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Introduction

Microvascular imaging and quantification have attracted 
great interest in the field of medical imaging. Through 
the observations of changes in micro-vasculature and 
blood flow, diagnoses and therapeutic monitoring of many 
medical conditions that have vascular involvements can 
be benefitted. A few examples are: onset of atheroma, 
which is characterized by degeneration of arterial wall 
and arteriosclerosis at later stage (1); microcirculatory 
dysfunction, which is considered as a key pathogenesis of 
severe sepsis and septic shock (2); study of microvascular 
invasion and hypoxia of tumor (3), etc. 

Realizing the importance of microvascular imaging, 

many research groups have been in pursuit for new and 
improved micro-angiography imaging techniques. Each 
technique, however, suffers from a significant tradeoff 
between resolution and field of view in living tissue 
imaging. Optical coherence tomography (OCT) is a three-
dimensional (3D) imaging technique that can provide non-
invasive, high-resolution cross-sectional images in real 
time (4,5). As a high-resolution functional extension to 
OCT, OCT-angiography (OCTA) (6-8) offers rapid, safe, 
non-invasive and cost-effective solution to imaging depth-
resolved microcirculation down to capillary level, which has 
recently found its way to clinical translation, for example in 
ophthalmology (9-11). 

Optical micro-angiography (OMAG) is introduced based 
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on the observations of complex signal fluctuations, which 
are hypothesized to be related to moving erythrocytes 
within functional blood vessels (12-17). Due to the fact 
that scattering elements behave differently in static and 
moving (blood flow) regions, appropriate digital filtering 
of the OCT signals can distinguish blood flow signal from 
static tissue background, achieving blood flow mapping 
for microcirculatory tissue beds. There are many different 
algorithms to contrast blood flow signals from the OCT 
measurements, such as speckle intensity variance, phase 
variance, and complex signal analysis (8). This paper focuses 
on the OMAG complex signal analysis, which is also the 
main imaging modality throughout the discussion of this 
paper. 

The analysis starts with the complex signal, following 
the Fast Fourier Transform (FFT) of spectral signal from 
Fourier-domain OCT. In OCTA/OMAG imaging protocol, 
it is required to scan the same tissue location repeatedly 
over time (i.e., repeated A-scans, or M scan) in order to 
build a time series of A-scan OCT signals, from which the 
signal fluctuation is extracted to represent the blood flow 
signal. Thus, the resulting complex OCT signal is a 2D 
matrix of a depth M-scan. Since the OCT probe beam is 
highly (randomly) scattered inside the blood vessels, blood 
flow signal can be extracted from the complex M-scan signal 
via an appropriate filter. 

The most recent development in OMAG complex signal 
analysis relies on Eigen decomposition (ED) (18,19), which 
requires the formation of covariance matrix (XXT) from 2D 
space-time complex matrix signal, X. Since the formation of 
covariance matrix, XXT, can cause loss of precision [Läuchli 
matrix as an example (20)], singular value decomposition 
(SVD) is employed as an alternative technique in dynamic 
signal filtering (21). Furthermore, traditional PCA 
(including SVD and ED) techniques are sensitive to 
outliers, i.e., the principal components can easily be skewed 
by a few corrupted frames, due to severe sample motion 
that causes decorrelation between frames, and by tail-noise 
effect where speckle intensity varies greatly between frames.

With the recent development in linear algebra and 
computing, principal component analysis (PCA) [ED (22) 
and SVD] has been adopted on ultrasound angiography; 
robust principal component has been adopted in magnetic 
resonance, and X-ray computed tomography (21). This 
paper introduces readers to PCA methods for OMAG, and 
presents an improved algorithm, called robust PCA (RPCA). 
This RPCA technique is capable of extracting blood flow 
signal in capillaries with higher blood flow signal-noise 

ratio, and significantly reduces blood vessels’ tail-noise and 
motion-induced artifacts. 

Background theory for PCA in OMAG

The PCA, by definition, is a statistical procedure that 
converts a set of observations on (possibly correlated) 
variables into a set of linearly uncorrelated new variables. 
Each new variable (described by the Eigen vector), called 
principal component, is a linear combination of the original 
(and possibly correlated) variables. This idea is important in 
OMAG, or OCTA in general, since most pixels containing 
static signal are highly correlated over a small-time window, 
while however is not the case for blood flow signal and 
noise. 

In OMAG, PCA separates static and slow-moving 
signal data (highly correlated across the time frames), 
from uncorrelated signal such as blood flow, speckles and 
noise signal via linear-regression filter (18,19). This can 
be done by assuming that most of the signal comes from 
static scatters, and secondly, by assuming that the pixels 
containing static signal are highly linearly correlated (or at 
least has higher degree of correlation in comparison to the 
variations in blood flow and noise) within the observing 
time-window. 

For example, we start the analysis by considering an 
OMAG M-scan complex data signal, X(z,t):

( ) ( ) ( ) ( ), , , ,X z t s z t b z t n z t= + + [1]

where s is the static signal, b is the blood signal, and n 
is the electronics/background noise. This complex data is 
usually expressed in matrix form, Xz,t, which has nz rows of 
spatial pixels (A-scan) × nt columns of time frames:
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where nz is the index for discrete depth axis, and nt is the 
index of discrete time axis. For simplicity, we further assume 
that static signal is invariant over the observing time-
window, but blood flow and noise. This assumption ensures 
that, over time, pixels containing static signals would have 
low variance across repeated frames, whilst pixels containing 
blood flow signals will appear sparse. 

In PCA, the repeated A-scans form a data matrix 
that consists of nz (axial pixels) observations with nt 
(repeated frames) variables. Our objective is to find a set 
of linear combinations of temporal frames (variables), 
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and decompose this set into the principal components. In 
simple case, the first PCA component (labelled as ‘1st PC’ 
in Figure 1) reconstructs exactly the static signal, since the 
frame are strongly correlated across spatial/depth pixels 
(observations). Blood flow and noise signal can then be 
reconstructed from the other components, i.e., second to 
nt-th principal components, as they are mostly uncorrelated 
between frames. An example of blood flow analysis using 
PCA is shown in Figure 1, where nz-pixel intensity between 
two repeated frames are plotted in log-scale for visual 
presentation. From our assumption about signal correlation 
across repeated frames, pixel containing static signal can be 
seen as data points adjacent to the first principal component 
(the 1st PC); and pixel containing blood flow signal can 
be seen as data points with high variance on second 
principal component (the 2nd PC). This analysis can also be 
generalized to higher dimensions, i.e., nt repeated frames.

In most cases, the general assumption holds that pixels 
(observations) containing static signals are dominant and 
are highly correlated across the slow-time (repeated nt 
frame). However, in real case scenario, static signals are 
not perfectly stationary across repeated frames due to 
random scattering event (speckle artifact) and tissue motion 
(motion artifact). These artifacts are generally considered 
to be outliers (see Figure 1), which can skew the principal 
components and produce unwanted results. For example, 
the first PC would attempt to reduce the variance from the 
outliers, thus making static signals appear to be dynamic. 
RPCA is therefore introduced in order to solve this problem 
regarding outliers. 

Taking together, there are undoubtedly many techniques 
to achieve the separation between static and blood flow 

signals in complex signal analysis, but we will only discuss 
the development of RPCA for OCTA and compare RPCA 
with traditional PCA (which includes ED and SVD) in this 
paper. Although different techniques exist for different 
purposes in the field of OMAG, they all aim to recover 
a highly correlated signal (static or slow-moving signal) 
from uncorrelated signal (i.e., dynamic blood flow). PCA 
and RPCA analysis are discussed in each section below. A 
summary of each technique is shown in Table 1.

ED and linear regression filter
The first technique in our PCA discussion is the ED, using 
multi-ensemble data matrix. In general, the data matrix 
is pre-processed before the analysis, i.e., constructing 
covariance/correlation matrix from a 2D space-time data, 
X. The choice between covariance and correlation matrix 
is entirely subjective, and depends on different techniques 
and purposes. For most of our applications in OMAG, 
employing either covariance or correlation matrix would 
yield similar results (i.e., the linear regression or 1st PC 
passes through the origin in most cases). The covariance 
matrix, ∑  by definition, of the spatial-temporal complex 
data matrix, X {Eq. [2]}, is:

[ ]( ) [ ]( )*.
T

E X E X X E X = − −
 ∑ [3]

where E is the expectation value, superscript *T is the 
conjugate (Hermitian) transpose, ∑  is the nt × nt covariance 
matrix. 

In practice, we use the modified covariance matrix, C, 
which is an estimate of ∑ :

*1 .
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C X X
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−
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The covariance matrix C is then decomposed into the 
Eigen-components:
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where λκ is the k-th Eigen value, and eχ is the k-th Eigen-
vector. Since the assumption about the static and blood 
flow signals holds in most situations, Eigen-regression filter 
(18,19) is applied to the original signal by removing the first 
or two principal components (i.e., K =2 for *

1
K Te eκ κ κ=∑ ) that 

represent the static signal:

*

1
.

tn
T

EDB X I κ κ
κ

ν ν
=

 
= − 

 
∑ [6]

where B is the nz × nt blood flow signal matrix with added 
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Figure 1 Dataset of nz-pixel intensity between two frames, with 
outliers circled. 
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white noise. There are many other strategies which are 
proposed to adaptively determine the weighting coefficients 
for each principal component, but fix-rank filter will be our 
main focus due to its simplicity.

SVD
Another alternative to achieve PCA is the SVD, which 
can be applied directly onto our complex data matrix, X, 
without constructing an estimated covariance matrix, C, 
as in comparison to ED technique. SVD also has higher 
numerical accuracy, i.e. numerical precision by computing 
the quadratic term X*T , X, especially when the values of 
entries in our complex data matrix is discretely small.

In SVD technique, the data matrix, X, is decomposed into:

*

1

tn
T

i i i
i

X USV u s v
=

= =∑ [7]

where U is left singular nx × nx unitary matrix, S is 
a diagonal nx × nt matrix of singular values, V is right 
singular nt × nt unitary matrix. Since the data matrix XC is 
usually large (nx >> nt) and we only interested in the sparse 
(random and uncorrelated) information. The computations 
of a subset (first K values) of the (nt) singular values are 
preferable as the computing time is significantly reduced. 

The blood flow signal can be separated by rejecting the 
static and slow-moving signal:

1
SVD i i i

i
B X u s v

κ

=

= −∑ [8]

SVD is similar to ED in theory and should give the exact 
same results when implemented with the same filtering 
strategy. More importantly, the work on SVD is motivated 
by its simplicity, numerical accuracy, and most importantly 
enabling further development of RPCA on OMAG.

RPCA
PCA is arguably the most widely used statistical tool for data 
analysis and dimensionality reduction. However, as PCA is 
sensitive to outliers, gross errors and corrupted observations 
(e.g., speckles, noise, and motion artifacts) can easily 
jeopardize the ability to separate the static tissue signal 
from the dynamic blood flow signal. Over the past decades, 
techniques classified as RPCA has been investigated to 
address this problem (23,24). RCPA works by recovering a 
low-rank matrix, L0 (static OCT signal), and a sparse matrix, 
S (dynamic blood flow OCT signal), from highly corrupted 
measurements, X = L0 + S (OCT complex dataset). There 
are many applications where the data can be modelled as 
low-rank and sparse components, such as video surveillance 
and face recognition (24). In medical imaging, robust 
principal component pursuit (RPCP, a variant of RPCA 
technique to be specific), has been adopted for magnetic 
resonance imaging and X-ray computed tomography since 
2010s (25,26). This new method promises an improved 
visualization of dynamic signal and background suppression. 
However, at the time of writing, the applicability of RPCA 
in OCTA is still in question and has not yet been addressed 
in full.

Table 1 Summary of static structure and dynamic blood flow separation techniques

Eigen decomposition (ED-OMAG)

Covariance PCA

Form covariance matrix, from a signal at lateral position i: *1 .
1

T
i i

z

C X X
n

=
−

Eigen-decompose matrix E: * *
1

tn TC V V κ κ κκ
λ ν ν

=
= Λ =∑

Apply regression filter and reject static signal: ( )*
1

. K T
EDB X I κ κκ

ν ν
=

= −∑ ; where K is chosen to give highest blood flow SNR

Singular value decomposition (SVD-OMAG)

Directly decompose the complex signal: * *
1

tnT T
i i ii

X USV u sν
=

= =∑
Separate into static and blood flow signal by rank: *

1

K T
SVD C i i ii

B X u sν
=

= −∑ ; where K is chosen to give highest blood flow SNR

Robust principal component pursuit (RPCP-OMAG)

Decompose complex matrix signal, X, into static (low-rank) matrix, L0, and blood flow (sparse) matrix, S: X = L0+S+Z0

Subjected to the convex program: 
1*,

min
L S

L Sλ+ ; 
F

L S X ε+ − ≤

ED, Eigen decomposition; OMAG, optical micro-angiography; PCA, principal component analysis; SNR, signal to noise ratio.
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In this paper, we implement a technique in RPCA, also 
called stable principal component pursuit (SPCP) (27), 
in separating the static structure and dynamic blood flow 
OCT signals. Amongst other RPCA techniques, SPCP 
requires less processing power whilst providing adequate 
dynamic blood-flow signal filter. In addition, this technique 
also seeks for an explicit noise component within the RPCA 
decomposition.

In OMAG, the low-rank and sparse matrix can be 
thought of as static structural and dynamic blood flow 
signals, respectively. The analysis starts with a given noisy-
complex data matrix X. SPCP decompose X into a sum of 
low-rank matrix, L0, and a sparse matrix, S, with an added 
noise term, Z0 :

0 0X L S Z= + + [9]

The objective here is to recover the unknown matrix L0 
and S, via a convex program:

0 1*,
min

L S
L Sλ+ [10]

0 F
L S X ε+ − ≤ [11]

where ε represents the noise term and is assumed to be 
0 F

Zε ≥ , given that 0 F
Z  is the Frobenius norm of our noise 

term Z0; λ controls the weighting between static and blood 
flow signal; *

L  is the nuclear norm of L and 1
S  is the 1-norm 

of S, calculated as:

( )
* ii
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,1
,

i j
i j
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where ( )i i Lσ∑  is the sum of singular values of L0 (L0 = 
USV*T), and , ,i j i js∑  is the sum of the absolute values of all 
entries in S. Static signal can be thought of as low-rank 
matrix, L, and blood flow signal can be thought of as sparse 
matrix, S.

In order to eliminate confusion in terminology, it should 
be made clear that author would use the term PCA (achieved 
by ED, SVD) and RPCA (achieved by SPCP) when 
discussing techniques in a broader sense.

Methods

In this study, PCA and RPCA are performed on the same sets 
of OCT complex data, which was acquired using a dedicated 
OCT system. The first set of OCT data was obtained by 
imaging a microfluidic-channel phantom. The second set of 
data was collected from human nail-fold tissue in vivo.

Microfluidic channel phantom

Scanning system and materials
SD-OCT system with broadband super-luminescent 
diode (LS2000C, Thorlabs Inc., Newton, NJ, USA) as 
the light source was used to capture the sets of imaging 
data from microfluidic channel phantom [details of the 
system description in (17)]. Briefly, the system had central 
wavelength 1,340 nm, and bandwidth of 110 nm, which 
provides approximately 7 µm of axial resolution in air. 
The lateral resolution of 7 µm was measured at the focus 
by using a 10× objective lens on the sample beam. The 
spectral interferograms between the beams from sample 
and reference arms were collected by a spectrometer based 
on a high-speed line-scan camera (1024-LDH2, Sensors 
Unlimited, Princeton, NJ, USA), providing 91.2 kHz A-line 
scan rate. The power of the sample beam was 3.5 mW, and 
the system had a sensitivity of 105 dB. 

Scanning protocols were set to perform M-B scanning, 
with B-scan image showing the cross-section of the 
microfluidic channel inside the sample. The protocol 
anticipated the OCT beam at one A-scan position to acquire 
50 repeated A-lines as one M-scan, then the beam moved 
across 200 positions, forming a full M-B scan of 2.8 mm × 
1.4 mm (x by z, i.e., width by height). Raw interferometric 
spectrum was captured by camera, then the background 
signal was subtracted, followed by k-space linearization 
and then FFT to obtain complex OCT data (28). The final 
complex data matrix was in the form of 400×200×50 (nz × nx 
× nt) pixels, with spatial resolution of approximately 7 µm 
(axial) and 10 µm (lateral) and temporal resolution of 50 µs.

The microfluidic channel phantom consisted of a 
set of four perfused channels (5% intra-lipid solutions), 
which were embedded in a scattering background made 
of poly-dimethyl-siloxane (PDMS) mixed with titanium 
oxide (TiO2) powder. The cross-sections of the channels 
were rectangular in shape. There were four microfluidic 
channels with various sizes: 120 µm × 40 µm (R1), 60 µm × 
40 µm (R2), 30 µm × 40 µm (R3), 15 µm × 40 µm (R4). The 
flow inside the channels were maintained by the external 
precision syringe pump (Harvard Apparatus PHD ULTRA, 
Massachusetts, USA) with programmable flow rate. Please 
see the detail of the phantom fabrication in (17). 

Eigen/SVD and SPCP decomposition
Since Eigen and SVD decompositions yield similar results 
in most cases, the data is thus analyzed using ED algorithm 
in all following experiments. It is also important to 
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distinguish the difference between strategy and technique 
in the context of OCT blood flow analysis. In this paper, 
strategy refers to different methods of organizing the 
complex data matrix before applying statistical analysis 
(i.e., Eigen, SVD, SPCP); and technique refers to different 
methods of statistical analysis. Although algorithm for 
each technique remains the same for most of our analysis, 
strategy does require adaptation upon the nature of the 
complex data matrix. For example, data from a still object 
can be arranged into Casorati matrix (one B-frame re-
arranged into a vector, and each vector represent a repeated 
frame); whilst the same strategy (re-arranging data into 
Casorati matrix) would not work well on an in vivo sample 
where sampling volume is under constant motion. In fact, 
the term ‘motion artifact’ arises to describe the diminishing 
blood-flow signal to noise ratio (B-SNR) when data signals 
de-correlates between slow-time frames due to motion.

In this experiment, the strategy is to re-arrange our 
complex data matrix into Casorati matrix 80,000×50 (nzx × 
nt). For relatively stable object, this strategy helps improve 
the processing speed without compromising the image 
quality. The speed improvement is typically 5 to 10-fold 
faster than just comparing between pairs of frames on each 
A-line, depending on how many nt frames are analyzed. The 
flow image is revealed by removing the first two principal 
components, K =2, as in Eigen/SVD decomposition; and 
by choosing λ =0.007 [about 20 times the suggested value 

1
xzn

λ =  (24)] and ε =0.12 in SPCP technique. The choice of 
λ is purely subjective, and was decided for the best contrast 
between the OCT dynamic blood flow and static structure. 
Examples of how varying λ parameter would affect the 
OCTA images are discussed in nailfold imaging in vivo.

Nail fold imaging in vivo

Scanning system and materials
In this experiment, the same SD-OCT system was 
employed for dynamic blood flow imaging. The imaging 
protocol was eight repeated B-scans for each of 400 
y-direction scans, i.e., B-M scanning mode, producing a 
data matrix of 300×400×8×400 pixels (nz × nx × nt × ny).

Eigen/SVD and SPCP decomposition
Whilst scanning is performed on the sample under 
inevitable motion due to in vivo imaging nature, two major 
problems arise: (I) static signal becomes more dynamic 
between repeated frames; and thus (II) blood flow signal to 
noise ratio is significantly reduced, especially if the repeated-

frame rate is less than a few hundred Hertz. For nail-fold 
experiments, the total number of repeated frames was eight, 
nt =8, and the repeated B-frame rate was 125 Hz. This 
imaging protocol gives an effective ensemble-frame (nt =8)  
rate of 15.6 Hz. Therefore, the choice of our imaging 
protocol was a compromise between the scanning range/
resolution and the B-frame rate. For any given B-frame 
rate, a shorter scanning range can improve the lateral-scan 
density (i.e., more A-scans within one B-scan); and similarly, 
a longer scanning range with any given lateral-scan density 
would require a lower B-frame rate. In our experiment, 
8 repeated B-frames with 125 Hz or higher frame rate is 
adequate for most biological sample, providing that the 
sample is moderately restrained on the scanning table.

ED/SVD analysis was performed on 300×400×8×400 
(nz × nx × nt × ny) complex data matrix by decomposing 
the covariance of the B-M-frame Casorati matrix (nzx × 
nt =120,000×8 pixels) into 8 principal components, then 
removing the first two principal components (K =2) via 
Eigen-regression filter. The variance from the filtered data 
matrix was computed between the frames, i.e., var(BED) in 
slow-time, and the intensity of this variance vector (nz) was 
displayed in log scale. This process was repeated to form 
a filtered B-scan image (nz × nx), and finally a volume of 
dynamic blood flow (nz × nx × ny). This volume was then 
projected onto x-y plane, with color coded for depth, and 
intensity coded for the logarithmic variance value.

In RPCA, the data matrix input was the same as in ED 
analysis. The choice of lambda parameter was multiplied 
with a factor of 20 from the suggested value (24), i.e., 

120
xzn

λ = × , and ε =2e-2. This factor could vary between  
10-200, depending on how much OCT dynamic blood flow 
signals one would like to retain. In general, higher value of 
this factor would result in only higher dynamic OCT signal 
being filtered in angiograms. The sparse (filtered) matrix 
was also post-processed for display, the procedure of which 
was the same as in the ED case.

In order to compare between PCA and RPCA, all of our 
resultant data matrices were normalized in log scale, using 
log1p function of MATLAB. The top-down, or x-y plane, 
projection was a maximum intensity projection with the 
depth (of pixel with maximum intensity) color-coded.

Results

Microfluidic chip phantom

Both SVD and ED produced similar results in separating 
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the static and blood flow signal from the raw complex data 
(Figure 2). The rank (K =2) was chosen so that static signal 
was appropriately filtered out, but not to compromise the 
loss of information in flow signal. Figure 3 demonstrates 
the loss of information in flow signal (i.e., lower signal to 
noise ratio) when higher rank, K, was filtered out. In order 
to recover the flow signal, the filtered rank, K, needed to be 
as low as possible (i.e., as few principal components being 
filtered as possible).

On the other hand, SPCP controls the contributions of 
both static and blood flow signal via a weighting parameter 
lambda, λ. A higher value of λ would filter out more static and 
speckle signal, but with information loss in flow signal; whilst 
lower value of lambda would result in higher contribution 

of static and speckle signals. In addition, a higher value of 
the error term epsilon, ε, helps reduces the time for the 
convergence in the optimization problem. However, the 
information in flow signal (and partially speckle signal) is also 
lost at the expense of analysis time reduction. 

The results are displayed in log scale and are presented 
in Figure 2. The data was further processed with semi-
automatic segmentation (29) to calculate the signal to noise 
ratio among the three analyses (Table 2). The performance 
in processing time between ED and SVD was similar, while 
SPCP took longer to converge, depending on the precision 
of convergence in SPCP. In general, SPCP can achieve 
higher flow SNR in comparison to ED/SVD thanks to the 
ability to fine tune the weighting parameter λ. However, 

A B

C D

Figure 2 Comparison among ED, SVD and SPCP analyses. (A) Representative OCT B-scan image of microfluidic phantom, and 
corresponding flow image obtained from (B) ED, (C) SVD and (D) SPCP, respectively. OCT, optical coherence tomography; ED, Eigen 
decomposition; SVD, singular value decomposition; SPCP, stable principal component pursuit.
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to achieve a detailed result, SPCP takes much longer time 
to converge and should be taken as a drawback, regarding 
performance quality-time cost. 

Another important feature of SPCP is that we can control 
the amount of dynamic flow information through the 
weighting parameter lambda and fine-tune this parameter 

to our needs. This advantage is especially important when 
the number of repeated frames is small. For example, rank-
filter in SVD (or Eigen-regression filter in ED) is a discrete 
number and might yield significantly different results when 
different rank is chosen. For example, when the number of 
repeated frame is small, nt =4, the result from K =2 filter 
would include too much speckles, whilst result from K =3 
filter would lose too much flow information. This problem 
is discussed further in the results of nail-fold experiment, 
where the repeated frame is nt =8.

Nail-fold in vivo experiment

ED filter reveals adequate blood-flow SNR, but suffers 
from motion and tail-noise artifacts. Since the number of 
repeated frames in slow-time scan is small, the number 
of (filtered) principal components becomes important. 
The maximum number of ensembles in slow-time axis 
was 8 (nt =8), which constrained suitable Eigen-regression 
filter to either the first principal components (K =1) or 

A B C

D E F

Figure 3 Eigen-regression filter with progressively filtered principal components (ranks) from (A) K =5, (B) K =10, (C) K =15, (D) K =20, (E) 
K =25, and (F) K =30, respectively.

Table 2 Performance of ED, SVD and SPCP on (nz × nx × nt) data 
matrix of 200×200×50 pixels

PCA 
methods

SNR, 3 
measurements 

(dB)

Processing time, 5 measurements

200×1×50 (s) 512×245×4 (s)

ED 6.6±0.1 2.8±0.1 25±4

SVD 6.5±0.1 4.5±0.2 –

SPCP 21.7±1.2 68.7±0.9 4,180

ED, Eigen decomposition; SVD, singular value decomposition; 
SPCP, stable principal component pursuit; PCA, principal 
component analysis; SNR, signal to noise ratio.
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first two principal components (K =2). Filtering third 
principal component in addition to the first two (K =3) 
would significantly degrade dynamic blood flow signals, 
whilst offering little benefits in static signals filtering. 
This argument is demonstrated in Figure 3 where dynamic 
flow SNR decreases with respect to a higher number of 
principal components (ranks) being filtered. All snapshots 
in Figure 3 are intensity presentations of microfluidic flow 
data in phantom experiments, displayed in log scale, and 
normalized between 0 and 1 in gray scale.

In addition to selecting the number of filtered principal 
components in ED/SVD analysis, choosing the number of 
frames in an ensemble is also important. The larger number of 
frames in one ensemble would yield higher blood flow SNR, 
providing that the tissue motion is not significant. A comparison 
between 8-frame ensemble and 5-frame ensemble, with the 
same filtered principal components, is shown in Figure 4. 

The scanning protocol is also an important factor in 
ED analysis, especially the parameters of the repeated 
(slow-time) scan. A higher number of repeated scans and 
faster repeated scan rate would improve the blood flow 
SNR, assuming that the static signals amongst the scans 
are stationary. However, perfectly stationary sample rarely 
occurs and ‘motion artifacts’ are often introduced in ED/
SVD analysis. The phenomenon of ‘motion artifacts’ can 
be seen as a significant reduced blood flow SNR in one 
particular filtered B-frame image. Equivalently, motion 
artifacts can be seen as higher intensity stripes across the 
projected x-y images (Figure 4). Motion artifacts are caused 
by decorrelation of static signals between certain number of 

frames, which skew our ED/SVD analysis. This sensitivity 
due to outliers (out-of-plane observation) is well known in 
ED/SVD (PCA) analysis (30). In order to improve image 
quality in ED/SVD analysis, the number of ensemble in 
slow-time axis (or number of repeated B-frames) should 
be as large as possible, but only up to certain limit that 
static signals start to de-correlates between the frames in 
the ensemble. This requirement dictates how scanning 
protocols is selected for optimal results in various cases. For 
example, sample under dynamic motion is typically scanned 
at 400 Hz with 8 repeated frames; whilst stable sample 
could be scanned at 100 Hz with 4 repeated frames. 

Additionally, SPCP seems to be less affected by motion 
and tail-noise artifacts, whilst introducing speckles artifacts. 
In details, motion artifacts can be seen as horizontal stripes 
on the top-down (x-y plane) projection image from ED/
SVD analysis, but the same motion artifacts are suppressed 
in SPCP analysis (Figure 5). On the same figure, tail-noise 
artifacts from ED/SVD analysis can be seen as strong 
vertical stripes below strong signals in B-frame images. The 
suppression of motion and tail-noise artifacts in SPCP is 
expected, as SPCP is not sensitive to outliers in comparison 
to ED/SVD (30). Speckle artifacts, however, seems to be 
enhanced under SPCP and manifest as a cloud of speckles 
on top of the flow signal (Figure 6) when suggested value 

of lambda, 120
xzn

λ = × , is chosen. This ‘speckle cloud’ is 
reduced by tuning the weighting parameter, lambda, to a 
higher value. However, this ‘tune-up’ procedure comes with 
a loss in blood flow information, suggesting that ‘speckle 
cloud’ has some similarity to dynamic blood flow signal. 

A B

Figure 4 Resulting blood flow map using Eigen-regression filter on different number of ensembles (repeated B-frames): (A) nt =8, and (B) nt =5. 
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Upon closer inspection, the ‘speckle cloud’ seems to have 
high degree of spatial connectivity (Figure 7). The dynamic 
signals, which form ‘speckle cloud’, also locates in stratum 
spinosum region (Figure 7—top right); and their patterns 
occasionally form loops with cavities of approximately 
20–30 micrometers in size. Since the sizes of these loops 
are similar to the size of spinous cell and that their patterns 
resemble a honeycomb (31), it is possible that ‘speckle cloud’ 
represents the inter-cellular connection (desmosomes) of 
spinous cell. However, more investigations and evidence are 
needed to find a definitive answer to whether this ‘speckle 
cloud’ is indeed signals from the desmosomes of spinous cell.

Discussion

The raw OCT data holds most information about a sample 
of interests, including static structure and dynamic blood 

flow information. However, since our data is often large 
(typically 5 to 50 GB of memory) and not all information 
is required for diagnosis of certain disease. Therefore, 
raw data is usually processed and filtered to reveal the 
information of dynamic blood flow signal, which provides 
more clinical relevance about a particular disease. The 
reduction of information in our analysis achieves two 
things: (I) reduce the amount of information for further 
analysis; and (II) projecting our data onto new sets of bases 
which reveal most variance between frames (i.e., dynamic 
blood flow signal, speckles and noise). ED/SVD and 
SPCP analysis works on the same principal, where static 
and dynamic blood flow signals are filtered by comparing 
between the repeated frames within an ensemble. 

ED/SVD, as one of the techniques in traditional PCA, 
constructs the rank k subspace approximation to the nt-
dimension—nz observations that is optimal in a least-square 

-100 -100 -100 -100 -100 -100 -100

μm

-1000

Figure 5 Comparison between B-frames (top), and enface/top-down projection (bottom) from ED (left) vs. SPCP (right) analyses. ED, 
Eigen decomposition; SPCP, stable principal component pursuit.
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sense (26). However, least-square techniques are not robust in 
a context where outlying measurements can arbitrarily skew 
the solution from the desired solution (24). A few examples 
are tail-noise (strong scatters) and motion artefacts (low 
coherence of static signal between frames in an ensemble). 
Both examples produce bright stripes across the filtered data 
matrix, which represents a significantly lower blood flow 
SNR, in comparison to other regions not being affected.

This paper revisits current PCA techniques, and implement 
SPCP to improve the complex blood flow analysis. SPCP 
decomposes the observation matrix X, an ensemble of repeated 
A-scan lines, into static (low-rank), dynamic blood flow (sparse) 
and noise. Since the observations are often corrupted by 
noise, motion, and highly scattered speckles, adding a noise 
term seems to be a natural choice. The resulting blood flow 
matrix from SPCP analysis shows less motion and tail-noise 
artefacts. While the examples illustrate benefits of SPCP in 
comparison to ED/SVD, the disadvantages of SPCP should 
also be taken into account in order to avoid unwanted results. 

Perhaps too sensitive to the changes in signal between the 
repeated frames, SPCP introduces significantly more speckles 
artifacts, which are not ‘true flow’. In the example of nail fold, 
this unwanted result resembles desmosomes of spinous cell, 
and is questionable to whether this observation could be useful 
additional information.

Conclusions

In summary, ED/SVD (or PCA) and SPCP separate dynamic 
blood flow from static structure by assuming that the static 
signals between the repeated frames is highly correlated. ED/
SVD employ linear-regression filter and thus, is sensitive to 
outliers (tail-noise and motion artifacts). While SPCP is robust 
against outliers, this technique seems to enhance unwanted 
results albeit small in intensity. Lastly, RPCA (or SPCP in 
specific) is still computationally expensive, however, reader 
should keep in mind that RPCA is still under rapid development 
for efficiency and robustness at the time of writing. 

A B C

D E F

Figure 6 Enface projection of 3D-blood flow OMAG obtained from nail fold tissue with respect to increasing weight to sparse term, λ = (A) 
0.2e2, (B) 0.4e2, (C) 1e2, (D) 2e2, (E) 5e2, and (F) 10e2, respectively. OMAG, optical micro-angiography.



665Quantitative Imaging in Medicine and Surgery, Vol 7, No 6 December 2017

© Quantitative Imaging in Medicine and Surgery. All rights reserved. Quant Imaging Med Surg 2017;7(6):654-667qims.amegroups.com

Acknowledgements

Funding: This work was supported in part by grants from the 
National Heart, Lung, and Blood Institute (R01HL093140), 
the National Eye Institute (R01EY024158), Washington 
Research Foundation and an unrestricted fund from 
Research to Prevent Blindness. The funding organizations 
had no role in the design or conduct of this research.

Footnote

Conflicts of Interest: Dr. Wang discloses intellectual property 
owned by the Oregon Health and Science University and 
the University of Washington related to OCT angiography, 
and licensed to commercial entities, related to the 

technology and analysis methods described in parts of this 
manuscript. The other authors have no conflicts of interest 
to declare.

Ethical Statement: This study was conducted under a 
protocol approved by the University of Washington 
Institutional Review Board (No. 41841). 

References

1. Tarkin JM, Dweck MR, Evans NR, Takx RA, Brown AJ, 
Tawakol A, Fayad ZA, Rudd JH. Imaging Atherosclerosis. 
Circ Res 2016;118:750-69.

2. De Backer D, Orbegozo Cortes D, Donadello K, Vincent 

A B

C D

Figure 7 Enface OCTA projection of ‘speckle cloud’. (A) Original OMAG obtained using SPCP analysis with λ =1e2 and ε =1e-3; (B-D) are 
zoom-in visualization of the locations marked as “1”, “2” and “3” in (A) respectively. OCTA, optical coherence tomography-angiography; 
OMAG, optical micro-angiography; SPCP, stable principal component pursuit.



666

© Quantitative Imaging in Medicine and Surgery. All rights reserved. Quant Imaging Med Surg 2017;7(6):654-667qims.amegroups.com

Le et al. PCA in OMAG

JL. Pathophysiology of microcirculatory dysfunction and 
the pathogenesis of septic shock. Virulence 2014;5:73-9.

3. Allen J, Howell K. Microvascular imaging: techniques and 
opportunities for clinical physiological measurements. 
Physiol Meas 2014;35:R91-141.

4. Huang D, Swanson EA, Lin CP, Schuman JS, Stinson 
WG, Chang W, Hee MR, Flotte T, Gregory K, Puliafito 
CA, et al. Optical coherence tomography. Science 
1991;254:1178-81.

5. Tomlins PH, Wang RK. Theory, developments and 
applications of optical coherence tomography. J Phys D 
Appl Phys 2005;38:2519-35.

6. Reif R, Wang RK. Label-free imaging of blood vessel 
morphology with capillary resolution using optical 
microangiography. Quant Imaging Med Surg 2012;2:207-12.

7. Zhang A, Zhang Q, Chen CL, Wang RK. Methods and 
algorithms for optical coherence tomography-based 
angiography: a review and comparison. J Biomed Opt 
2015;20:100901.

8. Chen CL, Wang RK. Optical coherence tomography 
based angiography [Invited]. Biomed Opt Express 
2017;8:1056-82.

9. Chen CL, Bojikian KD, Gupta D, Wen JC, Zhang Q, 
Xin C, Kono R, Mudumbai RC, Johnstone MA, Chen PP, 
Wang RK. Optic nerve head perfusion in normal eyes and 
eyes with glaucoma using optical coherence tomography-
based microangiography. Quant Imaging Med Surg 
2016;6:125-33.

10. Kam J, Zhang Q, Lin J, Liu J, Wang RK, Rezaei K. 
Optical coherence tomography based microangiography 
findings in hydroxychloroquine toxicity. Quant Imaging 
Med Surg 2016;6:178-83.

11. Kashani AH, Chen CL, Gahm JK, Zheng F, Richter 
GM, Rosenfeld PJ, Shi Y, Wang RK. Optical coherence 
tomography angiography: A comprehensive review of 
current methods and clinical applications. Prog Retin Eye 
Res 2017;60:66-100. 

12. An L, Qin J, Wang RK. Ultrahigh sensitive 
optical microangiography for in vivo imaging of 
microcirculations within human skin tissue beds. Opt 
Express 2010;18:8220-8.

13. Wang RK, An L, Francis P, Wilson DJ. Depth-resolved 
imaging of capillary networks in retina and choroid using 
ultrahigh sensitive optical microangiography. Opt Lett 
2010;35:1467-9.

14. Wang RK, Jacques SL, Ma Z, Hurst S, Hanson SR, 
Gruber A. Three dimensional optical angiography. Opt 
Express 2007;15:4083-97. 

15. Reif R, Zhi Z, Dziennis S, Nuttall AL, Wang RK. Changes 
in cochlear blood flow in mice due to loud sound exposure 
measured with Doppler optical microangiography and 
laser Doppler flowmetry. Quant Imaging Med Surg 
2013;3:235-42.

16. Yousefi S, Qin J, Zhi Z, Wang RK. Uniform enhancement 
of optical micro-angiography images using Rayleigh 
contrast-limited adaptive histogram equalization. Quant 
Imaging Med Surg 2013;3:5-17.

17. Wang RK, Zhang Q, Li Y, Song S. Optical coherence 
tomography angiography-based capillary velocimetry. J 
Biomed Opt 2017;22:66008. 

18. Zhang Q, Wang J, Wang RK. Highly efficient eigen 
decomposition based statistical optical microangiography. 
Quant Imaging Med Surg 2016;6:557-63.

19. Yousefi S, Zhi Z, Wang RK. Eigendecomposition-based 
clutter filtering technique for optical micro-angiography. 
IEEE Trans Biomed Eng 2011;58(8).

20. Sullivan TJ. Spectral Expansions. In: Sullivan TJ. editor. 
Introduction to Uncertainty Quantification. Cham: 
Springer International Publishing, 2015:223-49.

21. Demené C, Deffieux T, Pernot M, Osmanski BF, Biran 
V, Gennisson JL, Sieu LA, Bergel A, Franqui S, Correas 
JM, Cohen I, Baud O, Tanter M. Spatiotemporal Clutter 
Filtering of Ultrafast Ultrasound Data Highly Increases 
Doppler and fUltrasound Sensitivity. IEEE Trans Med 
Imaging 2015;34:2271-85. 

22. Yu A, Lovstakken L. Eigen-based clutter filter design 
for ultrasound color flow imaging: a review. IEEE Trans 
Ultrason Ferroelectr Freq Control 2010;57:1096-111.

23. Jolliffe IT, Cadima J. Principal component analysis: a 
review and recent developments. Philos Trans A Math 
Phys Eng Sci 2016;374:20150202.

24. Candès EJ, Li X, Ma Y, Wright J. Robust principal 
component analysis? J ACM 2011;58:11.

25. Otazo R, Candès E, Sodickson DK. Low-rank plus sparse 
matrix decomposition for accelerated dynamic MRI with 
separation of background and dynamic components. Magn 
Reson Med 2015;73:1125-36. 

26. Gao H, Yu H, Osher S, Wang G. Multi-energy CT based 
on a prior rank, intensity and sparsity model (PRISM). 
Inverse Probl 2011;27. pii: 115012.

27. Zhou Z, Li X, Wright J, Candès E, Ma Y. Stable principal 
component pursuit. In: IEEE International Symposium 
on Information Theory Proceedings (ISIT 2010), 
2010:1518-22.

28. Wang RK, Ma Z. A practical approach to eliminate 
autocorrelation artefacts for volume-rate spectral 



667Quantitative Imaging in Medicine and Surgery, Vol 7, No 6 December 2017

© Quantitative Imaging in Medicine and Surgery. All rights reserved. Quant Imaging Med Surg 2017;7(6):654-667qims.amegroups.com

domain optical coherence tomography. Phys Med Biol 
2006;51:3231-9.

29. Yin X, Chao JR, Wang RK. User-guided segmentation for 
volumetric retinal optical coherence tomography images. J 
Biomed Opt 2014;19:086020.

30. De la Torre F, Black MJ. Robust principal component 

analysis for computer vision. Proceedings Eighth IEEE 
International Conference on Computer Vision. ICCV 2001. 

31. Meyer LE, Otberg N, Sterry W, Lademann J. In vivo 
confocal scanning laser microscopy: comparison of the 
reflectance and fluorescence mode by imaging human skin. 
J Biomed Opt 2006;11:044012.

Cite this article as: Le N, Song S, Zhang Q, Wang RK. 
Robust principal component analysis in optical micro-
angiography. Quant Imaging Med Surg 2017;7(6):654-667. doi: 
10.21037/qims.2017.12.05


