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Introduction

In many cardiac magnetic resonance imaging (CMR) 
applications, the data acquisition needs to be synchronized 
with the cardiac motion. Typically, electrocardiogram 
(ECG) is used to monitor the cardiac motion and control 
the timing of data acquisition. This is commonly referred as 
ECG gating or ECG triggering. For a normal ECG signal, 
the QRS complex has the highest amplitude peak and 
sharpest upstroke, which is often used as cardiac triggers (1).  
However, the ECG based cardiac gating is associated 
with several potential issues. First, the ECG signal is 
sometimes interfered by the time varying magnetic field 

of the MRI system. Such interferences can be severe at 
higher fields and eventually cause degraded image quality 
due to synchronization errors (2-5). Furthermore, there 
are applications when ECG signal is difficult to acquire 
or even inaccessible, such as fetal cardiac imaging (6,7). 
As an alternative to ECG, self-gating uses intrinsic MRI 
signal to detect cardiac motion and synchronize the timing 
of imaging events. It provides direct measurement of the 
mechanical motion instead of the electrical signal as is 
the case with ECG, and hence does not suffer from the 
aforementioned issues of ECG. It is potentially a valuable 
alternative approach for fetal cardiac motion gating in fetal 
cardiac MRI (8-10). 

Original Article

Prospective cardiac motion self-gating

Fei Han1, Stanislas Rapacchi1, Peng Hu1,2

1Department of Radiological Sciences, David Geffen School of Medicine, University of California, Los Angeles, CA, USA; 2Biomedical Physics 

Inter-Departmental Graduate Program, University of California, Los Angeles, CA, USA

Correspondence to: Peng Hu, PhD. Department of Radiological Sciences, 300 UCLA Medical Plaza Suite B119, Los Angeles, CA 90095, USA.  

Email: penghu@mednet.ucla.edu.

Background: To develop a prospective cardiac motion self-gating method that provides robust and 
accurate cardiac triggers in real time. 
Methods: The proposed self-gating method consists of an “imaging mode” that acquires the k-space 
segments and a “self-gating mode” that captures the cardiac motion by repeatedly sampling the k-space 
centerline. A training based principal component analysis algorithm is utilized to process the self-gating data 
where the projection onto the first principal component was used as the self-gating signal. Retrospective 
studies using a sequence with self-gating mode only was performed on 8 healthy subjects to validate the 
accuracy and reliability of the self-gating triggers. Prospective studies using both ECG-gated and self-gated 
cardiac CINE sequences were conducted on 6 healthy subjects to compare the image quality.
Results: Using the ECG as the reference, the proposed method was able to detect self-gating triggers 
within ±10 ms accuracy on all 8 subjects in the retrospective study. The prospectively self-gated CINE 
sequence successfully detected 100% of the cardiac triggers and provided excellent CINE image quality 
without using ECG signals. 
Conclusions: The proposed cardiac self-gating method is a robust and accurate alternative to conventional 
ECG-based gating method for a number of cardiac MRI applications. 

Keywords: Cardiac MRI; self-gating; prospective gating; principal component analysis (PCA); motion correction 

using multiple coil array (MOCCA) 

Submitted Jan 13, 2017. Accepted for publication Jan 20, 2017.

doi: 10.21037/qims.2017.03.02

View this article at: http://dx.doi.org/10.21037/qims.2017.03.02



216 Han et al. Robust cardiac motion self-gating

© Quantitative Imaging in Medicine and Surgery. All rights reserved. Quant Imaging Med Surg 2017;7(2):215-226qims.amegroups.com

Self-gating techniques normally consist of two parts: 
acquisition and processing. In the acquisition part, selected 
k-space data is repeatedly acquired to form the time resolved 
cardiac motion self-gating signal. Previously reported 
cardiac self-gating approaches use the k-space center point 
in a radial (11,12) or Cartesian (13-17) sampling trajectory 
as the self-gating signal. A number of algorithms have been 
developed to process the self-gating signal, including echo 
peak modulation, projection-based center of mass and low-
resolution region of interest correlation (11,16,17). Larson 
et al. (11) proposed a technique where self-gating signal is 
derived retrospectively from the k-space center point in a 
radial sampling trajectory. Cardiac triggers are generated by 
finding the peak of the center point signal after a low-pass 
filter. Previous studies by Hu et al. (18) on motion correction 
using multiple coil array (MOCCA) suggests that redundant 
data by coil arrays could provide richer information to 
estimate and correct motion (19,20). A MOCCA echo is 
formed by concatenating the k-space centerlines acquired 
by coil arrays into a single vector. The advantage of using a 
MOCCA echo in self-gating is that the motion information 
is greatly enriched without the need of additional acquisition 
time. Although the MOCCA technique is originally designed 
for respiratory motion gating, its principle is also applicable 
to cardiac motion. However, a more sophisticated and robust 
processing algorithm is required to fully exploit the abundant 
information of MOCCA echoes. In most cardiac self-gating 
techniques, the cardiac triggers are either generated offline 
after the acquisition (11,14) or online during the acquisition 
(13,21). Offline gating usually requires a sufficient amount 
of temporal oversampling and therefore suffers from longer 
acquisition time. Online self-gating is more efficient because 
the acquisition of k-space segments is controlled on the fly 
to make sure sufficient k-space segments are acquired within 
minimal time. However, it is technically more challenging 
because of the requirement of deriving self-gating signal 
and detecting self-gating triggers in real time (22).  
Despite a number of recent advances, cardiac motion self-
gating has not been used in clinical practice, mostly due 
to limited reliability and reproducibility of the self-gating 
triggers.

The goal of this study was to develop and validate a 
prospective online cardiac motion self-gating technique. 
Several technical advances are included in our work to 
enable accurate and reliable trigger detection in real time 
while the sequence is running, including separation of 
self-gating acquisition from imaging acquisition and use 
of training based principal component analysis (PCA) 

algorithm on multi-coil self-gating data processing. 

Methods

Prospective self-gating sequence

In a conventional self-gating approach, the self-gating 
signal is typically acquired concurrently with the imaging 
data, such as using radial sampling where the k-space 
center point is acquired as part of each radial projection 
line (11,12). For Cartesian sampling, several groups have 
acquired an additional echo or FID signal during the 
same TR as imaging but immediately before the phase-
encoding gradients (14). Additionally, the self-gating data 
and imaging data can be acquired in an interleaved fashion 
on a TR to TR basis (16,17). However, these approaches 
could suffer from self-gating signal distortions that arise 
from the history of RF pulses and gradients played before 
the current TR, and eddy currents generated by the phase-
encoding gradients that vary from TR to TR. To test this 
hypothesis, we run a radial-based cardiac CINE sequence 
on both a stationary phantom and in-vivo. The ECG signal 
was recorded for reference during the acquisition (simulated 
ECG in phantom study). The k-space center point (CP) 
signal from phantom study (Figure 1A) has significant 
drifting, which we believe is caused by the aforementioned 
issues. Similar artifacts can also be found in-vivo (Figure 1B),  
making it difficult to automatically derive reliable cardiac 
triggers from the CP signal in real time. To further 
support our hypothesis, we run a non-phase-encoded 
Cartesian CINE sequence again on the same phantom 
and human subject. The pulse sequence remains identical 
in every TR since there is no phase-encoding gradient. 
CP signal of stationary phantom (Figure 1C) is free of 
the aforementioned distortion and the in-vivo CP signal  
(Figure 1D) shows clear evidence of cardiac motion, though 
it is mixed with noise.

Based on data shown in Figure 1, we propose to use a 
two-mode sequence to solve the aforementioned self-gating 
signal distortion problem. Instead of acquiring self-gating 
and imaging data within the same or successive TRs, the self-
gating signal is acquired in a dedicated self-gating acquisition 
mode that is separated from the image acquisition. The pulse 
sequence is described in Figure 2 using cardiac CINE as an 
example, although the same approach could be extended 
to other triggered cardiac MRI applications. The sequence 
starts with a training phase where k-space centerlines are 
repeatedly acquired for 300 TRs (about 1 second). These 
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Figure 1 K-space center point and corresponding ECG signals from (A) stationary phantom in a radial CINE sequence; (B) in-vivo using 
a radial CINE sequence; (C) stationary phantom using a non-phase-encoded Cartesian CINE sequence and (D) in-vivo using a non-phase-
encoded Cartesian CINE sequence. Center point signal in (A) and (C) shows distortion as addressed in our hypothesis. Signal in (B) and (D) 
is free of the aforementioned distortion although mixed with noise.
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Figure 2 Structure of the proposed cardiac self-gating sequence that switches between self-gating mode where non-phase-encoded k-space 
centerlines are repeatedly acquired, and imaging mode where k-space segments are sampled. The sequence switches from self-gating mode 
to imaging mode when a new cardiac trigger is detected from the acquired self-gating data and switches back after the imaging mode is 
finished. Imaging mode has a pre-set duration that is shorter than the expected cardiac cycle length.
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data are processed by a PCA training algorithm described in 
the next section. The purpose of the training is to (I) find the 
principal component vector that is used to process the multi-
dimensional self-gating signal; (II) calculate the threshold for 
real-time self-gating trigger detection. The self-gating mode 
starts immediately after the training phase and the PCA 
projection algorithm is applied to the self-gating data as they 
are acquired. Upon detection of the self-gating trigger, the 
sequence immediately switches to imaging mode to acquire 
the k-space segments. The duration of the imaging mode is 
set to be shorter than the expected cardiac cycle so that the 
sequence can switch back to self-gating mode before the next 
cardiac trigger. Although the sequence switches between the 
two modes, the only difference in terms of pulse sequence is 
that the self-gating mode does not use any phase-encoding 
gradient. All other sequence parameters are maintained, 
including TR, TE and RF shape and duration. This ensures 
that the steady state of the magnetization is preserved even 
during switching, which is very important for the signal 
quality for both imaging and self-gating. Because the self-
gating mode essentially acquires the same k-space centerline 
repetitively, the self-gating signal distortion problem 
addressed above is avoided as each new self-gating TR has 
the same history of RF pulse and gradients, and maintains 
the same steady state. The acquisitions in our preliminary 
study using the non-phase-encoded Cartesian CINE 
sequence (Figure 1C,D) are essentially the self-gating mode 
in the proposed sequence. The signal plot shows that the 
data acquired in the self-gating mode yields much improved 
self-gating signal quality, which is important for subsequent 
processing and trigger detection.

Self-gating algorithm

To maximize the available motion information, k-space 
centerline is acquired using multiple coils rather than 
k-space center point alone. A MOCCA echo (18) is formed 
by concatenating the centerline from all coils as shown 
in Figure 3. The MOCCA echo, denoted by a vector 



S ,  
is chosen to be the self-gating data. In a typical cardiac 
MRI sequence, the number of sample in a single k-space 
centerline ranges from 128 to 512 and up to 18 coils are 
used for acquisition. As a result, the size of a MOCCA 
vector could easily reach the order of thousands. Each of 
the N elements in the MOCCA vector is an independent 
measurement of cardiac motion because it is modulated by 
unique k-space positions and coil sensitivity profile (18). 

Given the abundant information provided by the 
MOCCA echo, it is the goal of the self-gating data 
processing algorithm to combine all measurements in 
the MOCCA echo in such a way that cardiac motion is 
enhanced while noise is suppressed. We assume that cardiac 
motion is the most significant factor in causing self-gating 
signal variance in a breath-held cardiac scan. Therefore, 
principal component analysis (PCA) algorithm was used 
in our algorithm because it is a useful data processing 
technique to represent high dimensional data by their 
variation significance. For simplified computation and real-
time processing, PCA algorithm was implemented in a 
training-projection fashion as described in Figure 4. In the 
training phase, a total number of T=300 MOCCA echoes 
are collected to construct the training matrix M. Each 
column in the matrix represents a MOCCA echo from a 

Figure 3 Using MOCCA echo as the self-gating data where a MOCCA echo is formed by concatenating k-space centerline from different 

coils into a single column vector 


S .

Centerline from coil 1

Centerline 
from coil 2

Centerline 
from coil 3

Coil 1

Coil 2 Coil 3

Self-gating data



219Quantitative Imaging in Medicine and Surgery, Vol 7, No 2 April 2017

© Quantitative Imaging in Medicine and Surgery. All rights reserved. Quant Imaging Med Surg 2017;7(2):215-226qims.amegroups.com

single self-gating acquisition 


S  and each row contains all the 
measurements of a MOCCA element X. Given the training 
matrix M, a covariance matrix Σ is derived by calculating 
the covariance of every two MOCCA element. Then, 
Eigen-decomposition is performed on the covariance matrix 
to have the eigenvectors and corresponding eigenvalues. 
Here, we are interested in the first eigenvector, also referred 
as the principal component. This is because the training 
dataset exhibit maximum variance in that direction, which is 
assumed to be the result of cardiac motion. Therefore, only 
the first eigenvector 1



q  is stored for the projection phase.
Compared with the training phase, the calculation of 

the projection phase is fairly simple. A new MOCCA echo 


S  is first "centralized" by subtracting the average value of 
each MOCCA element. The centralized vector 



S'  is then 
projected onto the principal component direction 1



q  and 
the projected length is calculated from the dot product of 
vector 



S'  and 1



q . The scalar ϕ is the desired cardiac motion 
measurement from which an accurate and reliable cardiac 
trigger can be generated. 

Self-gating trigger temporal variability

In order to validate the proposed self-gating signal 
acquisition and signal processing strategy, we run a breath-
hold acquisition with self-gating mode only by turning off 

the phase-encoding gradient so that the k-space centerline 
is repeatedly acquired. 1.5T Avanto and 3T Trio (Siemens 
Healthcare, Erlangen, Germany) scanners were used with 
a combination of different cardiac orientations, including 
short axis (SA), vertical long axis (VLA), horizontal long 
axis (HLA), on 8 healthy volunteers. Other sequence and 
algorithm parameters include: TR =3.2 ms, TE =1.6 ms,  
FA =65 training number T =300 for balanced steady state 
free precession (bSSFP) sequence and TR =6.9 ms, TE 
=2.4 ms, FA =30, training number T =150 for gradient echo 
(GRE) sequence. The acquired self-gating data was exported 
offline and processed by a Matlab (MathWorks, Natick, 
MA, USA) program. Synchronous ECG signal and triggers 
were recorded with timestamp as the reference. We used 
detection rate, Eq. [1] and temporal variability, Eq. [2] to 
assess the reliability and reproducibility of the self-gating (SG) 
triggers. The temporal variability is calculated as the standard 
deviation of the time delay between self-gating triggers and 
corresponding ECG triggers. A smaller temporal variability 
indicates good temporal consistency between self-gating 
triggers and ECG triggers. Of note, the ECG monitoring 
system itself has an inherent systematic variation of up to 
±2.5 ms because of its 400 Hz sampling rate.

number of  SG triggerR =
number of  ECG trigger [1]

Figure 4 Step-by-step illustration of PCA algorithm used for self-gating data processing. The training phase has 3 steps: the formation of 
a training matrix (I), the calculation of its covariance matrix (II) and the Eigen-decomposition (III) to derive the first Eigen-vector q1. The 
projection phase is a simple linear projection of new MOCCA echoes vector onto the first Eigen-vector q1 using vector dot product.
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In vivo prospective self-gated cine MRI

We further implemented the proposed self-gating 
acquisition scheme and self-gating algorithm in a 
prospectively self-gated cine sequence. The self-gating 
data processing algorithm shown in Figure 5 was developed 
in Siemens Image Calculation Environment (ICE) using 
C++ programming language. K-space measurement data 
from the scanner was sent to the self-gating processing 
module after each TR with a flag indicating the type of 
the acquisition (training, self-gating or imaging). The 
first 299 training data were stored to fill the PCA training 
matrix. With the arrival of the 300th training data, PCA 
training program was initiated to find the first principal 
component of the training matrix as described in Figure 4. 
Subsequently, the 300 training data were projected to the 
principal component direction, resulting in 300 (corresponds 
to about 1 second) scalar values representing the cardiac 
motion. An initial cardiac trigger was detected by finding 
the peak within these measurements. For the successive 
self-gating data, only PCA projection algorithm was used 
to calculate the cardiac motion from which cardiac triggers 
were detected by finding the signal peak that is above 
the threshold within a sliding window of 5 samples. The 
threshold was initially defined as 90% of the cardiac trigger 

during training phase and was updated upon each detected 
trigger. No filtering was applied before the peak detection 
due to high quality of self-gating signal. When a self-gating 
trigger was detected, a feedback signal was immediately sent 
back to the scanner to stop the current self-gating mode and 
start the imaging mode. Conventional Fourier based image 
reconstruction was applied to process the imaging data. 
In such a way, the sequence switches between self-gating 
mode and imaging mode until the entire k-space is filled. 
Immediately after the scan, a series of cardiac CINE image 
was readily available at the scanner console. 

We tested the prospective self-gating sequence on 
6 healthy volunteers using the 1.5T scanner in two 
orientations (SA and VLA). Real time sequence mode 
(training, self-gating and imaging) was also recorded as a 
flag in the raw data. Standard prospective ECG-gated CINE 
images were also acquired on each volunteer using matched 
slice orientation as a comparison of image quality. Real-time 
ECG signal and triggers were recorded for reference, which 
was used to calculate the temporal variability and detection 
rate of the prospective data sets according to Eqs. [1] and [2].

Results

Self-gating trigger temporal variability

Figure 6 shows the plot of 5 principal components 
generated by PCA algorithm from one selected self-
gating data as well as their contributions to the total signal 
variance. The first principal component provide a clear 
and smooth measurement of cardiac motion while other 

Figure 5 Implementation of the proposed sequence. The scanner sends the measurement data of each line to the Image Reconstruction 
System where the self-gating data processing is performed. Once a trigger is detected, the image reconstruction system sends a real-time 
feedback to the scanner control computer, which switch to imaging mode.
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component are distorted and mixed with noise. Meanwhile, 
the first component contributes to over 60% of total signal 
variance, suggesting that most of the motion information 
in the MOCCA echo is concentrated in the first principal 
component. Therefore, the first principal component 
direction was selected to represents the cardiac motion.

Figure 7A shows an example of the PCA processed self-
gating signal and the corresponding ECG signal from a 
1.5T scanner in cardiac short-axis view. The self-gating 
signal provided smooth cardiac motion measurement and 
accurate cardiac triggers that corresponded well to the ECG 
triggers. Figure 7B shows another result of the self-gating 
and ECG signal from a 3T scanner in a cardiac vertical long 
axis view. In this particular case, ECG signal was heavily 
distorted due to interference with varying magnetic field  
(2-5) during the scan and several ECG triggers were missed 
by the scanner. However, self-gating signal was capable of 
providing reliable gating of cardiac motion. Of note, no 
filter was needed on the self-gating signal.

Table 1 lists the detection rate and temporal variability 

of the self-gating triggers from 16 experiments in different 
combination of scanner, sequence and slice orientation. 
The proposed self-gating method was able to achieve 100% 
detection rate in most of the experiments with only one 
exception (#7). In that case, the self-gating signal drifted 
during the last cardiac cycle so that the threshold-based 
trigger detection algorithm was not able to catch that 
cardiac trigger. We believe the drifting in this particular 
case was caused by respiratory motion due to non-ideal 
breath-hold, which was confirmed with the subject during 
the experiment. The temporal variability was less than 10 
milliseconds, suggesting the detected self-gating triggers 
coincides well with the ECG triggers, though they can be 
shifted from the QRS complex as shown in Figure 7.

Prospective self-gated cine MRI

Figure 8 and Figure 9 show selected frames from example 
CINE images in short-axis and vertical-long-axis views, 
along with the self-gating signal and triggers acquired on 

Figure 6 selected principal component (PC1, 2, 3, 5, 10) of the self-gating data and their contribution to overall signal variance. Note that 
the plots have different scales in y-axis. The first principal component is chosen because it best measures the cardiac motion and contributes 
more than 60% of the total signal variance. Other principal components show different level of noise. 
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Figure 8 Selected cine images in short axis view from systole to diastole acquired using conventional ECG-gated bSSFP sequence (A-D) and self-
gated bSSFP sequence (E-H) on the same subject using a 1.5T scanner. (I) Plot of Recorded ECG signal and scan mode switching of self-gated 
sequence based on the time stamps recorded for these signals. No major difference in terms of image quality can be observed between self-gated 
and ECG-gated images. The scan mode switching was synchronized with the ECG R-wave although there is a noticeable delay between self-gating 
triggers and ECG triggers.

Table 1 Detection rate and temporal variability of self-gating triggers

# Scanner Sequence View Det. (%) Temporal variability (ms)

1 1.5T GRE SA 100 9.42

2 3.0T bSSFP SA 100 9.94  

3 1.5T GRE VLA 100 10.1  

4 3.0T GRE VLA 100 7.77  

5 1.5T GRE SA 100 9.15 

6 3.0T bSSFP SA 100 5.75 

7 1.5T GRE HLA 93 3.36 

8 3.0T bSSFP HLA 100 4.75 

9 1.5T bSSFP SA 100 7.24 

10 3.0T bSSFP SA 100 6.49 

11 1.5T GRE HLA 100 3.68 

12 3.0T bSSFP VLA 100 6.67 

13 1.5T GRE SA 100 5.46 

14 3.0T bSSFP HLA 100 7.57 

15 1.5T GRE SA 100 10.0 

16 3.0T bSSFP VLA 100 2.43 
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Figure 9 Selected cine images in vertical long axis view from systole to diastole acquired using conventional ECG-gated bSSFP sequence 
(A-D) and self-gated bSSFP sequence (E-H) on the same subject using a 1.5T scanner. (I) Plot of recorded ECG signal and scan mode 
switching of self-gated sequence based on the time stamps recorded for these signals. No major difference in terms of image quality can be 
observed between self-gated and ECG-gated images. The scan mode switching was synchronized with the ECG R-wave although there is a 
noticeable delay between self-gating triggers and ECG triggers.
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Table 2 statistical result of prospective self-gating sequence

Subject Slice orientation Detection rate (%) Temporal variability (ms) Mean delay (ms)

1 SA 100 13.9 236 

2 SA 100 9.1 222 

3 SA 100 12.1 228 

4 VLA 100 6.9 174 

5 VLA 100 13.3 183 

6 VLA 100 8.4 176 

healthy volunteers using a 1.5T scanner. There was no 
noticeable motion artifact in the self-gated images and 
the overall image quality of self-gated CINE is equivalent 
with that of ECG-gated. Based on the flags in the raw 
data, the self-gating trigger was successfully identified in 
both examples. There was slight variation in the heart rate 
during the exam and the duration of the self-gating mode 

for each heart beat varied accordingly as expected. Table 2  
lists the statistical result of all 6 scans. The proposed 
prospective self-gating method was able to detect 100% of 
the 85 cardiac triggers over 6 subjects and switch scan mode 
accordingly. The average temporal variability between self-
gating triggers and ECG triggers was 10.6 ms, which was 
similar to our findings at the temporal variation study. The 

I
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mean trigger delay when compared with ECG R-wave 
was approximately 220–230 ms for short axis views and 
approximately 170–180 ms for vertical long axis views. 

Discussion

In this paper, we introduce a prospective cardiac self-
gating technique and demonstrate it in a self-gated cardiac 
cine sequence that is capable of detecting 100% of the 
cardiac trigger in real time. Our technique is different from 
other existing self-gating methods in three aspects. First, 
MOCCA echo (k-space centerline with coil arrays) is used 
as self-gating data that could provide abundant motion 
information. Second, the self-gating data is processed by 
PCA algorithm in a training-projection scheme. Third, a 
two-mode sequence structure is adopted in which dedicated 
self-gating acquisitions are separated from the normal 
imaging acquisition. We evaluated the proposed technique 
by comparing the self-gating triggers with ECG triggers 
and the results indicate good temporal consistency between 
the two. We further tested the self-gating technique in 
a prospectively self-gated cardiac CINE sequence and 
showed excellent correspondence of our self-gating triggers 
to the ECG triggers. Our data suggests that this sequence is 
very reliable in trigger detection and can provide excellent 
cardiac image quality. Our solution uses the clinically 
available image reconstruction computer to process the self-
gating data and send feedback signal to the MRI scanner. 
Such an implementation is feasible on MRI systems 
from most major manufacturers without any hardware 
modification. In this work, we demonstrate the feasibility of 
the proposed self-gating technique using a self-gated cardiac 
CINE sequence. Other applications using this self-gating 
technique have yet to be developed. Some of the examples 
include, but not limited to self-gated coronary angiography 
(MRA), cardiac imaging at high magnetic field (7T and up), 
and fetal cardiac imaging. 

The MOCCA echo used in the proposed self-gating 
method could better capture cardiac motion than other self-
gating data sampling strategy. While k-space center point 
is only capable to capture the variance of the image DC 
component and the k-space centerline can further detect 
the non-DC variance in the k-space readout direction, the 
MOCCA echo has the intrinsic capability to detect motion 
in all directions. This is because up to 16 coils are placed in 
almost every direction around the heart in a conventional 
cardiac MRI setup. As a result, motion information in any 
direction can be modulated by individual coil's sensitivity 

map and reflected in the MOCCA echo. Although a 
systematic evaluation of the potential of MOCCA echo is 
beyond the scope of this paper, we believe the signal quality 
improvement of Figure 7 over Figure 1 result from the use 
of MOCCA echo instead of k-space center point. 

PCA algorithm can better exploit cardiac motion 
information provided by the MOCCA echo. To address the 
theory behind the proposed PCA-based algorithm, we can 
interpret the task as a signal-processing problem in which 
we want to enhance the desired signal component (i.e., 
cardiac motion) and suppress the unwanted component 
(i.e., other motion, noise etc.) In such a task, a precise 
definition of the signal is needed to differentiate it from 
the noise. Most existing processing algorithms use an 
explicit definition in image domain to characterize the 
cardiac motion signal. For example, the method of using 
the k-space center point defines the cardiac motion as the 
change of overall image intensity. This is based on the 
assumption that the variation of blood pool volume is the 
major contributor of the overall image intensity, which is 
why some of the existing techniques typically works better 
at short-axis view because this view is associated with 
most significant change in blood volume (11). However, 
our approach appears to work equally well in both short 
axis and long axis views because the PCA algorithm is not 
dependent on in-plane blood volume Other algorithms 
define the cardiac motion by looking for certain features 
from the Fourier transformed k-space line, including sharp 
edges, center of mass (COM) etc. Despite the fact that these 
methods highly depend on specific imaging parameters 
(e.g., contrast, slice orientation) and the anatomy of 
individual subjects, they are unable to take advantage of 
the motion information provided by multiple coils because 
the processing is done in image domain after combining 
the signals. On the other hand, the proposed PCA-based 
algorithm defines the cardiac motion in an implicit way: the 
cardiac motion is the most significant factors in causing the 
variance of self-gating signal in a breath-hold cardiac scan. 
First, this definition is independent of imaging parameters 
or individual subjects. Second, the processing is performed 
in k-space signal domain, before combining information 
from multiple coils and thereby has the potential to 
take advantage of the MOCCA echo. Third, abundant 
information in MOCCA echo is better used as all MOCCA 
channels are combined together in a way to maximize the 
signal variance. In addition, the proposed PCA algorithm 
shows good performance in suppressing noise, as shown by 
the clarity and smoothness of the signal plot in Figure 7 and 
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Figure 6 even in the absence of any filtering of the signal.
The proposed PCA algorithm is a training based 

algorithm. The first 300 self-gating samples are chosen 
to construct the training matrix. It is because 300 samples 
take about 1 second (TR =3 ms), which is approximately a 
complete cardiac cycle. From these training samples, the 
component with maximum signal variation is found, which 
is assumed as the cardiac motion component. Therefore, 
it is desirable that the training period is sufficiently long to 
cover a complete cardiac motion cycle, but not too long as 
overall imaging efficiency would decrease. The advantage 
of such training-based algorithm is that the signal process 
algorithm is individually tailored for each subject in each 
scan and no specific parameters is required at the users’ end. 
This is further supported by the data from Table 1 that the 
same algorithm can be used to process self-gating signals 
from different scans, on different subjects, using different 
contrasts and slice orientations. 

We demonstrated the utility of our technique in online 
prospective self-gating. Several technical components of 
our approach can also be used in an offline retrospective 
self-gating, which might have certain benefits. For example, 
using the approach in Figure 2 for CINE imaging inevitably 
will miss a fraction of the cardiac cycle as it needs to be used 
as a dedicated self-gating mode. This might be undesirable 
for CINE imaging and related volume and ejection fraction 
calculations. A retrospective offline self-gating might be 
more desirable. Nevertheless, our current approach suits 
well for non-cine type cardiac applications. 

The PCA-based signal processing algorithm plays a key 
role in enabling online self-gating. A number of processing 
algorithms rely on a high order band-pass filter to suppress 
the non-cardiac signal component. Such high-order 
frequency filters are inherently slow and unsuitable for real 
time processing because of their group delay (22). In the 
proposed PCA algorithm, each self-gating sample is simply 
projected onto the principal component direction defined in 
the training phase. The PCA algorithm itself is causal with 
no processing delay, although the peak detection algorithm 
introduces a delay of 2 samples. As a result, it takes less than 
10ms for the sequence to detect the trigger and change 
mode accordingly, making the online prospective self-gating 
possible. 

It should be noted that the self-gating triggers were 
delayed from the ECG triggers by an average of 228ms for 
short-axis and 177 ms for vertical-long-axis. This is because: 
(I) there is an inherent delay between the electrical signal 
and the actual myocardial motion in which the electrical 

signal always comes first; (II) current self-gating trigger 
detection algorithm is based on finding the signal peak and 
thus tends to trigger on end-systole instead of end-diastole 
as the ECG R-wave based algorithm. A similar shift is also 
reported in other self-gating methods (23,24). 
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