
© Quantitative Imaging in Medicine and Surgery. All rights reserved. Quant Imaging Med Surg 2018;8(2):196-208qims.amegroups.com

Introduction

Parallel computing is a type of classic computation to speed
up the computer speed (1). It can divide the large problems
into lots of smaller ones. Their calculations are carried
out simultaneously, or their process executions are carried
out simultaneously. Parallel computing can bring higher-
performance computation in comparison to the classic
computation (2), but it generally requires hardware support.
Parallel computing has become a dominant popular field
in computer architecture paradigm (3), mainly in the form
of multi-core processors parallel computing, for example,
clusters computing, massively parallel computing (MPPs),
grids computing, graphics processing units (GPU), etc.
Recently, the progress of single-core processor performance
has almost arrived at the physics limitations, and Moore’s
law has become less effective to raise the computational
feasibility of more complex algorithms. Instead, the
scientists and engineers have to shift their algorithms of
growing complexity to parallel computing architectures for

decreasing practical processing times of their algorithms.
During the past few years, GPUs have been developed

with incredible increase in number due to relatively cheap
and high-performance calculation platforms for data parallel
computing, especially in medical image reconstruction
of massive data-set. General-purpose computing on
GPUs (GPGPU) has been a fairly recent trend in parallel
computing research. Among the GPGPU framework, the
use of massive multiple graphics units in one computer
can further parallelize the existing parallel nature of GPUs
due to the specialization in each chip. It can provide some
advantages of the higher-performance computation ability,
which multiple CPUs cannot offer (4). However, the high-
performance computation utilization on GPU or GPGPU
requires reformulating current sequential computation
problems in terms of graphics primitives, which have
been supported on GPUs by the two major API libraries
for graphics processors: OpenGL and DirectX. This
cumbersome translation from general programming to GPU
hardware was obviated by the obscure GPU programming

Review Article

A survey of GPU-based acceleration techniques in MRI
reconstructions

Haifeng Wang1, Hanchuan Peng2, Yuchou Chang3, Dong Liang1

1Shenzhen Institutes of Advanced Technology, Chinese Academy of Sciences, Shenzhen 518055, China; 2Allen Institute for Brain Science, Seattle,

WA, USA; 3Computer Science and Engineering Technology Department, University of Houston-Downtown, Houston, Texas, USA

Correspondence to: Prof. Dong Liang. Shenzhen Institutes of Advanced Technology, Chinese Academy of Sciences, Shenzhen 518055, China.

Email: dong.liang@siat.ac.cn.

Abstract: Image reconstruction in magnetic resonance imaging (MRI) clinical applications has become
increasingly more complicated. However, diagnostic and treatment require very fast computational
procedure. Modern competitive platforms of graphics processing unit (GPU) have been used to make high-
performance parallel computations available, and attractive to common consumers for computing massively
parallel reconstruction problems at commodity price. GPUs have also become more and more important for
reconstruction computations, especially when deep learning starts to be applied into MRI reconstruction.
The motivation of this survey is to review the image reconstruction schemes of GPU computing for MRI
applications and provide a summary reference for researchers in MRI community.

Keywords: Graphics processing unit (GPU); magnetic resonance imaging (MRI); reconstruction

Submitted Nov 28, 2017. Accepted for publication Mar 05, 2018.

doi: 10.21037/qims.2018.03.07

View this article at: http://dx.doi.org/10.21037/qims.2018.03.07

208

197Quantitative Imaging in Medicine and Surgery, Vol 8, No 2 March 2018

© Quantitative Imaging in Medicine and Surgery. All rights reserved. Quant Imaging Med Surg 2018;8(2):196-208qims.amegroups.com

languages such as Sh/RapidMind, Brook and Accelerator
(5,6). But they are hard to be applied for the common
programmers without corresponding programming training.
To further provide real convenience to GPU programmers,
three libraries, which are NVIDIA’s Compute Unified
Device Architecture (CUDA), Microsoft’s DirectCompute
and Apple/Khronos Group’s OpenCL, provided more
feasible GPU programming frameworks for programmers
to ignore the requiring full and explicit conversion of the
data to the graphical forms and take advantages of the high-
performance computing speeds on GPUs (7). Actually, a
group at SGI Corporation has firstly implemented a GPU
computing of image recon processing on an Onyx primitive
workstation using the RealityEngine2.5 in 1994 (8).
Because of the graphics-hardware limitations at that time,
the SGI graphics-hardware implementation is 100 times
slower than a single-core CPU processor in 2004 (8).
However, the performance developments of recent single-
core CPU processors have been much slower than the
multi-core of GPU processors. Today, GPUs have been
a standard hardware part of the current computers for
graphics processing and are further designed as relatively
independent frameworks for processing data parallel
problems, which can assign individual element data to
separate logical cores for complex processing [as seen in (9)].
As seen in Figure 1, it presents the evolution of bandwidth
and computation abilities between GPUs and CPUs in GB/s
and GFLOP/s (i.e., billions of data movement speed per
second; billions of floating point operations per second
under single and double precision situations) (10). If GPU
is compared on a chip-to-chip basis against CPUs, GPUs
can have much better capability on both key indexes, speed
of calculation (FLOPS) and speed of data movement (GB/s)

(10,11). Therefore, this development shift between GPUs
and CPUs gives a new motivation for researchers to re-
consider parallelizing their computations of medical image
applications on GPU frameworks. Through directly
inputting the data-parallel computation part onto GPUs,
the number of physical computers within a computer
can be greatly reduced to minimum. The benefits are
not only reducing computer cost, but also requiring less
maintenance, space, power, and cooling for whole system
operation cost inside any institutes, schools or hospitals.

GPU computing

The physical architectures and processing model of GPU
and CPU are very different, which is the main reason
the computing power of GPU is much faster than CPU.
As seen in Figure 2 (12), GPU has the features that can
provide many data-parallel, high memory bandwidths and
deeply multi-threaded cores for large number of simple
computation tasks, but CPU just can provide the limited
cores for high-complex computation tasks. Architecturally,
as seen in Figure 2, the structure comparison between CPUs
and GPUs in GLOP/s computation capability is that GPUs
are highly specialized for compute-intensive, highly parallel
computation hardware structure and design that over 80%
of transistors are contributed for data processing rather
than the data caching and flow control functions; on the
contrary, CPUs are designed as a few cores with many cache
memories for easily handling complex software threads
at one time. For instance, a general GPU can have 100+
processing cores which can handle thousands of software
threads simultaneously. In theory, the GPUs’ performance
can be accelerated to process thousands of software threads

Figure 1 Comparison speed of calculation (FLOPS) and speed of data movement (bandwidth) (GB/s) between GPUs and CPUs with years.
Figure taken with kind permission from Ref. (10).

Peak-double-precision-flops-(GFLOPs)

6000

5000

4000

3000

2000

1000

0
2006 2008 2010 2012 2014 2016 2018

GPU

CPU

Peak memory bandwidth (GB/s)
800

700

600

500

400

300

200

100

0
2006 2008 2010 2012 2014 2016 2018

GPU

CPU

198 Wang et al. GPU-based acceleration in MRI reconstructions

© Quantitative Imaging in Medicine and Surgery. All rights reserved. Quant Imaging Med Surg 2018;8(2):196-208qims.amegroups.com

by 100× over CPUs’ alone processing. Because of the
special GPU architectures which are different from general
CPU architectures, GPU codes can easily run algorithms in
parallel. But in most cases of general CPU-based algorithm,
there is no algorithm which can be suitable for GPUs,
because the general algorithms are suitable for the general
CPU architectures. The problems require that the general
algorithms should be redesigned into new, more power- and
cost-efficient parallel algorithms for GPUs’ special features.
The parallel codes can certainly bring higher-performance
for developed algorithms, and simultaneously bring more
difficult debugging problems than general codes.

As we know, GPUs are primitively developed to accelerate
the image processing speed of graphics cards. When
graphics mode is turned on, based on the GPUs’ API such as
OpenGL or DirectX, programmers can implement shading
programs to custom the graphics pipelines of GPUs at run
time, using high-level shading languages such as NVIDIAC
for Graphics (CG), OpenGL Shading Language (GLSL), or
Microsoft High-Level Shading Language (HLSL), Adobe
Graphics Assembly Language (AGAL), Sony PlayStation
Shader Language (PSSL), etc., which are originally designed
for real-time rendering (2). Although early GPU computing
programs have achieved impressive accelerations on
medical image processing (13-16), they suffered from some
drawbacks as follows. Firstly, the GPU computing coding
is very difficult for entry-level programmer to develop the
qualified code, because they need to be defined in terms of
graphics concepts, for instance, vertices, texture coordinates,
and fragments; secondly, acceleration performances of GPU
computing codes are compromised by the lack of access to

all the capabilities of GPUs, such as shared memory and
scattered writes; thirdly, the code portability is constrained
by the specific hardware features of some graphics
extensions (8).

In order to solve the drawbacks, there are four major
commercial framework solutions, CUDA, OpenCL,
Stream and DirectCompute, which have been deployed
to generate parallel higher-performance codes for GPU.
Among them, CUDA was developed recently by NVIDIA;
OpenCL is an open standard library that was developed
by Khronos Group; Stream was developed by AMD (ATI
chips); DirectCompute was developed by Microsoft (2).
Among the solutions, CUDA is the solution that is most
widely used to rewrite algorithms to be GPU-enabled and
efficient by programmers in computer graphics, image
processing, computer vision, computational fluid dynamics
(CFD) and many more fields. The primary advantage of the
CUDA framework is that it can easily bring the C/C++-like
development environment and the parallel capabilities of
GPU acceleration for programmers, but does not require
programmers to have lots of detailed knowledge of GPU
hardware architectures. Although they are much helpful for
programmers to employ GPUs into the application, there
are still some more consumable software packages based
on CUDA and OpenCL libraries for the programmers
who are not familiar with GPU programming and have
finite C/C++ parallel programming experiences. Here,
several popular libraries should be mentioned, Thrust,
cuFFT, cuSOLVER, cuSPARSE, and cuDNN, which
are widely used in applications ranging in the fields of
signal processing and image processing (17,18). For

CPU GPU

Figure 2 Comparison of GPU and CPU devotes more transistors to data processing (12). ALU, arithmetic logical unit; GPU, graphics
processing unit; DRAM, dynamic random access memory.

199Quantitative Imaging in Medicine and Surgery, Vol 8, No 2 March 2018

© Quantitative Imaging in Medicine and Surgery. All rights reserved. Quant Imaging Med Surg 2018;8(2):196-208qims.amegroups.com

example, Thrust is a derivative C++ template library for
parallel GPU platforms based on the well-known CPU-
based Standard Template Library (STL). It can provide
programmer a shortcut to easily utilize prototype demos
for high performance CUDA applications with minimal
programming efforts through its high-level interfaces fully
interoperable with technologies such as C/C++, CUDA,
etc. (18). The cuFFT library provides a simple software
interface based on the well-known Cooley-Tukey and
Bluestein algorithms to get accurate Fourier transformation
(FT) results faster than ever, and its speed of computing
fast Fourier transforms (FFTs) is up to about 10× faster of
computing discrete Fourier transforms for any complex
or real-valued data sets. The cuSOLVER library provides
a collection of dense and sparse direct solvers which can
deliver significant accelerations for computer vision, CFD,
and linear optimization applications. The cuSPARSE
library including a sparse triangular solver provides a
collection of basic linear algebra subroutines used for sparse
matrices can deliver up to about 8× faster performance
than the well-known Intel Math Kernel Library (MKL).
As a GPU-accelerated version of the complete standard
library, it can deliver 6× to 17× faster performance than
the Intel MKL. The cuDNN library is a GPU-accelerated
library for deep neural networks (NNs), which can provide
highly tuned implementations for standard routines such as
forward and backward convolution, pooling, normalization,
and activation layers (18). The cuDNN library allows
researchers to focus on training designed NNs and
developing software applications rather than spending
much time on realizing low-level GPU performance tuning.
Now, cuDNN has been widely applied into many deep
learning frameworks, such as, Caffe, TensorFlow, Theano,
Torch, and so on. Actually, these libraries have enough
ability to provide enough supports for most computations
of algorithm operations in magnetic resonance image
reconstruction. Therefore, providing the competitive
ability of high-performance parallel computing supported
by these libraries, GPU-based computing algorithms
have been applied into the comprehensive applications of
magnetic resonance image reconstruction, due to GPUs’
super-powerful parallel computing ability with multi-thread
capabilities and multi-core architectural structures (19).

Magnetic resonance imaging (MRI) reconstruction

In clinical applications, MRI reconstruction calculations
have become more and more complex for computers, so

there are urgent speed requirements from doctors and
scientists to review the patients’ images without too long
waiting for reconstruction processing. Currently, GPU
computing has been increasingly investigated for clinical
MRI reconstruction applications (Table 1). According to
statistics, there are lots of papers about GPU, MRI and
reconstruction which are published from 2005 to 2016,
as seen in Figure 3. This plot illustrates prevalence of
GPU-based methods in the field of MRI reconstruction.
It is explicit that GPU-accelerated MRI reconstructions
became much more applicable especially after the release
of NVIDIA’s CUDA in 2007 (47). Actually, the number
of publications related to GPU and MRI always increases
very quickly, but recently, the publications about GPU,
MRI and reconstruction do not grow up synchronously.
The growth is slowing down, because most of the GPU-
accelerated algorithms about typical MRI reconstruction
have been studied well and implemented on GPUs. Among
these GPU-accelerated methods, they can roughly be
divided into three categories of MRI reconstruction with
GPU computing, FT, parallel imaging (PI), compressed
sensing (CS), and deep learning, which are going to be
introduced as follows. A summarization of GPU-based MRI
reconstruction method is presented in the Table 1. Here,
it is default to apply GPUs to accelerate deep learning
applications, because GPUs are suitable for deep learning
calculations. Otherwise, the CUDA library and hardware
of NVIDIA Corp. have occupied the field of the GPU
computation. It seems that the NVIDIA Tesla cards are not
faster than the NVIDIA GeForce cards, but it is an illusion
and NVIDIA Tesla cards are more powerful than NVIDIA
GeForce cards. Actually, the speed-up factors of GPU-
based MRI reconstruction depend on the system platforms,
GPU-implementation and reconstruction algorithms.

FT

Most MR imaging methods are designed based on Fourier
encoding, so that methods in the MRI reconstructions
include basic FFT. The FFT implementation on CPUs has
already been quite efficient, but its version on GPUs can be
accelerated faster than on CPUs. Actually, Sumanaweera
et al. presented to implement the Cartesian FFT method
as a multi-pass decimation-in-time butterfly algorithm on
GPUs in the book of Ref. (19). They presented several
specific approaches for obtaining higher performance,
using two pbuffers and balancing some computing loads
from fragment processors into the vertex processors

200 Wang et al. GPU-based acceleration in MRI reconstructions

© Quantitative Imaging in Medicine and Surgery. All rights reserved. Quant Imaging Med Surg 2018;8(2):196-208qims.amegroups.com

and rasterizers. And they briefly illustrated the high-
performance experiments of MRI reconstruction and
ultrasonic imaging. Then, Schiwietz et al. described
an efficient GPU-based implementation of the non-
Cartesian FFT (20), which was written in primitive and
underlying Microsoft’s DirectX with C/C++ and HLSL.
They implemented a look-up-table (LUT)-based Kaiser-

Bessel window gridding algorithm and a Ram-Lak filtered
back-projection method. Their primary results showed
the recon time and image quality for two GPU-based
reconstruction algorithms that were comparable with
the CPU-based implementations for radial trajectories.
Otherwise, Sørensen et al. also presented a fast parallel
GPU-accelerated algorithm to compute the nonequispaced

Table 1 Summarization of GPU-based MRI reconstruction methods

Reference Application GPU hardware GPU library Speed up than CPU

(19) Cartesian FFT NVIDIA Quadro FX NV40 HLSL 2×

(20) Cartesian FFT ATI Radeon X1800 XT HLSL, DirectX 3.5×

(21) Non-uniform FFT (nonequispaced FFT) NVIDIA GeForce GTX 8800 NFFT library 21–85×

(22) Non-uniform FFT (conjugate gradient solver) NVIDIA GeForce GTX 8800 CUDA library 10×

(23) Non-uniform FFT (optimal least square NUFFT) – – –

(24) Gridding (PROPELLER) NVIDIA GeForce GTX 8800 CUDA library 9×

(25) Gridding (reverse gridding of PROPELLER) NVIDIA GeForce GTX 8800 CUDA library 8×

(26) Gridding (reverse gridding optimization) NVIDIA Tesla C2050 CUDA library 6–30×

(27,28) Gridding (conjugate gradient linear solver) NVIDIA Tesla M2070 CUDA library 26×

(29) Parallel imaging (Cartesian SENSE, k-t SENSE) NVIDIA GeForce GTX 8800 CUDA library 3–108×

(30) Parallel imaging (radial SENSE) NVIDIA GeForce GTX 280 CUDA library 10–12×

(31) Parallel imaging (radial iterative SENSE) NVIDIA GeForce GTX 280 CUDA library 2×

(32) Parallel imaging (radial GRAPPA) NVIDIA Tesla M2090 CUDA library –

(33) Parallel imaging (GRAPPA operator gridding) NVIDIA GeForce GTX 780 CUDA library 6–30×

(34) Parallel imaging (radial ART) NVIDIA GeForce GTX 580 CUDA library 15×

(35) Compressed sensing (conjugate gradient solver) NVIDIA GeForce GTX 280 CUDA library 200×

(36) Compressed sensing (split Bregman regularization) NVIDIA Tesla C2050 CUDA library 10×

(37) Compressed sensing (3D Radial Cardiac MRI) NVIDIA GeForce GTX 480 CUDA library 34–54×

(38) Compressed sensing (ADMM algorithm) NVIDIA GeForce GTX 650 CUDA library 30×

(39) Compressed sensing (SENSE-type acquisition) NVIDIA Tesla C2050 CUDA library 3×

(40) Compressed sensing (L1-ESPIRiT algorithm) NVIDIA Tesla K20m CUDA library 3–15×

(41) Compressed Sensing (cloud computing) Amazon Elastic Compute
Cloud

Gadgetron 2–10×

(42) Compressed sensing (field-compensated recon) NVIDIA GeForce GTX 280 CUDA library 81–284×

(43) Deep learning (convolutional neural network) NVIDIA GeForce GTX TITAN CUDA library –

(44) Deep learning (variational network) NVIDIA Tesla M40 CUDA library –

(45) Deep learning (residual regression, deep CNN) NVIDIA GeForce GTX 1080 CUDA library –

(46) Deep learning (manifold approximation, DNN) NVIDIA Tesla P100 CUDA library –

MRI, magnetic resonance imaging; GPU, graphics processing unit; FFT, fast Fourier transform; CNN, convolutional neural network; DNN,
deep neural network; HLSL, High Level Shading Language; CUDA, Compute Unified Device Architecture.

201Quantitative Imaging in Medicine and Surgery, Vol 8, No 2 March 2018

© Quantitative Imaging in Medicine and Surgery. All rights reserved. Quant Imaging Med Surg 2018;8(2):196-208qims.amegroups.com

FFT (21), in which the key step is implementing the
convolution step in transform that was the most time
consuming part before. The authors claimed that their
GPU-accelerated convolution was up to 85 times faster
than the open source NUFFT library (48), when using
two MRI data-sets sampled by radial and spiral trajectories
to estimate the algorithm performances. Actually, before
the NVIDIA CUDA library appeared in June 2007, any

implementation of relative complex algorithms was hard to
be coded for programmers; even those have some GPU-
based programming experiences.

Currently, NVIDIA has released their easy-to-use CUDA
framework in which they realized the cuFFT library (49),
which is an optimized GPU-based implementation of the
FFT. There are two separate libraries: cuFFT and cuFFTW.
The cuFFT library is designed to provide easy-to-use
high-performance FFT computations only on NVIDIA
GPU cards. While, the cuFFTW library is a porting
tool that is provided to apply FFTW into users’ projects
with a minimum amount of effort. Both two libraries can
provide the features as follows (18): an O(nlogn) algorithm
for different input data sizes; single-precision (i.e., 32-bit
floating point) and double-precision (i.e., 64-bit floating
point) computations; complex and real-valued digital
input and output; execution of multiple 1D, 2D and 3D
transforms simultaneously; most in-place and out-of-place
FFT; arbitrary intra- and inter-dimension element strides.
Here, Figure 4 shows a current example of using CUDA’s
cuFFT library to calculate two-dimensional FFT, as similar
as Ref. (49). They simply are delivered into general codes,
which can bring the GPU-accelerated computation power
for arbitrary projects.

Actually, Stone et al. have presented an anatomically
constrained MR reconstruction algorithm based on
NVIDIA’s CUDA library for non-Cartesian MR data (22).
What is more, their algorithm could find the solution for a
quasi-Bayesian estimation problem that is a typical problem
in MRI reconstructions. Their results showed that their
algorithm could reduce the recon time for an advanced
non-uniform reconstruction of the in vivo data from
23 minutes on a quad-core CPU to about 1 minute on the
Quadro Plex cluster, which can be applied to accelerate
MR reconstruction into many clinical applications. Besides,
Yang et al. presented optimized interpolators to approximate
the non-uniform FT of a finitely supported function in the
inversion of non-Cartesian data (23). According to their
simulation applications, their interpolators could provide
iterative non-Cartesian inversion algorithms which could
reduce memory demands on memory limited early GPU
systems. Moreover, Guo et al. improved a grid-driven
interpolation algorithm for PROPELLER trajectory in
real-time non-Cartesian applications (24). Their GPU-
based method could be about 9 times faster than their
implementation on CPU, and it could achieve compatible
motion correction accuracy and image quality. Moreover,
Yang et al. also presented a CUDA-based algorithm to raise

Figure 4 Computing 2D FFT of size NX × NY using CUDA’s
cuFFT library (49). FFT, fast Fourier transform; NX, the number
along X axis; NY, the number along Y axis.

Figure 3 The plot shows that cumulative articles published for
GPU, MRI and reconstruction from 2005 to 2016. GPU, graphics
processing unit; MRI, magnetic resonance imaging.

1600

1400

1200

1000

800

600

400

200

0

C
um

ul
at

iv
e

nu
m

be
r

of
 a

rt
ic

le
s

2005 2006 2007 2008 2009 2010 2011 2012 2013 2014 2015 2016
Year

GPU+MRI

GPU+MRI+Reconstruction

202 Wang et al. GPU-based acceleration in MRI reconstructions

© Quantitative Imaging in Medicine and Surgery. All rights reserved. Quant Imaging Med Surg 2018;8(2):196-208qims.amegroups.com

the reconstruction efficiency of conventional PROPELLER
trajectory (25). They developed a reverse gridding algorithm
to reduce computation complexity. But different from the
conventional gridding algorithm which generated a grid
window for every trajectory, their algorithm calculated a
trajectory window for every grid. The contribution of each
k-space point in the convolution window was accumulated
for this grid. Their experiments illustrated that its recon
speed was 7.5 times faster than that of conventional gridding
algorithm. Besides, Obeid et al. proposed a modified GPU-
based gridding method to perform gridding using a graphics
processor (GPU) to achieve up to 29× acceleration for
three-dimensional gridding (26). Their solution was to allow
bins to contain a variable number of sample points within
them, without sacrificing rapid access. Furthermore, an
image reconstruction GPU-accelerated software toolkit for
reconstructing data from arbitrary 3D trajectories has been
released in Ref. (27,28). It is named as the Illinois Massively
Parallel Acquisition Toolkit for Image reconstruction with
ENhanced Throughput in MRI (IMPATIENT MRI).
In their toolkit, they removed computational bottlenecks
using a gridding method to accelerate the computation of
data structures by the previous routine. Furthermore, they
enhanced the capabilities of off-resonance correction and
multi-sensor PI reconstruction, with speeding up 200 times
more than before (27). And they gained much efficient
trajectories for high spatial and temporal resolution in the
applications (28).

PI

PI (PMRI) techniques are employed to reconstruct under-
sampled data in k-space by attaining complementary
information from multiple receive coils. There are a lot of
PMRI reconstruction techniques that have been proposed (50).
Currently, among them, the most well-known PMRI
techniques are mainly SMASH (51), SENSE (52), and
GRAPPA (53). Most of these techniques require additional
coil sensitivity maps to remove the artifact’s effect, because
of acquisition data under-sampled in the k-space. If current
PMRI methods are simply analyzed, they can be roughly-
classified into two types (50): one is the reconstruction
procedure in image space which includes unfolding
operation and inverse procedure, for example, SENSE (52);
another is the reconstruction procedure in k-space, which
has kernel calculation and recovery procedures of missing
k-space data, for instance, SMASH (51) and GRAPPA (53).

SENSE and SENSE derivative methods have been

implemented in GPUs (29-33). For example, the GPU-
based implementations of Cartesian SENSE and k-t
SENSE have been presented by Hansen et al. in Ref. (29).
They focused on the inversion problems of SENSE recon
and solved them for each set of aliased pixels in image-
space or x-f space, since these problems generally were the
most time-consuming steps in the SENSE and SENSE
derivative reconstructions. Here, Sørensen et al. presented
a GPU-based reconstruction algorithm to enable real time
reconstruction of sensitivity encoded none-Cartesian radial
imaging (e.g., radial SENSE) (30). They claimed their
algorithms could be used for real-time recon applications,
because of using a moving buffer scheme to buffer the
interval between data acquisition and image display. In
addition, Sørensen et al. also have further described their
real-time iterative SENSE GPU-based reconstruction
to reduce the reconstruction time in the isotropic whole-
heart imaging application, an important protocol in
simplifying cardiac MRI (31). They have shown that the 3D
datasets (256 slices) could be reconstructed in 5–6 minutes.
As an important PMRI method, GRAPPA also has been
implemented on GPUs. For example, Saybasili et al.
presented an automatically distributed hybrid (multi-node,
multi-GPU), low-latency through-time radial GRAPPA
reconstruction pipeline in Ref. (32). Actually, they proposed
a combined CPU- and GPU-based computation framework
to use multi-threaded CPU and GPU programming on
multiple nodes (32). In their implementation, the master
node forwards raw data was to each node for partial
processing, because GRAPPA generally requires using all
coil data to separately recon coil by coil. Each node could
distribute the task to its local GPUs, and send its partial
image results back to the master node after reconstructions.
After that, all image results were combined and sent to the
scanner for display. Their implementation claimed their
reconstruction performances on 32 coils could achieve
42 ms acquisition time, 11.2 ms reconstruction time for
under-sampled radial datasets, and their methods could
be utilized into more challenging reconstruction scenarios
which have larger numbers of acquisition coils, higher
acceleration rates, or more GPUs than before. Furthermore,
Inam et al. proposed an acceleration method for Self-
calibrating GRAPPA operator gridding by using massively
parallel architecture of GPUs (33). The LUTs were used to
pre-calculate all possible combinations of gridding weight
as well as avoid the race condition among the CUDA kernel
threads. Firstly, they used the LUT-based optimized kernels
of CUDA to pre-calculate all the possible combinations of

203Quantitative Imaging in Medicine and Surgery, Vol 8, No 2 March 2018

© Quantitative Imaging in Medicine and Surgery. All rights reserved. Quant Imaging Med Surg 2018;8(2):196-208qims.amegroups.com

2D-gridding weight sets, after that they applied appropriate
weight sets to shift the radial acquisitions to the nearest
Cartesian grid locations. They claimed that their GPU-
based method could typically achieve 6× to 30× speed-up
without compromising the image quality.

Actually, the above methods mainly attempted to transfer
the classical PMRI methods based on CPUs into the
GPU-based PMRI recon methods. However, the PMRI
algorithms based on parallel GPUs should be re-designed
according to the GPUs’ features. For example, Li et al.
implemented a GPU-accelerated algebraic reconstruction
technique (ART) reconstruction in Ref. (34) to apply
to recover images with radial cardiac cine acquisitions.
They mainly compared the reconstructed Cine images of
their radial ART method with filtered back-projection at
multiple under-sampling levels. Their results illustrated
that GPU-accelerated ART could get comparable results
in comparison with conjugate gradient SENSE in parallel
radial MR imaging, and could also reduce artifacts and
maintain image sharpness comparing with general filtered
back-projection methods. Actually, the classical PMRI
methods are not time-cost iterative methods; there are not
huge improvements for GPU-based classical PMRI recon
methods if the scenario is not extreme. However, for some
nonlinear problems or complex iterative reconstructions
in PMRI applications, GPU-based recon methods can
bring lots of improvements if recon methods are designed
according to the GPUs’ structure features.

CS

Recently, to solve a minimization problem in MRI
reconstruction, CS was studied and started to be applied
into MR applications (54). Because the NVIDIA CUDA
library is more and more perfect to support for GPU
computing, the complex sparse reconstruction methods are
more easily implemented on GPUs without considering
the hardware constrains on GPUs. Actually, there are
recently some papers studying CS MR recon methods
on GPU architectures (35-42). For example, Zhuo et al.
presented a GPU-accelerated regularization reconstruction
method with compensations for susceptibility-induced field
inhomogeneity effects, which are incorporating a quadratic
regularization term (35). In their experiments, they realized
a GPU-based spatial regularization with sparse matrices,
which of the entire procedure is enabled to be performed
on GPUs and avoid the memory bandwidth bottlenecks
which are associated with frequent communications

between GPUs and CPUs. Recently, because of popular
CS, many studies have applied GPU-accelerated computing
for fast CS MRI reconstruction, which seemed to be
ideally suited for CS recon (54). For instance, Smith et al.
also have presented a GPU-accelerated Bregman solver
to accelerate 2D CS reconstruction in Ref. (36). They
demonstrated that their combination of the split Bregman
method and GPU computing could achieve the rapid
convergence and massive parallel computation of real-
time CS reconstruction for small-to-moderate size images.
Their GPU-accelerated iterative reconstruction method
could reconstruct two-dimensional 1,0242 data matrices
with a factor of up to 27 and spend about 0.3 seconds or
less; even there is no available GPU VRAM. Nam et al. also
proposed a parallelized GPU-accelerated implementation
of an iterative CS reconstruction algorithm for 3D radial
data acquisitions in both phantom and in vivo whole-heart
coronary data sets (37). To reduce the time-cost operations
of gridding and regridding operations, operations could be
performed in a parallel manner for every measured radial
point, suited for CUDA implementation. Comparing with
the efficacy of the general CPU-implementation, their
GPU-implemented CS reconstruction could improve
image recon quality in terms of vessel sharpness and
suppress noise-like artifacts, and reduce the running time
of CS reconstruction to 34.3–53.9 times less than CPU-
based C/C++ implementation. In addition, Chang et al.
presented an efficient GPU-based method for CS-MRI
reconstruction for 3D multichannel data (38). They built
a highly-parallelized framework to compute the CS-MRI
reconstructions of simultaneous multiple-channel 3D-CS
reconstructions. The results of simulated data and in vivo
data showed that the proposed efficient method can
significantly shorten the reconstruction run-time by a factor
of 30. Even in some clinical applications, the 3D multi-slice
CS reconstruction of the proposed method allowed to be
performed in less than 1 second.

Otherwise, there are also some other papers studying CS
MR recon methods on several parallel architectures of multi-
core CPUs and multi-core GPUs (39-41). They presented
the huge potential speed-up ability on the architectures.
For instance, Kim et al. investigated an inexact quasi-
Newton CS reconstruction algorithm on several parallel
processing architectures that included CPUs, GPUs, Intel’s
Many Integrated Core (MIC) architecture, etc. (39). They
have claimed lots of experiments on different parallel
architectures (multi-core CPUs, GPUs, MIC, etc.). Among
their experiments (39), their reference implementations on

204 Wang et al. GPU-based acceleration in MRI reconstructions

© Quantitative Imaging in Medicine and Surgery. All rights reserved. Quant Imaging Med Surg 2018;8(2):196-208qims.amegroups.com

the 4-core Core i7 were able to reconstruct a 256×160×80
8-channel data of the neuro vasculature with a speedup of
10× under-sampled data set in 56 seconds; the recon time
could be reduced further to 32 seconds on the 6-core Core
i7; the CUDA-based implementation could reduce the
reconstruction time to 16 seconds on NVIDIA GTX480;
the recon time even could reduce to 12 seconds on the
Intel’s Knights Ferry (KNF) of the MIC architecture. All
their experiments showed that their CS algorithm could
bring huge benefits from those throughput-oriented
architectures. Apart from that, Sabbagh et al. studied to
accelerate the non-linear CS reconstruction problem in
cardiac MRI solved by iterative optimization algorithms
and to facilitate the migration of CS reconstruction in the
clinical applications (40). Their experiments employed
3D steady-state free precession MRI images from five
patients, and compared the speed and recon image quality
on different parallel platforms, such as CPU, CPU with
OpenMP, and GPU. Their recon results showed that the
mean reconstruction time was 13.1±3.8 minutes on the
CPU platform, 11.6±3.6 minutes on the CPU platform
with OpenMP, and 2.5±0.3 minutes for the CPU platform
with OpenMP plus GPU (40). And their image qualities
estimated by image subtraction were very similar, which are
comparable on different parallel architectures. Otherwise,
the modern cloud-computing conception also has been
applied into time-cost MR reconstructions. Cloud-
computing generally needs to support most of modern
parallel architectures, GPUs are one of them. For example,
Xue et al. utilized the open source Gadgetron framework to
support distributed computing for image reconstruction and
demonstrated that a multi-node version of the Gadgetron
which could provide nonlinear image reconstruction with
clinically acceptable latency (41). Actually, their framework
was a cloud-enabled version of the Gadgetron on three
different distributed computing platforms ranging from
a heterogeneous collection of commodity computers to
the commercial Amazon Elastic Compute Cloud (41).
They claimed that they could provide nonlinear, CS
reconstructions of cardiac and neuron imaging applications
with low reconstruction latency. Besides, Zhuo et al. proposed
an GPU-implemented reconstruction algorithm with MR
field inhomogeneity compensation into calculating magnetic
field maps and its gradients for iterative CG reconstruction
algorithms on NVIDA CUDA-enabled GPUs (42). If
comparing with their CPU-based implementations, their
GPU-based implementations could hugely reduce the

calculation time, while it could still guarantee acceptable
accuracy to compensate MR field inhomogeneity.

Deep learning (DL)

Recent developments of DL in NNs have brought lots
of breakthrough improvements in many areas (55-58).
Because of the time-cost training and multiple-layer NNs,
GPUs are very suitable for solving the massive calculation
problems of DL (55). Although there are several attempts
at creating fast NN-specific hardware, GPUs brought a real
cheap way to implement DL in lots of applications. GPUs
can be employed at not only the fast matrix and vector
multiplications, but also for NN training, and speeding up
DL by a factor of 50 and more (55). Currently, GPU-based
DL started to be applied into some MR applications (43-46)
as follows to solve the problems of MRI reconstruction.

Wang et al. firstly proposed a DL method to accelerate
MR reconstruction (43). They built a big dataset of
existing high-quality images, and trained an off-line 3-layer
convolutional neural network (CNN) as the complex
mapping between MR images from zero-filled and fully-
sampled k-space data. Actually, the trained network can
predict the under-sampled data, when solving an online
constrained reconstruction problem. Although the off-line
training can take roughly 3 days, it took less than 1 second
for every online reconstruction-based GPU. The in vivo
results illustrated that the proposed method can restore fine
details and have great potential for effective MR imaging.

Hammernik et al. presented an efficient approach to
learn a variational network which can remove typical under-
sampling artifacts and restore important image details, such
as the natural appearance of anatomical structures (44).
They considered that their trained models were highly
efficient and are also well-suited for parallel computation on
GPUs, due to their structural simplicity. And their approach
illustrated that they achieved superior results than many
commonly used reconstruction methods.

Lee et al. expressed a novel deep residual learning
algorithm to recover images from highly under-sampled
k-space data (45). Here, they formulated a traditional CS
problem as a residual regression problem, and designed a
deep CNN to learn the aliasing artifacts. They trained the
NN using the magnitude of MR images by a stochastic
gradient descent method with momentum based on the
MatConvNet toolbox (59) and NVIDIA GTX 1080 GPUs.
They expressed that their algorithm took only about 30 ms

205Quantitative Imaging in Medicine and Surgery, Vol 8, No 2 March 2018

© Quantitative Imaging in Medicine and Surgery. All rights reserved. Quant Imaging Med Surg 2018;8(2):196-208qims.amegroups.com

after their deep CNN has been well trained, with much
better reconstruction performance compared to many
existing GRAPPA and CS algorithms.

Zhu et al. proposed an automated robust NN as a
generalized reconstruction framework which can exploit
the universal function approximation of multi-layer
perception regression and the manifold learning properties
demonstrated by auto-encoders (46). They implemented
a unified reconstruction framework with a deep neural
network (DNN) feed-forward architecture composed of
fully-connected layers followed by a sparse convolutional
auto-encoder. And they built their NN parameters which
were trained to minimize squared loss and updated by a
stochastic gradient descent, computed with the Tensorflow
toolbox (60) and 2 NVIDIA Tesla P100 GPUs. And their
results show to be over a lot of acquisition strategies, and
have excellent immunity to noise and artifacts.

With fast developments of GPUs and DL in NNs, an
exciting epoch of MRI reconstruction has started. Although
it is still early to say the DL reconstruction approaches will
replace currently used clinical methods, the development of
the DL approaches has illustrated huge potential to promote
the technology developments of MRI reconstruction and
change these community.

Conclusions

Except the above GPU-accelerated MR reconstructions,
there are also a few relative applications of unclassical
reconstruct ions which a t tempted to apply GPU
implementation applications. For example, Johnson et al.
proposed a GPU-based iterative decomposition of water
and fat with echo asymmetry and least-squares (IDEAL)
reconstruction scheme (61). They estimated the fat-
water parameters and compared Brent’s method with
golden section search to optimize the unknown MR field
inhomogeneity parameter (psi) in the IDEAL equations.
They claimed that their algorithm was made more robust to
fat-water ambiguities using a modified planar extrapolation
of psi method (61). Their experiments show that fat-water
reconstruction time of their GPU-implementation methods
could be quickly and robustly reduced with a factor of 11.6
on a GPU in comparison to CPU-based reconstruction.

Nowadays, GPU has been one of the standard tools in
high-performance computing (2). More and more GPUs
have been applied into more and more applications because
of their parallel computing ability and low cost. Among the

GPU-based applications of MRI reconstruction, they have
been gradually recognized and widely applied. Although
the early GPU programming was constrained and not
friendly, the developments of GPU programming have
provided more easy-to-use libraries and frameworks for
programmers. GPUs have played more and more important
roles in medical imaging, image reconstruction and image
analysis in the clinical applications. Despite lots of successful
applications have been performed in the recon community
of GPU-based medical imaging, there still remains long-
standing unsolved solution problems.

Firstly, GPUs’ parallel architectures require re-designing
the pipeline of the reconstruction algorithms. Although
there are many libraries to assist people to employ GPUs,
the algorithms pre-optimized before GPU programming
still can bring huge improvements than any easy-to-use
libraries. It is better to consider the parallel structures in
any custom-designed algorithms for GPU computing. In
addition, the hybrid architectures based on GPU computing
and traditional ×86 CPU-based high-performance
computing clusters are more and more popular, even the
cloud computing appears in industry. While software and
hardware trends are not the primary problems of medical
image computing, the ability that is efficiently employing
more sophisticated algorithms as faster technology emerges
is still an important driving force, largely precluding any
kind of convergence in algorithms (47).

In the future, the computing efficiency of the custom-
designed optimized algorithms, especially MRI reconstruction
based on GPUs and DL, should be synthetically considered
as the sequential and parallel procedure, and the low-cost
Internet computation and storage services should be seriously
considered.

Acknowledgements

Funding: This work was partially supported by the National
Natural Science Foundation of China (No. 61471350,
81729003), the Basic Research Program of Shenzhen
(JCYJ20150831154213680), and the Key Laboratory
for Magnetic Resonance and Multimodality Imaging of
Guangdong Province (2014B030301013).

Footnote

Conflicts of Interest: The authors have no conflicts of interest
to declare.

206 Wang et al. GPU-based acceleration in MRI reconstructions

© Quantitative Imaging in Medicine and Surgery. All rights reserved. Quant Imaging Med Surg 2018;8(2):196-208qims.amegroups.com

References

1. Almasi GS. Highly parallel computing. Redwood City,
CA: Benjamin/Cummings, 1989.

2. Shi L, Liu W, Zhang H, Xie Y, Wang D. A survey of
GPU-based medical image computing techniques. Quant
Imaging Med Surg 2012;2:188-206.

3. Parallel computing. Available online: https://en.wikipedia.
org/wiki/Parallel_computing. (accessed on 11 August 2016).

4. Mittal S, Vetter JS. A Survey of CPU-GPU Heterogeneous
Computing Techniques. ACM Computing Surveys
2015;47:69.

5. Tarditi D, Sidd Puri S, Oglesby J. Accelerator: Using
Data Parallelism to Program GPUs for General Purpose
Uses. ACM SIGARCH Computer Architecture News
2006;34:325-35.

6. Che S, Boyer M, Meng J, Tarjan D, Sheaffer JW, Skadron
K. A performance study of general-purpose applications
on graphics processors using CUDA. J Parallel and
Distributed Computing 2008;68:1370-80.

7. Du P, Weber R, Luszczek P, Tomov S, Peterson G,
Dongarra J. From CUDA to OpenCL: Towards a
Performance-portable Solution for Multi-platform GPU
Programming. Parallel Computing 2012;38:391-407.

8. Pratx G, Xing L. GPU computing in medical physics: a
review. Med Phys 2011;38:2685-97.

9. Boyd C. Data-Parallel Computing. ACM Queue 2008;6(2).
10. Natoli V. Why 2016 Is the Most Important Year in HPC

in Over Two Decades. Available online: https://www.
hpcwire.com/2016/08/23/2016-important-year-hpc-two-
decades/ (posted on August 23, 2016).

11. Future of Computing: GPGPU? Available online: http://
gridtalk-project.blogspot.it/2010/07/future-of-computing-
gpgpu.html (posted on July 12, 2010).

12. Navarro CA, Hitschfeld-Kahler N, Mateu L. A Survey on
Parallel Computing and its Applications in Data-Parallel
Problems Using GPU Architectures. Commun Comput
Phys 2014;15:285-329.

13. Schenke S, Wünsche B, Denzler J. GPU-based volume
segmentation. Proc. of IVCNZ 2005;05:171-6.

14. Chen HL, Samavati FF, Sousa MC, Mitchell JR.
Sketch-based Volumetric Seeded Region Growing.
EUROGRAPHICS Workshop on Sketch-Based Interfaces
and Modeling 2006:123-9.

15. Beyer J, Langer C, Fritz L, Hadwiger M, Wolfsberger
S, Bühler K. Interactive diffusion-based smoothing and
segmentation of volumetric datasets on graphics hardware.
Methods Inf Med 2007;46:270-4.

16. Wang X, Wang H. Volumetric region growing based on
texture mapping. Proc. SPIE Medical Imaging, Parallel
Processing of Images, and Optimization Techniques
(MIPPR), 2009.

17. Pan L, Gu L, Xu J. Implementation of medical image
segmentation in CUDA. Proc. International Conference
on Information Technology and Applications in
Biomedicine (ITAB), 2008:82-5.

18. GPU-Accelerated Libraries. Available online: https://
developer.nvidia.com/

19. Sumanaweera T, Liu D. Medical image reconstruction with
the FFT. GPU Gems 2, Addison Wesley, 2005:765-84.

20. Schiwietz T, Chang TC, Speier P, Westermann R. MR
image reconstruction using the GPU. Proc. SPIE Medical
Imaging, 2006.

21. Sørensen TS, Schaeffter T, Noe KO, Hansen MS.
Accelerating the nonequispaced fast Fourier transform on
commodity graphics hardware. IEEE Trans Med Imaging
2008;27:538-47.

22. Stone SS, Haldar JP, Tsao SC, Hwu WM, Sutton BP,
Liang ZP. Accelerating Advanced MRI Reconstructions on
GPUs. J Parallel Distrib Comput 2008;68:1307-18.

23. Yang Z, Jacob M. Efficient NUFFT algorithm for non-
Cartesian MRI reconstruction. Proc. IEEE International
Symposium on Biomedical Imaging (ISBI), 2009:117-20.

24. Guo H, Dai J, He Y. GPU Acceleration of PROPELLER
MRI Using CUDA. Proc. International Conference on
Bioinformatics and Biomedical Engineering, 2009:1-4.

25. Yang J, Feng C, Zhao D. A CUDA-based reverse gridding
algorithm for MR reconstruction. Magn Reson Imaging
2013;31:313-23.

26. Obeid NM, Atkinson IC, Thulborn KR, Hwu WM.
GPU-Accelerated Gridding for Rapid Reconstruction of
Non-Cartesian MRI. Proc. ISMRM, Montreal, Canada,
2011:2547.

27. Gai J, Obeid N, Holtrop JL, Wu XL, Lam F, Fu M,
Haldar JP, Hwu WM, Liang ZP, Sutton BP. More
IMPATIENT: A Gridding-Accelerated Toeplitz-based
Strategy for Non-Cartesian High-Resolution 3D MRI on
GPUs. J Parallel Distrib Comput 2013;73:686-97.

28. Wu XL, Gai J, Lam F, Fu M, Haldar JP, Zhuo Y, Liang
ZP, Hwu W, Sutton B. Impatient MRI: Illinois massively
parallel acceleration toolkit for image reconstruction with
enhanced throughput in MRI. Proc. IEEE International
Symposium on Biomedical Imaging (ISBI), 2011:69-72.

29. Hansen MS, Atkinson D, Sorensen TS. Cartesian SENSE
and k-t SENSE reconstruction using commodity graphics
hardware. Magn Reson Med 2008;59:463-8.

207Quantitative Imaging in Medicine and Surgery, Vol 8, No 2 March 2018

© Quantitative Imaging in Medicine and Surgery. All rights reserved. Quant Imaging Med Surg 2018;8(2):196-208qims.amegroups.com

30. Sørensen TS, Atkinson D, Schaeffter T, Hansen MS. Real-
time reconstruction of sensitivity encoded radial magnetic
resonance imaging using a graphics processing unit. IEEE
Trans Med Imaging 2009;28:1974-85.

31. Sørensen TS, Prieto C, Atkinson D, Hansen MS,
Schaeffter T. GPU accelerated iterative SENSE
reconstruction of radial phase encoded whole-heart MRI.
Proc. ISMRM, Stockholm, Sweden, 2010:2869.

32. Saybasili H, Herzka DA, Barkauskas K, Seiberlich N,
Griswold MA. A Generic, Multi-Node, Multi-GPU
Reconstruction Framework for Online, Real-Time, Low-
Latency MRI. Proc. 21st Meet Int Soc Magn Reson Med,
Salt Lake City, Utah, USA; 2013:838.

33. Inam O, Qureshi M, Malik SA, Omer H. GPU-
Accelerated Self-Calibrating GRAPPA Operator Gridding
for Rapid Reconstruction of Non-Cartesian MRI Data.
Applied Magnetic Resonance 2017;48:1055-74.

34. Li S, Chan C, Stockmann JP, Tagare H, Adluru G, Tam
LK, Galiana G, Constable RT, Kozerke S, Peters DC.
Algebraic reconstruction technique for parallel imaging
reconstruction of undersampled radial data: application to
cardiac cine. Magn Reson Med 2015;73:1643-53.

35. Zhuo Y, Sutton B, Wu XL, Haldar J, Hwu WM, Liang ZP.
Sparse regularization in MRI iterative reconstruction using
GPUs. Proc. International Conference on Biomedical
Engineering and Informatics (BMEI), 2010:578-82.

36. Smith D, Gore J, Yankeelov T, Welch E. Real-Time
Compressive Sensing MRI Reconstruction Using
GPU Computing and Split Bregman Methods. Proc.
International Journal of Biomedical Imaging, 2012:864827.

37. Nam S, Akçakaya M, Basha T, Stehning C, Manning WJ,
Tarokh V, Nezafat R. Compressed sensing reconstruction
for whole-heart imaging with 3D radial trajectories: a
graphics processing unit implementation. Magn Reson
Med 2013;69:91-102.

38. Chang CH, Yu X, Ji JX. Compressed sensing MRI
reconstruction from 3D multichannel data using GPUs.
Magn Reson Med 2017;78:2265-74.

39. Kim D, Trzasko JD, Smelyanskiy M, Haider CR, Manduca
A, Dubey P. High-performance 3D compressive sensing
MRI reconstruction. Conf Proc. IEEE Eng Med Biol Soc
2010;2010:3321-4.

40. Sabbagh M, Uecker M, Powell A, Leeser M, Moghari M.
Cardiac MRI compressed sensing image reconstruction
with a graphics processing unit. Proc. International
Symposium on Medical Information and Communication
Technology (ISMICT), Worcester, MA, 2016.

41. Xue H, Inati S, Sørensen TS, Kellman P, Hansen MS.

Distributed MRI reconstruction using Gadgetron-based
cloud computing. Magn Reson Med 2015;73:1015-25.

42. Zhuo Y, Wu XL, Haldar JP, Hwu WM, Liang ZP, Sutton
BP. Accelerating iterative field-compensated MR image
reconstruction on GPUs. Proc. IEEE International
Symposium on Biomedical Imaging (ISBI), 2010:820-3.

43. Wang S, Su Z, Ying L, Peng X, Zhu S, Liang F, Feng D,
Liang D. Accelerating magnetic resonance imaging via
deep learning. Proc. IEEE International Symposium on
Biomedical Imaging (ISBI), 2016:514-7.

44. Hammernik K, Knoll F, Sodickson D, Pock T. Learning
a variational model for compressed sensing MRI
reconstruction, Proc. the International Society of Magnetic
Resonance in Medicine (ISMRM), 2016.

45. Lee D, Yoo J, Ye JC. Deep residual learning for
compressed sensing MRI. Proc. IEEE International
Symposium on Biomedical Imaging (ISBI), 2017.

46. Zhu B, Liu JZ, Rosen BR, Rosen MS. Neural Network
MR Image Reconstruction with AUTOMAP: Automated
Transform by Manifold Approximation. Proc. the
International Society of Magnetic Resonance in Medicine
(ISMRM), 2017.

47. Eklund A, Dufort P, Forsberg D, LaConte SM. Medical
image processing on the GPU - past, present and future.
Med Image Anal 2013;17:1073-94.

48. Fessler J, Sutton B. Nonuniform fast Fourier transforms
using min-max interpolation. IEEE Trans Signal Process
2003:51:560-74.

49. cuFFT User Guide. Available online: http://docs.nvidia.
com/cuda/cufft/index.html

50. Blaimer M, Breuer F, Mueller M, Heidemann RM,
Griswold MA, Jakob PM. SMASH, SENSE, PILS,
GRAPPA: how to choose the optimal method. Top Magn
Reson Imaging 2004;15:223-36.

51. Sodickson DK, Manning WJ. Simultaneous acquisition
of spatial harmonics (SMASH): fast imaging with
radiofrequency coil arrays. Magn Reson Med
1997;38:591-603.

52. Pruessmann KP, Weiger M, Scheidegger MB, Boesiger P.
SENSE: sensitivity encoding for fast MRI. Magn Reson
Med 1999;42:952-62.

53. Griswold MA, Jakob PM, Heidemann RM, Nittka
M, Jellus V, Wang J, Kiefer B, Haase A. Generalized
autocalibrating partially parallel acquisitions (GRAPPA).
Magn Reson Med 2002;47:1202-10.

54. Lustig M, Donoho D, Pauly JM. Sparse MRI: The
application of compressed sensing for rapid MR imaging.
Magn Reson Med 2007;58:1182-95.

208 Wang et al. GPU-based acceleration in MRI reconstructions

© Quantitative Imaging in Medicine and Surgery. All rights reserved. Quant Imaging Med Surg 2018;8(2):196-208qims.amegroups.com

55. LeCun Y, Bengio Y, Hinton G. Deep learning. Nature
2015;521:436-44.

56. Schmidhuber J. Deep learning in neural networks: an
overview. Neural Netw 2015;61:85-117.

57. Knoll F. Leveraging the potential of neural networks for
image reconstruction. Proc. the International Society of
Magnetic Resonance in Medicine (ISMRM), 2017.

58. Després P, Jia X. A review of GPU-based medical image
reconstruction. Phys Med 2017;42:76-92.

59. Vedaldi A, Lenc K. MatConvNet: Convolutional
Neural Networks for MATLAB. Proc. of the 23rd ACM
international conference on Multimedia, 2015:689-92.

60. Abadi M, Agarwal A, Barham P, Brevdo E, Chen Z, Citro

C, Corrado GS, Davis A, Dean J, Devin M, Ghemawat S,
Goodfellow I, Harp A, Irving G, Isard M, Jia Y, Jozefowicz
R, Kaiser L, Kudlur M, Levenberg J, Mane D, Monga
R, Moore S, Murray D, Olah C, Schuster M, Shlens J,
Steiner B, Sutskever I, Talwar K, Tucker P, Vanhoucke V,
Vasudevan V, Viegas F, Vinyals O, Warden P, Wattenberg
M, Wicke M, Yu Y, Zheng X. Tensorflow: Large-scale
machine learning on heterogeneous distributed systems.
arXiv preprint arXiv:1603.04467, 2016.

61. Johnson DH, Narayan S, Flask CA, Wilson DL. Improved
fat-water reconstruction algorithm with graphics hardware
acceleration. J Magn Reson Imaging 2010;31:457-65.

Cite this article as: Wang H, Peng H, Chang Y, Liang D.
A survey of GPU-based acceleration techniques in MRI
reconstructions. Quant Imaging Med Surg 2018;8(2):196-208.
doi: 10.21037/qims.2018.03.07

