these calculations do not accommodate all known 
risk factors and there are more fracture determinants 
remaining to be discovered (6-8). Although FRAX® and 
the Garvan Fracture Risk Calculator provide estimates 
of which patients will sustain a fracture, these algorithms 
still underestimate observed fracture risk in at least half 
of patients (9). Also, there may be value in examining 
longitudinal follow-up assessments within a cohort over 
time, which is more feasible with objective quantitative 
measures. Ideally, we would like to expand our current 
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diagnostic panels by more advanced imaging to facilitate 
precision medicine and, subsequently, further improve 
the customization of healthcare tailored to the individual 
patient. Experimental assessments for osteoporosis are 
being developed in the research setting by either post-
processing of radiographic or DXA data or involving 
more advanced imaging modalities such as computed 
tomography (CT) and magnetic resonance imaging (MRI) 
to appraise bone microarchitecture or bone geometry (i.e., 
biomechanical characteristics of a bone’s size and shape) 
(10-16). This review discusses quantitative imaging methods 
for osteoporosis as applied in clinical care and scientific 
research.

Radiography

Unlike qualitative assessments of radiographs mostly applied 
for the diagnosis and follow-up of fractures, the application 
of quantitative radiographic methods in osteoporosis is 
declining, because these techniques have largely been 
replaced by DXA, as will be discussed below. Nevertheless, 
this paragraph will provide a brief summary of several 
techniques available. It is well-known that osteoporosis in 
appendicular long bones such as the proximal femur can be 
evident by cortical thinning and alterations of the trabecular 
pattern, which can be classified semi-quantitatively using for 
example the Singh index (17). Early X-ray based techniques 
for quantification of bone loss include radiogrammetry 
and radiographic absorptiometry. Radiogrammetry is a 
measurement of the cortical thickness of long bones, which 

has been used particularly in peripheral sites such as in 
the metacarpals (18). In radiographic absorptiometry, an 
aluminium phantom is placed next to the region of interest 
during X-ray acquisition. Subsequently, BMD is calibrated 
relative to the density of the phantom (19). Pulkkinen et al.  
extracted several geometrical and trabecular parameters 
from plain pelvic radiographs and related these to hip 
fracture risk (20). It has also been shown that bone density- 
and structure-related parameters can be calculated from 
radiographs of the proximal tibia in cadavers (21) and in 
subjects with osteoarthritis (22). 

BMD by dual-energy X-ray absorptiometry (DXA)

Clinical measurement of BMD by DXA is currently the 
most widespread method to diagnose osteoporosis and 
evaluate the risk of fracture. DXA at the lumbar spine and 
femoral neck (Figure 1A,B) to measure BMD is nowadays 
a routine investigation in osteoporosis. DXA-measured 
BMD accounts for 60–70% of the variation in bone 
strength (23) and each standard deviation (SD) decrease 
of BMD is associated with a two-fold increase in fracture 
risk (1,24). Other skeletal sites or modes of measurement 
which are used more frequently in research settings are 
for example: total body (Figure 1C), (distal) radius, and 
skull. The BMD measured is measured in g/cm2 but 
most commonly is expressed as the T-score, the number 
of SDs above or below the mean for a healthy 30-year-
old adult of the same sex and ethnicity as the patient. 
Subsequently, osteoporosis is defined as a T-score ≤−2.5 

Figure 1 Example DXA images of the lumbar spine (A), femoral neck (B) and total body (C) with corresponding regions of interest in which 
BMD is measured. DXA, dual-energy X-ray absorptiometry; BMD, bone mineral density.
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and osteopenia as a T-score ≤−1.0 at any skeletal site. No 
upper reference value has been proposed, as the adverse 
health effects of having an increased BMD have been 
poorly studied. Intriguingly, the far majority of fractures 
occur in individuals without an abnormal clinically assessed  
BMD (24). Sensitivity and specificity for incident 
osteoporotic fractures are limited with an area under 
the ROC curve of 0.63 (25,26), as most fractures in the 
population distribution occur in mildly to moderately 
decreased BMD, i.e., osteopenia, or even at normal BMD 
values (24).

Moreover, several diseases are paradoxically known to be 
associated with a higher fracture risk despite a higher BMD, 
such as diabetes-related bone disease and degenerative 
disease (27,28). Theoretically, an individual with 5% higher 
femoral neck BMD would have a 10% decrease in fracture 
risk. Nonetheless, it has been shown that individuals 
with type 2 diabetes have 69% higher fracture risk than 
those without diabetes despite having higher BMD at the 
femoral neck and lumbar spine. Schwartz and colleagues 
established that the World Health Organization’s fracture 
risk assessment tool (FRAX®) underestimates osteoporotic 
fracture risk in individuals with diabetes (29); this is why 
diabetes as a risk factor should be considered for inclusion 
in future iterations of FRAX® (30). Intriguingly, subjects 
with lumbar disc degeneration (LDD) have systematically 
higher BMD at the lumbar spine, femoral neck, skull, and 
consequently, at the total body measurement. In spite of 
this systematically higher BMD, persons with LDD are at 
higher risk of osteoporotic fractures, particularly males in 
whom LDD seems more severe (31). These observations 
suggest that more parameters are needed to define 
osteoporosis and obtain a better fracture risk assessment.

DXA—additional parameters

In recent years, several additional quantitative parameters 
have been described that can be extracted from existing 
DXA imaging data. For example, hip structural analysis 
can be performed on DXA images (32-34). Parameters 
that can be derived include cross-sectional area (CSA), 
cross-sectional moment of inertia (CSMI), and the section 
modulus, and using appropriate assumptions, one can 
estimate endocortical width and the cortical thickness (35).  
CSMI, as an estimation of the resistance of bone to 
bending, is calculated according to the formula: ([periosteal 
diameter/2]4 − [medullary diameter/2]4) × π/4 (36). Section 
modulus is calculated as CSMI divided by the greater of the 

measured distances from the center of mass to the medial 
or lateral surface, and is a measure of bending and torsional 
strength (35). 

The trabecular bone score (TBS) seems a promising 
quantitative imaging parameter in osteoporosis, to some 
extent independent of DXA-BMD (37). Whereas DXA-
BMD is a measure of bone quantity, TBS provides 
information on the biomechanics and microarchitecture 
which reflects trabecular structure (Figure 2). It is a grey-
level texture measurement that utilizes an experimental 
variogram of two-dimensional (2D) projection images by 
measuring the rate of local variation in grey levels within 
2D projection images to approximate three-dimensional 
(3D) bone microarchitecture (38). TBS is less expensive 
and more easily accessible than CT or MRI for wide-spread 
clinical implementation or as an outcome in large research 
studies. The very first TBS reports showed applications for 
the prediction of fracture risk in osteoporosis (39-41), have 
added value in those individuals with bone density outside 
of the osteoporosis range (42) and monitoring of treatment 
effects (43,44), and similarly, TBS may find an application in 
other conditions such as primary hyperparathyroidism (45),  
hypercortisolism (46), rheumatoid arthritis (47), and 
diabetes-related bone disease (48). A major advantage is 
that it can be derived from DXA scans using dedicated 
post-processing software.  A recent meta-analysis 
demonstrated that the hazard ratio per 1 SD decrease in 
TBS increases by 1.44 for major osteoporotic fractures and 
seems of additional predictive value independent of the 
current FRAX model (49). TBS may be recognized as an 
independent endophenotype of osteoporosis and may have 
potential to guide clinical decision making similar to DXA-
BMD in the future, which again would justify investigations 
into the determinants of TBS.

Quantitative ultrasound (QUS) 

Over the past 30 years, ultrasonographic analysis, termed 
QUS, has been developed as a method of determining 
material properties of a variety of structures including the 
in vivo assessment of bone structure and fragility (50). In 
general, low-frequency ultrasonic velocity measurements 
are applied to the calcaneus without the use of ionizing 
radiation. Alternative peripheral sites to which QUS has 
been applied are the radius, tibiae and phalanges (51). 
Depending on the site of measurement, either of the two 
types of QUS is applied, i.e., horizontal transmission on 
the cortical layer of the bone, or longitudinal transmission 
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measuring the speed of sound (52). The two main 
parameters are velocity of sound (VOS) and broadband 
ultrasound attenuation (BUA), and additional parameters 
obtained are stiffness index (SI), quantitative ultrasound 
index (QUI), amplitude-dependent speed of sound (AD-
SOS), and estimated BMD (eBMD) (18,52). The speed 
of sound refers to the division of transmission time of the 
sound waves by the length of the body part studied in meter 
per second (m/s) (52). Broadband attenuation of sound 
refers to the energy which is absorbed by the tissues through 
which the sound waves are transmitted relative to the signal’s 
frequency expressed in dB/MHz (52). 

A meta-analysis by Moayyeri et al. showed that QUS 
parameters of the heel are associated with risk of hip 
fracture with relative risks per 1 SD decrease of 1.69 (95% 
CI: 1.43–2.00) for BUA, 1.96 (95% CI: 1.64–2.34) for SOS, 
2.26 (95% CI: 1.71–2.99) for SI and 1.99 (95% CI: 1.49–
2.67) for QUI (53). Analyses in the Canadian Multicentre 
Osteoporosis Study have been described for three 
alternative skeletal sites (distal radius, tibia, and phalanx) 
with a follow-up duration of 5 years (54). 

Computed tomography (CT)

There is still a need for additional and more refined 

radiological imaging investigations for osteoporosis such as 
assessments based on CT. CT is more costly and requires 
more ionizing radiation than DXA and conventional 
radiography, but has numerous advantages as reviewed 
below. It is believed that there are skeletal-site specific 
effects for fracture risk including different roles for cortical 
versus trabecular bone, justifying efforts to separately 
analyze these entities (55). Quantitative computed 
tomography (QCT) yields volumetric 3D measurements 
by utilizing low dose scan protocols on a standard CT 
scanner or by performing high resolution-peripheral 
quantitative computed tomography (HR-)pQCT with 
the use of a dedicated extremity scanner (56). This allows 
more sophisticated analysis of cortical and trabecular bone, 
the imaging of trabecular structure and the application 
of finite element analysis (FEA) to model bone strength 
biomechanically (57-59). pQCT is also used in exploratory 
analyses for muscle, measuring for instance muscle CSA, 
muscle density, and intramuscular adipose tissue, which may 
be related to sarcopenia (60). In addition to the disadvantage 
of ionizing radiation, the analysis of CT imaging data can 
be complex and requires specialized software.

QCT is most commonly applied to the spine, and typically 
lumbar vertebral elements are evaluated (Figure 3A,B);  
Other skeletal sites include the hip (Figure 3C,D,E)  

Figure 2 iDXA images of the spine, L1–L4 level of two individuals (top and bottom row); while LS-BMD values are the same for both, LS-
TBS in the second subject is clearly lower compared to the first subject, corresponding to deteriorated microarchitecture of the vertebral 
body. LS-TBS value is derived by an algorithm that analyzes the spatial organization of pixel intensity, which in turn corresponds to the 
differences in the X-ray absorption power of an osteoporotic bone versus a normal trabecular pattern. (Images partly adapted from http://www.
medimapsgroup.com/product/technology/).

LS-BMD=0.836 gr/cm2 LS-TBS=1.447

LS-TBS=1.187LS-BMD=0.836 gr/cm2

Good microarchitecture

Poor microarchitecture
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Figure 3 Quantitative computed tomography (QCT) of the lumbar spine and the hip. Source image obtained in the lumbar spine of a  
65-year-old female (A), with definition of region of interest in vertebra L3 yielding a BMD (68.4 mg/cc) in the osteoporotic range according 
to the guidelines of the American Board of radiologists (B). Source image obtained in the hip of a 76-year-old female (C), with definition 
of regions of interest in the left femoral neck (D) and subsequent bone mineral density (BMD) analysis showing normal bone densities (E). 
(Images courtesy of Thomas Link, MD PhD, University of California at San Francisco, Dept. of Radiology and Biomedical imaging).

and the forearm (61). Simply measuring X-ray attenuation 
expressed as Hounsfield units (HU) to derive BMD has 
been evaluated (62,63), but ideally the tissue density of 
the analyzed volume is calibrated to units of equivalent 
concentration of a hydroxyapatite phantom in g/cm3 yielding 
the BMD values (64). Volumes of interest are defined 
and a distinction is made between cortical, trabecular 
and integral volumes (65). QCT-based vertebral bone 
measurements are associated with vertebral fractures (66,67), 
and may outperform DXA-based measurements (68).  
Several studies have been performed in the proximal femur 
showing a difference of FEA parameters between hip 
fracture and vertebral fracture cases versus controls (69-71). 

HR-pQCT is applied to the tibia or (distal) radius with 
simultaneous scanning of a hydroxyapatite calibration 
phantom, obtaining measurements within trabecular and 

cortical compartments (12). In cortical bone, standard 
analysis comprises cortical thickness (Ct.Th) in mm, cortical 
porosity (Ct.Po) as a percentage relative to the cortical pore 
volume (Ct.Po.V), and cortical bone volume (Ct.BV) in mm3 
(72,73). It has been shown that with increasing age most bone 
loss is cortical due to predominantly intracortical remodelling 
(74). This results in increased spatial distribution, number 
and size of pores (75). In trabecular bone, standard analysis 
includes quantifying structural properties of trabecular bone, 
such as bone volume fraction (BV/TV), which is derived 
from trabecular BMD (Tb.BMD), average number of 
trabeculae (Tb.N), average trabecular thickness (Tb.Th), and 
average trabecular separation (Tb.Sp) (76). Associations have 
been demonstrated for different HR-pQCT measurements 
at the tibia and radius for vertebral and any-type of fractures 
(77-81). 
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Volumetric assessments with HR-pQCT also have added 
value in complex phenotypes such as diabetic bone disease. 
DXA-based studies showed that type 2 diabetes patients 
with worse glycemic control have paradoxically higher 
BMD and thicker femoral cortices in narrower bones in 
spite of a higher fracture risk (82). A study using HR-pQCT 
reported that the cortical porosity in type 2 diabetic patients 
was up to twice that of controls at the radius (73). This 
supports the hypothesis that an inefficient redistribution 
of bone mass, accumulation of microcracks and cortical 
porosity reflecting impaired bone repair give rise to 
fragility in apparently “strong” bones on 2D assessments 
in inadequately controlled diabetes. Subsequently, Patsch 
et al. showed in a four-group comparison of type 2 diabetes 
patients with and without fragility fractures to controls with 
and without fractures that cortical porosity is specific to 
those type 2 diabetes patients that fracture (83). Moreover, 
an innovative investigation utilizing in vivo microindentation 
testing of the tibia showed that patients with type 2 diabetes 
have reduced serum markers of bone turnover and lower 
bone material strength than controls (84). In this same 
study the average glycemic level over the previous ten years 
was negatively correlated with bone material strength (84). 
It would be desirable to investigate these phenomena with 
(pQ)CT on a larger population scale. Medical evidence is 
still too limited to warrant large-scale implementation of 
CT in clinical practice at this point (85,86). In the future, 
diagnostics and therapeutics may separately target cortical 
versus trabecular bone compartments.

MRI

High-resolution (HR) MRI may help in directly or 
indirectly assessing the structure of bone (87). MRI is 
relatively more costly and time-consuming, and produces 
a lower spatial resolution than CT. However, a major 
advantage is that it does not require ionizing radiation. 
Furthermore, MRI has great potential for detailed 
characterization of bone at the micro-architectural and 
molecular level, as reviewed below.

Histomorphometry is the gold standard for assessing 
bone, because it is the only method for the direct analysis 
of bone cells and their activities (88). Yet, even in the 
clinical setting bone biopsies are rarely used to diagnose 
and manage patients with osteoporosis, because of 
their invasiveness (89). Molecular imaging, the in vivo 
characterization and measurement of biological processes at 
the cellular and molecular level, is being hailed as the next 

great advance for imaging (90). Technical improvements 
in MRI are necessary for human application, particularly 
with regard to maximizing signal-to-noise ratio and spatial 
resolution within clinically acceptable scan times. This is a 
prerequisite for the introduction into large-scale population 
imaging studies and clinical practice in the future to aid 
the analysis of a large variety of musculoskeletal disorders 
including osteoporosis. 

Inferences can be made about trabecular bone structure 
from HR MRI. Osteoporosis patients with and without 
fractures compared to individuals without osteoporosis 
have been evaluated for different MRI-derived texture 
parameters of bone, and differences between these groups 
were demonstrated at the distal radius and calcaneus (91-93). 

One of the few MRI-based studies in diabetic bone 
disease reported greater trabecular heterogeneity in subjects 
with type 2 diabetes mellitus than in healthy controls (94). 
More MRI studies in diabetic bone disease are necessary 
given the recent insights regarding the impact of diabetes 
on bone quality.

Indirect MRI methods used for evaluation of the bone 
structure include MRI spectroscopy aiming to visualize 
the osseous structure or the changes in the structure at a 
molecular level without the need of contrast agents. Proton-
magnetic resonance spectroscopy (1H-MRS) is considered 
the MRI gold standard for bone marrow fat quantification, 
and point-resolved spectroscopy (PRESS) and stimulated 
echo acquisition mode (STEAM) single-voxel 1H-MRS 
pulse sequences have been commonly used for the 
characterization of the fat spectrum in the bone marrow at 
the pelvis, spine, and hip (95). Images are acquired using 
dedicated coils to detect and quantify frequency signals of 
water, lipids, and other metabolites, expressed as universal 
ppm (parts per million) units with evaluation of areas 
under the peaks. In addition to qualitative interpretation, 
(semi-)quantitative analysis is in use such as scaling of 
ratios to unsuppressed water or to noise (96,97). Increased 
emphasis on quantitative assessment instead of qualitative 
dichotomization of metabolite content by MRS has been 
advocated (98). Measurement quality and awareness of 
possible artifacts are important in MRS (99), and adequate 
distinction of the molecular peaks and regions of interest 
can be technically challenging (95); corrections can be 
applied to minimize confounding effects (100). 

Direct methods include chemical shift imaging, diffusion-
weighted imaging, and perfusion MRI. Chemical shift 
imaging aims to separately detect protons that process with 
similar yet slightly different frequencies, namely, those of 
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water and fat (101). A study evaluating the reproducibility 
of signal intensity index (SII) measurements in healthy 
volunteers with MRI systems from different vendors and 
with different field strengths found intra- and inter-observer 
correlation coefficients ranging from 0.82 to 0.98 (102). 
In osteoporosis, the few studies performed until now have 
primarily assessed the bone marrow (103-105). Diffusion-
weighted imaging measures the Brownian motion of 
water at a microscopic level and provides information on 
cellularity and cellular integrity expressed in the apparent 
diffusion coefficient (ADC) (101). A review article discussing 
diffusion-weighted imaging in musculoskeletal radiology 
has been published in this journal before (106). Also for 
diffusion-weighted imaging, most studies in osteoporosis 
have focused on the bone marrow (107-109). A few studies 
reported diffusion-weighted MR imaging parameters to be 
associated with BMD (110,111). One study has examined 
ADC values before and after vertebroplasty and found that 
high preoperative ADC was predictive of the occurrence 
of new compression fractures (112); replication studies are 
necessary. Different methods are used for perfusion imaging, 
of which the dynamic contrast-enhanced MRI (DCE-
MRI) technique is the most commonly implemented (101). 
Possible analytical approaches to DCE-MRI data include 
time-intensity curves, enhancement patterns over time and 
pharmacokinetic modeling approaches to quantify blood flow. 
Quantitative outcomes of diffusion-weighted imaging and 
dynamic contrast-enhanced MRI have been reported to be 
different between acute osteoporotic vertebral fractures from 
normal appearing vertebrae (113). Furthermore, maximum 
enhancement [E(max)] and enhancement slope [E(slope)] 
are significantly decreased in osteoporosis in at least the 
femurs and vertebrae (114-118). Quantitative parameters 
of blood flow were studied with DCE-MRI in osteoporotic 
patients with acute vertebral fracture compared to a control 
group (119). Plasma flow (mL/100 mL/min) quantifies the 
volume of plasma flowing through the region of interest 
per unit time; plasma volume (mL/100 mL) corresponds to 
the volume of the plasma per tissue volume in the region of 
interest and extraction flow (mL/100 mL/min) characterizes 
the net flow between the plasma and the interstitial space 
(extracellular and extravascular space). These perfusion 
parameters were decreased in normal-appearing vertebral 
bone marrow of osteoporosis patients compared to controls, 
but they were found to increase in acute vertebral fractures.

A shortcoming of MRI is that, due to its short T2 
relaxation time, no signal from cortical bone is acquired 
with conventional MRI pulse sequences (120). Hence, 

sequences with ultrashort echo time are needed to capture 
signals of those tissues which exhibit short T2 (e.g., cortical 
bones, tendons, ligaments, menisci and myelin) (121). This 
may be overcome with novel ultrashort or zero time to echo 
(UTE/ZTE) MRI techniques (Figure 4). 1H, being the most 
abundant isotope of hydrogen, is present in bone water and 
these signals can be acquired by aforementioned techniques. 
The 1H signal arises from different pools, distinguishable 
by their relaxation times. Relatively free water within large 
pores has the longest T2 relaxation times; water in small 
pores has greater surface to volume ratios, experiences 
greater surface relaxation and thus has a shorter T2 
relaxation time (122). Protons bound to bone matrix are 
more tightly restricted in movement and have shorter T2 
relaxation times. A variety of UTE pulse sequences have 
been developed capable of depicting signal from different 
water pools in bone (Figure 5) and quantitating the amount 
of water by means of T2* relaxometry. The field is making 
steps in translating experience from animal and cadaveric 
experiments to in vivo human studies (123-126). As bone 
water is present mainly in the pore system of bone, this 
parameter provides a surrogate measure for porosity, 
and it has been demonstrated that cortical bone water 
concentration is greater in postmenopausal women than in 
premenopausal women (127).

Bone marrow fat imaging

Bone marrow fat may be affected by diseases such as 
osteoporosis and diabetic bone disease (128). The bone 
marrow fat volume can be measured (129). Further, bone 
marrow fat composition can be examined, regarding 
presence and types of hydrogen bonds, where unsaturated 
fats contain at least one double bond and saturated fats have 
the maximum number of hydrogens bonded to carbons. 
This can be evaluated with MRS, dual energy QCT 
(130,131), T1-weighted and occasionally T2-weighted  
MRI (132). The average coefficient of variation for vertebral 
bone marrow fat fraction on spectroscopy has been reported 
at 1.7% (97). The correlation between the marrow fat 
fraction obtained with MRS and that obtained with dual-
energy CT has been reported as high as r=0.91 (133).  
Vertebral marrow fat content is significantly increased 
in osteoporosis compared to osteopenia or normal bone 
density as evaluated by higher fat fractions on MRS and 
lower ADC by diffusion weighted MR (134). An ancillary 
study in the population-based Age Gene/Environment 
Susceptibility (AGES) cohort found that higher marrow fat 
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Figure 4 MRI of a cadaveric forearm. Cortical bone produces a signal void on a conventional fast-spin echo (FSE) sequence (A), while signal 
is detected from cortical bone with the use of an inversion recovery ultrashort echo time (IR UTE, TR/TI 300/120 ms) pulse sequence. 
MRI, magnetic resonance imaging. (Images courtesy of Jiang Du, PhD, University of California at San Diego, Dept. of Radiology).

Figure 5 Axial (1st row) and sagittal (2nd row) imaging of a cortical bone sample with 2D FSE (A,G), 2D GRE (B,H), 2D UTE (C,I), 2D IR-
UTE (D,J), 3D UTE (E,K) and 3D IR-UTE (F,L) sequences. Free water in the Haversian canals is detected by both FSE, 2D and 3D UTE 
sequences. Both 2D and 3D IR-UTE show a relatively uniform bright signal, consistent with only bound water being detected. GRE shows 
little signal for both bound and free water in cortical bone. The bright signal in (B) corresponds to marrow fat (arrow). (Images courtesy of 
Jiang Du, PhD, University of California at San Diego, Dept. of Radiology).

BA
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assessed by MRS correlated with lower trabecular BMD in 
women and higher marrow fat was associated with prevalent 
vertebral fracture in men (135). Validation of these results 
should be pursued.

Dixon quantitative chemical shift MRI (QCSI) relies 

on phase shifts created by fat-water resonance frequency 
differences to separate water from fat (136). Studies 
have reported good reproducibility for Dixon QCSI for 
measuring the bone marrow fat fraction in the L1–L4 
vertebral bodies and this measurement seems independent 
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of DXA-BMD (137). 
A small study in subjects with disuse osteoporosis has 

demonstrated morphological changes in the bone marrow 
at the lower limb such as reinforcement of trabecular lines, 
subchondral fat content, signal intensity and vasculature (138).  
Further quantitative texture analysis on this subject in larger 
samples may be worthwhile.

Combined QCT and MRS studies have demonstrated 
that the prevalence of fragility fractures is associated with 
lower unsaturation levels and higher saturation levels of 
bone marrow fat, in which the participants with diabetes 
with fractures have the lowest marrow unsaturation and 
highest saturation (139). In contrast to controls without 
diabetes, higher mean vertebral bone marrow fat content 
is significantly correlated with visceral adipose tissue and 
HbA1C in persons with type 2 diabetes, representing worse 
metabolic profiles (140). The concept of high-saturated fat-
associated adipose inflammation and insulin resistance has 
been proposed; however, underlying molecular mechanisms 
remain to be elucidated.

Positron emission tomography (PET)

Application of PET/CT in the field of osteoporosis is still 
limited. In certain clinical fracture cases where CT and 
MRI images are inconclusive in differentiating benign 
from malignant etiologies, PET/CT can be acquired, 
which can also discover additional skeletal or extra-
skeletal metastases (141). The standardized uptake value 
(SUV), a dimensionless parameter, is commonly used as 
a relative measure of FDG tissue uptake with correction 
for the amount of injected FDG and the patient size (142). 
Further, bone fracture healing can be visualized by PET/
CT, but this has predominantly been studied in animal 
models (143-146). Zooming in further, in 18F-Fluoride 
PET scanning it is believed that PET intensity reflects 
the activities of osteoblasts and osteoclasts, and at least in 
animal experiments, microdamage can be detected (147). 
Regional bone perfusion and turnover studies with bone 
turnover markers as a reference have been performed 
comparing different skeletal sites in treatment-naïve and 
patients with osteoporosis on treatment with various anti-
osteoporotic agents (148-154). The long term precision 
reflected by the coefficients of variation (12.2–26.6%) and 
intraclass correlation (0.44–0.85) for 18F-Fluoride PET 
parameters has been reported to be equivalent to that 
observed for biochemical bone turnover markers (155). 
It has been hypothesized that PET/CT may be useful in 

atypical femoral fracture patients, but supportive research 
data is needed (156). 

No reports  on the ut i l izat ion of  PET/MRI in 
osteoporosis have been published to date. Neither has 
diabetic bone disease been studied with PET/MRI in 
humans; a small study comparing diabetic and healthy pigs 
found a significant inverse correlation between vertebral 
bone marrow glucose uptake and fat content (157).  
Nonetheless, the first PET/MRI studies to detect 
and characterize osseous metabolic abnormalities in 
osteoarthritis are being done where PET/MRI may detect 
metabolic abnormalities in subchondral bone, which appear 
normal on MRI (158). Development of MRI quantitative 
imaging techniques is an exciting area of research deserving 
further explorations. 

Vertebral fractures

The occurrence of fracture is without doubt the most 
important clinical outcome in osteoporosis. Vertebral 
fractures may go misdiagnosed as the clinical presentation 
can be aspecific. Moreover, as two thirds of vertebral 
fractures do not give clinical symptoms, these may be only 
detected on radiological imaging (159). Nevertheless, 
vertebral fractures increase the risk of new vertebral 
fracture up to five-fold and the risk of other fragility 
fractures two- to four-fold (160). Drugs available for the 
treatment of osteoporosis are highly effective, with the most 
potent bisphosphonate zoledronic acid reducing the risk of 
vertebral fractures by 76% and of non-vertebral fractures 
by 24% (161). Therefore, another valuable evaluation in 
osteoporosis is vertebral fracture assessment (VFA) on 
mostly lateral DXA or radiography (Figure 6). Vertebral 
fractures can be detected on other modalities such as CT or 
MRI as well. The differentiation between vertebral fractures 
of benign and malignant etiologies has been reviewed 
elsewhere (162). 

Fractures can be classified according to skeletal site 
and shape, and quantified according to the amount 
of height loss and the number of fractures. However, 
there is currently no gold standard for osteoporotic 
vertebral fracture diagnosis (163). Several radiological 
scoring methods exist, each using different criteria for 
diagnosing and grading fractures. These assessment 
methods for osteoporotic vertebral fractures including 
quantitative morphometry (QM) analyses have been 
reviewed extensively elsewhere (164,165). Frequently used 
are methods based on (semi) QM evaluating vertebral  
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height (166) or the algorithm-based qualitative (ABQ) 
method (167) mainly judging endplate integrity regardless 
of vertebral height reduction. Further work is needed to 
reveal which of the discordant cases are actually clinically 
relevant; evaluating the predictive ability of the different 
definitions with different relevant outcomes like future 
non-vertebral and vertebral fractures, and mortality are 
desirable. All vertebral fractures are deformities, but not 
all vertebral deformities are fractures. There are a number 
of differential diagnoses that have to be considered in 
individuals with vertebral deformities (168), such as 
Scheuermann’s disease and degenerative changes (167). 
Scheuermann’s disease is a form of osteochondrosis of 
the spine of unknown etiology characterized by increased 
posterior rounding of the thoracic spine in association with 
structural deformity of the vertebral elements (169,170).

Phenotype definition is a cornerstone of epidemiological 
research into vertebral fracture risk to prevent bias 
hampering discoveries (171-173). Moreover, merely 

measuring vertebral heights in clinical practice frequently 
leads to misdiagnosis of fracture in non-osteoporotic 
conditions including Scheuermann’s disease (174-176). 
Simultaneous assessment of vertebral heights together with 
endplate integrity may correctly differentiate these cases. 
One of the major advantages of software-assisted QM is the 
level of detail of the data recording (165). If more evidence 
supporting the ABQ method will be put forward, it will be 
worthwhile to explore if endplate integrity can be captured 
in software-assisted assessments based on computer-based 
morphometric recognition. In addition to improvement of 
the radiological vertebral fracture definition by itself, clearer 
criteria for non-fracture deformities differential diagnosis 
are necessary. A clear and correct fracture definition is 
crucial, because vertebral fractures form an integral part of 
clinical decision making to initiate anti-osteoporotic drugs 
or to switch to more potent and expensive agents in case of 
fractures under current therapy. 

Conclusions

This review has summarized quantitative imaging methods 
in osteoporosis, where current clinical practice most 
frequently utilizes assessments from DXA and conventional 
radiography. Correct interpretation is crucial as treatment 
decisions are taken based on these outcomes. Further 
technical developments are ongoing to expand the richness 
of data obtained from these modalities. Finally, potentially 
novel application of quantitative parameters from 
ultrasound, CT, MRI and PET are underway in clinical and 
research settings. 
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