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Introduction

Spastic diplegia is a subtype of bilateral spastic cerebral 
palsy (CP). It is the most common form of CP and is 
strongly associated with prematurity (1). While spasticity 
is present in all four limbs, the lower limbs are consistently 
more severely affected. The upper limbs may appear 
relatively normal but fine motor function and dexterity is 
diminished. These motor difficulties may represent motor 
planning difficulties or even dystonia (variable muscle 
tone) which is not uncommon to see even in children with 
classical spastic diplegia and periventricular leukomalacia 
(PVL) on magnetic resonance imaging (MRI) brain scan. 
The motor disorder may evolve as muscle shortening, 
tendon contractures and rotational bone and joint 
deformities develop. Patients may develop a crouch gait as 
they grow, which makes walking increasingly difficult. As 
a result, although the primary neurological lesion is non-

progressive, CP can appear to clinically deteriorate as the 
child grows (2-4).

The severity of the motor disability in spastic CP 
is classified according to the Gross Motor Function 
Classification System (GMFCS) (5). Definition of a child’s 
GMFCS level requires detailed physical assessment and 
carries prognostic implication (6). Patients with GMFCS 
grade III–V demonstrate a decline in function over time (6), 
highlighting the need for early and effective treatment of 
their spasticity.

Although the diagnosis of CP is clinical, MRI contributes 
to establishing the diagnosis in equivocal cases (7). PVL is 
seen in over 70% of patients with bilateral diplegia (8). PVL 
compromises supratentorial influence to the spinal neuronal 
pool, and abnormal inputs through the vestibular and 
reticular nuclei and their tracts results in loss of inhibition 
to the spinal reflex arcs. This results in an increase in 
tone, and, in particular, damage to the vestibulospinal 
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tracts increases extensor tone. Due to the topographic 
arrangement of the periventricular white matter, smaller 
lesions, usually limited to the trigonal regions of the 
ventricles, primarily affect the lower limbs, while more 
extensive lesions also cause upper limb spasticity.

A goal-oriented multidisciplinary approach to the 
management of CP should be considered throughout the 
patient’s life (2). Conservative, pharmacological and surgical 
interventions all play an important part. Among these, 
selective dorsal rhizotomy (SDR) is a valuable neurosurgical 
treatment option for spastic diplegia (3,9). While SDR 
has been used in patients with spastic quadriplegia, these 
patients generally have poorer outcomes (10). SDR in 
patients with spastic diplegia involves the selective division 
of afferent L1-S2 nerve roots in order to target aberrant 
reflex arcs contributing to spasticity of the lower limbs.

This article discusses the state of practice of SDR, 
emphasising the patient work up and technique. Long term 
outcomes are also discussed.

Patient workup

Patient selection for SDR is variable and has not been 
generally validated. It is typically based on clinical rationale 

rather than scientific evidence (11). The general selection 
criteria defined by Peacock in 1987 still apply (12), but the 
use of strict patient selection criteria can enhance outcomes. 
The current criteria at Great Ormond Street Hospital for 
Children (GOSH) are shown in Table 1 (9), which is broadly 
similar to the Peacock selection criteria.

Two contemporaneous landmark case series from Cape 
Town and Oswestry highlight the significant advantage 
of strict selection criteria (12,13). The Cape Town 
series used Peacock’s criteria (12). Their results were 
consistent with randomised controlled trials and meta-
analyses, demonstrating reduction in spasticity, as well as 
improvement in gait and range of movement; although 
GMFM scores improved, children tended to stay within 
their GMFCS grade (12). In contrast, Oswestry conducted 
a strict selection process, including a multidisciplinary 
assessment that encompassed elements of the Peacock 
criteria (13). Their selection criteria are shown in Table 2; 
it encompassed elements of the Peacock criteria as well as 
spine and hip radiographs, gait analysis, EMG, and MRI 
of the brain and spinal cord (13). Only 35% of referred 
children were selected for SDR. 90% of the selected 
patients were able to improve their GMFCS level (13), 
though the long term results are not known. 

Table 1 General selection criteria for SDR at GOSH

History

No age restriction; typically, 3–14 years 

At least six months after the last botulinum toxin A injection

At least six months after orthopaedic surgery

Cognitive and emotional ability to cope with intensive rehabilitation process

Supportive home environment 

Access to rehabilitation facilities

Examination

Spastic diplegia with no significant ataxia or dystonia

A degree of ambulation with or without assistive devices, typically GMFCS grade II or III

Good trunk control and good lower extremity antigravity strength on clinical examination

No significant scoliosis

Investigations

No injury to basal ganglia, brainstem or cerebellum on MRI

Riemer’s index <40% on X-ray

SDR, selective dorsal rhizotomy; GOSH, Great Ormond Street Hospital for Children; GMFCS, Gross Motor Function Classification System; 
MRI, magnetic resonance imaging.
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It should be noted that the strict Oswestry criteria select 
for patients who are more likely to have a good outcome, 
and may exclude patients who could benefit from the 
reduction in spasticity even though they may not improve 
their GMFCS level. Benefits beyond GMFCS improvement 
are real and need to be balanced in the choice of selection 
criteria. 

History

Age is an important consideration for SDR due to both 
patient maturity and the natural history of CP. Below 
the age of 3, children are unlikely to respond well to 
intensive postoperative physiotherapy. Young children 
are still establishing motor patterns and it is important to 
understand the natural motor trajectory of the child before 
significant intervention. Abnormal muscle tone such as 
dystonia may be overcome with motor maturation but in 
some instances it can become more evident as the child 
develops. 

These factors are not necessarily exclusions for going 
forward with SDR but may alter the final outcome and goals 
for the child and family. It is therefore often sensible not to 
simply rush to SDR without suitable MDT assessment. Over 
the age of 10 weakness and lower limb deformity are often 
more relevant than spasticity, and these children may have 
better outcomes with multi-level orthopaedic surgery (14).  
However, older children and young adults with predominant 
spasticity still benefit from SDR (15). This raises the 
importance of quality selection algorithms for patients with 
bilateral spastic CP (11).

The establishment of realistic and specific goals prior 
to SDR is essential. The evidence supports the use of 
SDR to address spasticity (16) but children are unlikely to 
progress to higher GMFCS levels following rehabilitation. 
In practice, the importance of setting appropriate 
specific objectives with families, within the context of the 
surgical risks and the need for intensive post-operative 
rehabilitation, cannot be overemphasised. In our experience 
in ambulant children SDR leads to improved mobility, 

Table 2 The Oswestry selection criteria (13); note the differences with the GOSH criteria in Table 1 

History

Age 5–10 years 

Absence of chronic conditions such as epilepsy

IQ >70

Well motivated

No previous multilevel surgery

Supportive home environments

Examination

Spastic diplegia with no significant ataxia or dystonia

Moderate to severe spasticity

Mean lower limb power >3 on Medical Research Council scale for muscle power

At least moderate movement control

At least moderate balance

Absence of severe fixed joint deformity

No significant scoliosis

Investigations

No injury to basal ganglia on MRI

No hip dysplasia

Weight not disproportionately greater than height

GOSH, Great Ormond Street Hospital for Children; IQ, intelligence quotient; MRI, magnetic resonance imaging. 
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increased stamina, better balance and fewer falls. Children 
who walk with assistance become more independent. 
Sitting and standing posture improves. In addition, the pain 
associated with spasticity responds well to SDR (9). 

Examination

Although the GMFCS is useful to provide a clear clinical 
description, it does not provide sufficient detail to evaluate 
a child’s baseline disability and its change following 
interventions, including SDR. The Gross Motor Function 
Measure (GMFM) is widely used to provide the finer 
quantitative detail for assessment (17). More recently, the 
gradual decline in GMFM scores in older children and 
young adults, within the five GMFCS bands, has been 
defined (6). This is helpful in evaluating the effects of an 
intervention over a background of the natural history of 
progressive deterioration in CP for the individual child. 

Investigations

Brain MRI is essential prior to SDR and in most cases 
confirms PVL. Typical features of PVL are shown in  
Figure 1. Children with PVL in which the white matter 
scarring extends significantly anteriorly to involve the 
basal ganglia and thalami are generally considered a 
contraindication to SDR (11).

The highest risk for PVL occurs between 23 and  
32 weeks’ gestational age (2). PVL may be focal or diffuse, 
ranging from areas of hyperintensity within the deep 
white matter adjacent to the ventricular ependyma at the 
trigone, evident on T2-weighted MR imaging, to extensive 
involvement around the entire ventricular system. When 
severe, it leads to loss of white matter tissue, cavitation and 
cyst formation, as well as passive ventriculomegaly with a 
thin corpus callosum. Figure 2 shows a more severe case of 
PVL with extensive scarring, which is assessed as unlikely to 
have a good outcome.

MRI is particularly important in defining the extent 
of brain injury and potential improvement with SDR. 
Severe hypoxic ischemic injury may lead to watershed 
infarcts involving cortical tissue and subcortical white 
matter, as well as metabolically active tissues such as the 
thalamus, hippocampus and pyramidal tracts. Extensive 
involvement of the basal ganglia, as shown in Figure 3 is also 
consistent with hypoxic ischaemic injury sustained at term. 
This is associated with a poor prognosis; children often 
demonstrate significant dystonia in addition to spasticity 
and do not benefit from SDR to the same degree. Children 
with significant involvement of the thalami, basal ganglia, 
cerebellum or brainstem are likely to have difficulties in the 
postoperative rehabilitation phase.

The s ingle  level  procedure  i s  dependent  on a 
physiological location of the conus and a plain spinal 

Figure 1 Typical features of PVL with white matter scarring in the deep and periventricular white matter bilaterally (yellow arrows), 
reduced thalamic volume (middle picture) and reduction in the bulk of the cerebral white matter posteriorly (red arrow pointing at the 
reduced bulk of the corpus callosum posteriorly). This is a good candidate for SDR given the lack of extensive anterior white matter 
involvement and sparing of the basal ganglia structures. PVL, periventricular leukomalacia; SDR, selective dorsal rhizotomy.

A B C
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Figure 2 More severe case of PVL with more extensive scarring. Note the scalloping of the lateral ventricular margins, and the involvement 
of the posterior limbs of the internal capsules and thalami (yellow arrow). SDR outcome not judged to be favourable. PVL, periventricular 
leukomalacia; SDR, selective dorsal rhizotomy.

Figure 3 Case of neonatal encephalopathy, born at 36+4 with placental abruption in poor condition. Note the extensive white and grey 
matter involvement, involving also the basal ganglia. Not judged to be a favourable candidate for potential SDR in the future as the 
likelihood of developing dystonia secondary to basal ganglia involvement is high in such cases. SDR, selective dorsal rhizotomy.
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radiograph is required to exclude spinal dysraphism. 
Radiological investigations are used to investigate hip 
subluxation, which is measured by Reimer’s index (18). 
It is measured by the percentage of the femoral head 
that is lateral to Perkin’s line on a plain radiograph. The 
relative risk of hip subluxation increases with GMFCS 
level (19) and increases over time as the disease clinically 
deteriorates (20). 

Technique

SDR has evolved significantly since Foerster first performed 
dorsal rhizotomy for the relief of spasticity in 1908 (9). 
The single-level technique was first described by Park and 
Johnston (15). While it is technically more difficult than 
the multilevel approach, it does reduce operative time and 
recovery time.

A small midline fenestration is made at T12-L1 and 
allows identification of the conus using ultrasonography. 
The conus, and the L2 to S2 nerve roots, are then exposed 
through a single level laminectomy, usually at L1 or T12. 
There is a clear identifiable anatomical plane between the 
ventral (motor) and dorsal (sensory) roots (Figure 4); the 
motor roots are protected throughout the procedure. The 
L2 to S1 dorsal nerve roots are individually identified and 
divided into 4–5 rootlets.

The L2 to S1 sensory nerve roots are systematically 

stimulated using intraoperative electromyography (EMG) to 
determine their threshold amplitude. Electrodes are placed 
in the psoas (L2), vastus lateralis (L3), tibialis anterior (L4), 
peroneus longus (L5) and gastrocnemius (S1). External anal 
sphincter tone is monitored for damage to the pudendal 
nerve during the operation. 

Each rootlet is stimulated at the threshold amplitude at a 
frequency of 50 Hz and then graded as shown in Table 3 (9). 
The objective of the procedure is to divide approximately 
60% to 70% of the sensory roots between L2 and S1. 
Rootlets with grade 3 to 4 responses are preferentially 
divided. In addition, 50% of the L1 sensory nerve root is 
divided as it exits its foramen. Intraoperative monitoring of 
the pudendal nerve together with limited division of the S2 
nerve root is now commonly practised to reduce the risk of 
incontinence and to prevent unmasking excessive weakness 
and precipitating crouch gait.

Reported intraoperative complications are primarily 
focused on anaesthetic risks, such as bronchospasm and 
aspiration due to pre-existing respiratory distress or 
gastro-oesophageal reflux disease, which are common 
in this patient population (21). Intraoperative surgical 
complications however may include bleeding, damage to 
surrounding structures, inadequate closure of the dura or 
technical difficulties relating to the spinal anatomy that 
could result in the abandonment of the surgery; these may 
result in acute complications discussed below.

Figure 4 The current SDR technique. (A) The single level laminectomy; (B) the plane between the dorsal and ventral nerve roots; (C) 
dorsal nerve roots are collected in a sling in order to expose the ventral motor roots; (D) peacock probes are used to systematically stimulate 
the dorsal roots from lateral (L2), to medial (S1). SDR, selective dorsal rhizotomy.

A

C

B
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Table 3 Intraoperative EMG responses

Grade Definition EMG

I EMG response is restricted to a single muscle group

II Adjacent muscle groups respond to the stimulation

III Muscle groups beyond the adjacent muscle groups 
respond to the stimulation

IV Diffuse bilateral muscle groups respond to the 
stimulation

EMG, electromyography.
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Outcomes

Possible acute complications of the procedure include 
infection, haemorrhage and leak of cerebrospinal  
fluid (16). Patients commonly experience transient 
dysaesthesiae or itch9. Permanent complications are rare 
following SDR. Multi-level SDR has been reported to 
result in spinal abnormalities, such as scoliosis, kyphosis, 
lordosis and spondylolisthesis, as well as hip subluxation 
(11,22-27). However, there is no clear evidence whether 
these abnormalities are the direct result of SDR or integral 
to the natural history of spastic CP (11). Nevertheless, the 
single level laminectomy aims to reduce the likelihood of 
such abnormalities, and this has been confirmed in a large 
patient series (28). 

The evidence from randomised control trials suggests 
that functional gains following SDR are likely to be 
moderate (16). A meta-analysis (29) of three RCTs 
comparing SDR combined with physiotherapy to 
physiotherapy alone (30-32) found that GMFM increases 
by approximately 4% following the combined treatment, 
which is almost double what physiotherapy alone would 
achieve. Of these three RCTs, only McLaughlin et al. found 
no significant increase in GMFM (32). However, this can 
be attributed to the division of fewer dorsal rootlets than 
the current technique (9). In an RCT comparing SDR 
to botulinum toxin A injections, the effects of SDR were 
more enduring than botulinum toxin A injections and SDR 
patients had fewer orthopaedic interventions (33). 

The long term effects of SDR are emerging. Daunter, 
Kratz and Hurvitz’s recent case-control study found that 
patients who underwent SDR as children were significantly 
more likely to have less functional decline compared with 
age-matched controls, however there was no significant 
difference in pain or fatigue (34). Park et al. recently 
followed up 294 adults who underwent SDR as children (28).  
They found that the benefits of SDR continued into 
adulthood with no long-term complications. A relevant 
limitation to these studies however relates to a relatively 
low response rate in a questionnaire-based study. Other 
studies on the long term effects are generally positive (9) 
with sustained improvements in lower limb muscle tone and 
no recurrence of spasticity (35-37). Notably, the Paediatric 
Evaluation of Disability Inventory (PEDI) scores of children 
classified as GMFCS I–III showed improvement in the 
functional skills, mobility and caregiver domains, whereas 
children classified as GMFCS IV–V showed small changes 
(35,36). While Park et al. found 59% of patients underwent 

subsequent orthopaedic surgery (28), other studies have 
found a significant reduction in the requirement for further 
orthopaedic intervention compared to other studies of 
children of similar ages who did not undergo SDR (37,38). 

Less satisfactory long-term outcomes have been reported 
and provide a substantial contribution to the evidence base 
for patient selection (9). Based on this evidence, it is now 
generally agreed that good long-term results are achieved 
in young children (14), who are diplegic rather than 
quadriplegic (10), and those whose GMFCS grade is II–
III (35-36). Indeed, MacWilliams et al. found that children 
over the age of 10 had better outcomes with multi-level 
orthopaedic surgery rather than SDR (14), which reflects 
the evolving nature of CP.

Patients tend to report improvements in activities of 
daily living (ADL) (24,39). For instance, the Cape Town 
experience found that 20 years after SDR there was a 58% 
improvement from baseline in ADL with no worsening 
of GMFCS grade (24). Moreover, one study reports that 
former patients would recommend SDR to other patients 
with CP, and are unlikely to report negative impressions of 
the procedure (40).

The postoperative care and rehabilitation is intensive 
and reinforces the need to select patients with a supportive 
home family and accessible rehabilitation services (41). 
Postoperatively, patients demonstrate muscle weakness 
and require intensive physiotherapy. Recovery following 
the single-level technique is generally rapid and children 
typically resume physiotherapy after 2 to 3 days of bed 
rest (42). Patients then undergo 3 weeks of twice daily 
physiotherapy. Depending on the child’s ability and progress, 
two to three sessions of physiotherapy are recommended 
every week for up to four months. Formal progress 
assessments are subsequently conducted at six, twelve and  
24 months.

Conclusions

SDR has evolved over the past century to become a valuable 
management option in the treatment of spasticity in 
children with CP. The evidence base for patient selection 
criteria is emerging but will require a careful balance 
between optimal improvements in GMFCS and the impact 
on the natural history of spastic CP in a wider group of 
patients. Patients are unlikely to experience permanent 
complications with the use of the single laminectomy 
technique. Patients are likely to show a significant reduction 
in spasticity but are unlikely to advance in GMFCS level. 
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Nevertheless, they are less likely to require further surgical 
interventions and improve their independence in ADL and 
quality of life (QOL) in the long term.
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