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Introduction

Parallel computing is a type of classic computation to speed 
up the computer speed (1). It can divide the large problems 
into lots of smaller ones. Their calculations are carried 
out simultaneously, or their process executions are carried 
out simultaneously. Parallel computing can bring higher-
performance computation in comparison to the classic 
computation (2), but it generally requires hardware support. 
Parallel computing has become a dominant popular field 
in computer architecture paradigm (3), mainly in the form 
of multi-core processors parallel computing, for example, 
clusters computing, massively parallel computing (MPPs), 
grids computing, graphics processing units (GPU), etc. 
Recently, the progress of single-core processor performance 
has almost arrived at the physics limitations, and Moore’s 
law has become less effective to raise the computational 
feasibility of more complex algorithms. Instead, the 
scientists and engineers have to shift their algorithms of 
growing complexity to parallel computing architectures for 

decreasing practical processing times of their algorithms.
During the past few years, GPUs have been developed 

with incredible increase in number due to relatively cheap 
and high-performance calculation platforms for data parallel 
computing, especially in medical image reconstruction 
of massive data-set. General-purpose computing on 
GPUs (GPGPU) has been a fairly recent trend in parallel 
computing research. Among the GPGPU framework, the 
use of massive multiple graphics units in one computer 
can further parallelize the existing parallel nature of GPUs 
due to the specialization in each chip. It can provide some 
advantages of the higher-performance computation ability, 
which multiple CPUs cannot offer (4). However, the high-
performance computation utilization on GPU or GPGPU 
requires reformulating current sequential computation 
problems in terms of graphics primitives, which have 
been supported on GPUs by the two major API libraries 
for graphics processors: OpenGL and DirectX. This 
cumbersome translation from general programming to GPU 
hardware was obviated by the obscure GPU programming 

Review Article

A survey of GPU-based acceleration techniques in MRI 
reconstructions

Haifeng Wang1, Hanchuan Peng2, Yuchou Chang3, Dong Liang1

1Shenzhen Institutes of Advanced Technology, Chinese Academy of Sciences, Shenzhen 518055, China; 2Allen Institute for Brain Science, Seattle, 

WA, USA; 3Computer Science and Engineering Technology Department, University of Houston-Downtown, Houston, Texas, USA 

Correspondence to: Prof. Dong Liang. Shenzhen Institutes of Advanced Technology, Chinese Academy of Sciences, Shenzhen 518055, China. 

Email: dong.liang@siat.ac.cn.

Abstract: Image reconstruction in magnetic resonance imaging (MRI) clinical applications has become 
increasingly more complicated. However, diagnostic and treatment require very fast computational 
procedure. Modern competitive platforms of graphics processing unit (GPU) have been used to make high-
performance parallel computations available, and attractive to common consumers for computing massively 
parallel reconstruction problems at commodity price. GPUs have also become more and more important for 
reconstruction computations, especially when deep learning starts to be applied into MRI reconstruction. 
The motivation of this survey is to review the image reconstruction schemes of GPU computing for MRI 
applications and provide a summary reference for researchers in MRI community.

Keywords: Graphics processing unit (GPU); magnetic resonance imaging (MRI); reconstruction

Submitted Nov 28, 2017. Accepted for publication Mar 05, 2018.

doi: 10.21037/qims.2018.03.07

View this article at: http://dx.doi.org/10.21037/qims.2018.03.07

208



197Quantitative Imaging in Medicine and Surgery, Vol 8, No 2 March 2018

© Quantitative Imaging in Medicine and Surgery. All rights reserved.   Quant Imaging Med Surg 2018;8(2):196-208qims.amegroups.com

languages such as Sh/RapidMind, Brook and Accelerator 
(5,6). But they are hard to be applied for the common 
programmers without corresponding programming training. 
To further provide real convenience to GPU programmers, 
three libraries, which are NVIDIA’s Compute Unified 
Device Architecture (CUDA), Microsoft’s DirectCompute 
and Apple/Khronos Group’s OpenCL, provided more 
feasible GPU programming frameworks for programmers 
to ignore the requiring full and explicit conversion of the 
data to the graphical forms and take advantages of the high-
performance computing speeds on GPUs (7). Actually, a 
group at SGI Corporation has firstly implemented a GPU 
computing of image recon processing on an Onyx primitive 
workstation using the RealityEngine2.5 in 1994 (8).  
Because of the graphics-hardware limitations at that time, 
the SGI graphics-hardware implementation is 100 times 
slower than a single-core CPU processor in 2004 (8). 
However, the performance developments of recent single-
core CPU processors have been much slower than the 
multi-core of GPU processors. Today, GPUs have been 
a standard hardware part of the current computers for 
graphics processing and are further designed as relatively 
independent frameworks for processing data parallel 
problems, which can assign individual element data to 
separate logical cores for complex processing [as seen in (9)]. 
As seen in Figure 1, it presents the evolution of bandwidth 
and computation abilities between GPUs and CPUs in GB/s  
and GFLOP/s (i.e., billions of data movement speed per 
second; billions of floating point operations per second 
under single and double precision situations) (10). If GPU 
is compared on a chip-to-chip basis against CPUs, GPUs 
can have much better capability on both key indexes, speed 
of calculation (FLOPS) and speed of data movement (GB/s)  

(10,11). Therefore, this development shift between GPUs 
and CPUs gives a new motivation for researchers to re-
consider parallelizing their computations of medical image 
applications on GPU frameworks. Through directly 
inputting the data-parallel computation part onto GPUs, 
the number of physical computers within a computer 
can be greatly reduced to minimum. The benefits are 
not only reducing computer cost, but also requiring less 
maintenance, space, power, and cooling for whole system 
operation cost inside any institutes, schools or hospitals.

GPU computing

The physical architectures and processing model of GPU 
and CPU are very different, which is the main reason 
the computing power of GPU is much faster than CPU. 
As seen in Figure 2 (12), GPU has the features that can 
provide many data-parallel, high memory bandwidths and 
deeply multi-threaded cores for large number of simple 
computation tasks, but CPU just can provide the limited 
cores for high-complex computation tasks. Architecturally, 
as seen in Figure 2, the structure comparison between CPUs 
and GPUs in GLOP/s computation capability is that GPUs 
are highly specialized for compute-intensive, highly parallel 
computation hardware structure and design that over 80% 
of transistors are contributed for data processing rather 
than the data caching and flow control functions; on the 
contrary, CPUs are designed as a few cores with many cache 
memories for easily handling complex software threads 
at one time. For instance, a general GPU can have 100+ 
processing cores which can handle thousands of software 
threads simultaneously. In theory, the GPUs’ performance 
can be accelerated to process thousands of software threads 

Figure 1 Comparison speed of calculation (FLOPS) and speed of data movement (bandwidth) (GB/s) between GPUs and CPUs with years. 
Figure taken with kind permission from Ref. (10).
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by 100× over CPUs’ alone processing. Because of the 
special GPU architectures which are different from general 
CPU architectures, GPU codes can easily run algorithms in 
parallel. But in most cases of general CPU-based algorithm, 
there is no algorithm which can be suitable for GPUs, 
because the general algorithms are suitable for the general 
CPU architectures. The problems require that the general 
algorithms should be redesigned into new, more power- and 
cost-efficient parallel algorithms for GPUs’ special features. 
The parallel codes can certainly bring higher-performance 
for developed algorithms, and simultaneously bring more 
difficult debugging problems than general codes.

As we know, GPUs are primitively developed to accelerate 
the image processing speed of graphics cards. When 
graphics mode is turned on, based on the GPUs’ API such as 
OpenGL or DirectX, programmers can implement shading 
programs to custom the graphics pipelines of GPUs at run 
time, using high-level shading languages such as NVIDIAC 
for Graphics (CG), OpenGL Shading Language (GLSL), or 
Microsoft High-Level Shading Language (HLSL), Adobe 
Graphics Assembly Language (AGAL), Sony PlayStation 
Shader Language (PSSL), etc., which are originally designed 
for real-time rendering (2). Although early GPU computing 
programs have achieved impressive accelerations on 
medical image processing (13-16), they suffered from some 
drawbacks as follows. Firstly, the GPU computing coding 
is very difficult for entry-level programmer to develop the 
qualified code, because they need to be defined in terms of 
graphics concepts, for instance, vertices, texture coordinates, 
and fragments; secondly, acceleration performances of GPU 
computing codes are compromised by the lack of access to 

all the capabilities of GPUs, such as shared memory and 
scattered writes; thirdly, the code portability is constrained 
by the specific hardware features of some graphics 
extensions (8).

In order to solve the drawbacks, there are four major 
commercial framework solutions, CUDA, OpenCL, 
Stream and DirectCompute, which have been deployed 
to generate parallel higher-performance codes for GPU. 
Among them, CUDA was developed recently by NVIDIA; 
OpenCL is an open standard library that was developed 
by Khronos Group; Stream was developed by AMD (ATI 
chips); DirectCompute was developed by Microsoft (2). 
Among the solutions, CUDA is the solution that is most 
widely used to rewrite algorithms to be GPU-enabled and 
efficient by programmers in computer graphics, image 
processing, computer vision, computational fluid dynamics 
(CFD) and many more fields. The primary advantage of the 
CUDA framework is that it can easily bring the C/C++-like 
development environment and the parallel capabilities of 
GPU acceleration for programmers, but does not require 
programmers to have lots of detailed knowledge of GPU 
hardware architectures. Although they are much helpful for 
programmers to employ GPUs into the application, there 
are still some more consumable software packages based 
on CUDA and OpenCL libraries for the programmers 
who are not familiar with GPU programming and have 
finite C/C++ parallel programming experiences. Here, 
several popular libraries should be mentioned, Thrust, 
cuFFT, cuSOLVER, cuSPARSE, and cuDNN, which 
are widely used in applications ranging in the fields of 
signal processing and image processing (17,18). For 

CPU GPU

Figure 2  Comparison of GPU and CPU devotes more transistors to data processing (12). ALU, arithmetic logical unit; GPU, graphics 
processing unit; DRAM, dynamic random access memory.
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example, Thrust is a derivative C++ template library for 
parallel GPU platforms based on the well-known CPU-
based Standard Template Library (STL). It can provide 
programmer a shortcut to easily utilize prototype demos 
for high performance CUDA applications with minimal 
programming efforts through its high-level interfaces fully 
interoperable with technologies such as C/C++, CUDA, 
etc. (18). The cuFFT library provides a simple software 
interface based on the well-known Cooley-Tukey and 
Bluestein algorithms to get accurate Fourier transformation 
(FT) results faster than ever, and its speed of computing 
fast Fourier transforms (FFTs) is up to about 10× faster of 
computing discrete Fourier transforms for any complex 
or real-valued data sets. The cuSOLVER library provides 
a collection of dense and sparse direct solvers which can 
deliver significant accelerations for computer vision, CFD, 
and linear optimization applications. The cuSPARSE 
library including a sparse triangular solver provides a 
collection of basic linear algebra subroutines used for sparse 
matrices can deliver up to about 8× faster performance 
than the well-known Intel Math Kernel Library (MKL). 
As a GPU-accelerated version of the complete standard 
library, it can deliver 6× to 17× faster performance than 
the Intel MKL. The cuDNN library is a GPU-accelerated 
library for deep neural networks (NNs), which can provide 
highly tuned implementations for standard routines such as 
forward and backward convolution, pooling, normalization, 
and activation layers (18). The cuDNN library allows 
researchers to focus on training designed NNs and 
developing software applications rather than spending 
much time on realizing low-level GPU performance tuning. 
Now, cuDNN has been widely applied into many deep 
learning frameworks, such as, Caffe, TensorFlow, Theano, 
Torch, and so on. Actually, these libraries have enough 
ability to provide enough supports for most computations 
of algorithm operations in magnetic resonance image 
reconstruction. Therefore, providing the competitive 
ability of high-performance parallel computing supported 
by these libraries, GPU-based computing algorithms 
have been applied into the comprehensive applications of 
magnetic resonance image reconstruction, due to GPUs’ 
super-powerful parallel computing ability with multi-thread 
capabilities and multi-core architectural structures (19).

Magnetic resonance imaging (MRI) reconstruction

In clinical applications, MRI reconstruction calculations 
have become more and more complex for computers, so 

there are urgent speed requirements from doctors and 
scientists to review the patients’ images without too long 
waiting for reconstruction processing. Currently, GPU 
computing has been increasingly investigated for clinical 
MRI reconstruction applications (Table 1). According to 
statistics, there are lots of papers about GPU, MRI and 
reconstruction which are published from 2005 to 2016, 
as seen in Figure 3. This plot illustrates prevalence of 
GPU-based methods in the field of MRI reconstruction. 
It is explicit that GPU-accelerated MRI reconstructions 
became much more applicable especially after the release 
of NVIDIA’s CUDA in 2007 (47). Actually, the number 
of publications related to GPU and MRI always increases 
very quickly, but recently, the publications about GPU, 
MRI and reconstruction do not grow up synchronously. 
The growth is slowing down, because most of the GPU-
accelerated algorithms about typical MRI reconstruction 
have been studied well and implemented on GPUs. Among 
these GPU-accelerated methods, they can roughly be 
divided into three categories of MRI reconstruction with 
GPU computing, FT, parallel imaging (PI), compressed 
sensing (CS), and deep learning, which are going to be 
introduced as follows. A summarization of GPU-based MRI 
reconstruction method is presented in the Table 1. Here, 
it is default to apply GPUs to accelerate deep learning 
applications, because GPUs are suitable for deep learning 
calculations. Otherwise, the CUDA library and hardware 
of NVIDIA Corp. have occupied the field of the GPU 
computation. It seems that the NVIDIA Tesla cards are not 
faster than the NVIDIA GeForce cards, but it is an illusion 
and NVIDIA Tesla cards are more powerful than NVIDIA 
GeForce cards. Actually, the speed-up factors of GPU-
based MRI reconstruction depend on the system platforms, 
GPU-implementation and reconstruction algorithms.

FT 

Most MR imaging methods are designed based on Fourier 
encoding, so that methods in the MRI reconstructions 
include basic FFT. The FFT implementation on CPUs has 
already been quite efficient, but its version on GPUs can be 
accelerated faster than on CPUs. Actually, Sumanaweera 
et al. presented to implement the Cartesian FFT method 
as a multi-pass decimation-in-time butterfly algorithm on 
GPUs in the book of Ref. (19). They presented several 
specific approaches for obtaining higher performance, 
using two pbuffers and balancing some computing loads 
from fragment processors into the vertex processors 
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and rasterizers. And they briefly illustrated the high-
performance experiments of MRI reconstruction and 
ultrasonic imaging. Then, Schiwietz et al. described 
an efficient GPU-based implementation of the non-
Cartesian FFT (20), which was written in primitive and 
underlying Microsoft’s DirectX with C/C++ and HLSL. 
They implemented a look-up-table (LUT)-based Kaiser-

Bessel window gridding algorithm and a Ram-Lak filtered 
back-projection method. Their primary results showed 
the recon time and image quality for two GPU-based 
reconstruction algorithms that were comparable with 
the CPU-based implementations for radial trajectories. 
Otherwise, Sørensen et al. also presented a fast parallel 
GPU-accelerated algorithm to compute the nonequispaced 

Table 1 Summarization of GPU-based MRI reconstruction methods

Reference Application GPU hardware GPU library Speed up than CPU

(19) Cartesian FFT NVIDIA Quadro FX NV40 HLSL 2×

(20) Cartesian FFT ATI Radeon X1800 XT HLSL, DirectX 3.5×

(21) Non-uniform FFT (nonequispaced FFT) NVIDIA GeForce GTX 8800 NFFT library 21–85×

(22) Non-uniform FFT (conjugate gradient solver) NVIDIA GeForce GTX 8800 CUDA library 10×

(23) Non-uniform FFT (optimal least square NUFFT) – – –

(24) Gridding (PROPELLER) NVIDIA GeForce GTX 8800 CUDA library 9×

(25) Gridding (reverse gridding of PROPELLER) NVIDIA GeForce GTX 8800 CUDA library 8×

(26) Gridding (reverse gridding optimization) NVIDIA Tesla C2050 CUDA library 6–30×

(27,28) Gridding (conjugate gradient linear solver) NVIDIA Tesla M2070 CUDA library 26×

(29) Parallel imaging (Cartesian SENSE, k-t SENSE) NVIDIA GeForce GTX 8800 CUDA library 3–108×

(30) Parallel imaging (radial SENSE) NVIDIA GeForce GTX 280 CUDA library 10–12×

(31) Parallel imaging (radial iterative SENSE) NVIDIA GeForce GTX 280 CUDA library 2×

(32) Parallel imaging (radial GRAPPA) NVIDIA Tesla M2090 CUDA library –

(33) Parallel imaging (GRAPPA operator gridding) NVIDIA GeForce GTX 780 CUDA library 6–30×

(34) Parallel imaging (radial ART) NVIDIA GeForce GTX 580 CUDA library 15×

(35) Compressed sensing (conjugate gradient solver) NVIDIA GeForce GTX 280 CUDA library 200×

(36) Compressed sensing (split Bregman regularization) NVIDIA Tesla C2050 CUDA library 10×

(37) Compressed sensing (3D Radial Cardiac MRI) NVIDIA GeForce GTX 480 CUDA library 34–54×

(38) Compressed sensing (ADMM algorithm) NVIDIA GeForce GTX 650 CUDA library 30×

(39) Compressed sensing (SENSE-type acquisition) NVIDIA Tesla C2050 CUDA library 3×

(40) Compressed sensing (L1-ESPIRiT algorithm) NVIDIA Tesla K20m CUDA library 3–15×

(41) Compressed Sensing (cloud computing) Amazon Elastic Compute 
Cloud

Gadgetron 2–10×

(42) Compressed sensing (field-compensated recon) NVIDIA GeForce GTX 280 CUDA library 81–284×

(43) Deep learning (convolutional neural network) NVIDIA GeForce GTX TITAN CUDA library –

(44) Deep learning (variational network) NVIDIA Tesla M40 CUDA library –

(45) Deep learning (residual regression, deep CNN) NVIDIA GeForce GTX 1080 CUDA library –

(46) Deep learning (manifold approximation, DNN) NVIDIA Tesla P100 CUDA library –

MRI, magnetic resonance imaging; GPU, graphics processing unit; FFT, fast Fourier transform; CNN, convolutional neural network; DNN, 
deep neural network; HLSL, High Level Shading Language; CUDA, Compute Unified Device Architecture.
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FFT (21), in which the key step is implementing the 
convolution step in transform that was the most time 
consuming part before. The authors claimed that their 
GPU-accelerated convolution was up to 85 times faster 
than the open source NUFFT library (48), when using 
two MRI data-sets sampled by radial and spiral trajectories 
to estimate the algorithm performances. Actually, before 
the NVIDIA CUDA library appeared in June 2007, any 

implementation of relative complex algorithms was hard to 
be coded for programmers; even those have some GPU-
based programming experiences.

Currently, NVIDIA has released their easy-to-use CUDA 
framework in which they realized the cuFFT library (49),  
which is an optimized GPU-based implementation of the 
FFT. There are two separate libraries: cuFFT and cuFFTW. 
The cuFFT library is designed to provide easy-to-use 
high-performance FFT computations only on NVIDIA 
GPU cards. While, the cuFFTW library is a porting 
tool that is provided to apply FFTW into users’ projects 
with a minimum amount of effort. Both two libraries can 
provide the features as follows (18): an O(nlogn) algorithm 
for different input data sizes; single-precision (i.e., 32-bit 
floating point) and double-precision (i.e., 64-bit floating 
point) computations; complex and real-valued digital 
input and output; execution of multiple 1D, 2D and 3D 
transforms simultaneously; most in-place and out-of-place 
FFT; arbitrary intra- and inter-dimension element strides. 
Here, Figure 4 shows a current example of using CUDA’s 
cuFFT library to calculate two-dimensional FFT, as similar 
as Ref. (49). They simply are delivered into general codes, 
which can bring the GPU-accelerated computation power 
for arbitrary projects.

Actually, Stone et al. have presented an anatomically 
constrained MR reconstruction algorithm based on 
NVIDIA’s CUDA library for non-Cartesian MR data (22). 
What is more, their algorithm could find the solution for a 
quasi-Bayesian estimation problem that is a typical problem 
in MRI reconstructions. Their results showed that their 
algorithm could reduce the recon time for an advanced 
non-uniform reconstruction of the in vivo data from  
23 minutes on a quad-core CPU to about 1 minute on the 
Quadro Plex cluster, which can be applied to accelerate 
MR reconstruction into many clinical applications. Besides, 
Yang et al. presented optimized interpolators to approximate 
the non-uniform FT of a finitely supported function in the 
inversion of non-Cartesian data (23). According to their 
simulation applications, their interpolators could provide 
iterative non-Cartesian inversion algorithms which could 
reduce memory demands on memory limited early GPU 
systems. Moreover, Guo et al. improved a grid-driven 
interpolation algorithm for PROPELLER trajectory in 
real-time non-Cartesian applications (24). Their GPU-
based method could be about 9 times faster than their 
implementation on CPU, and it could achieve compatible 
motion correction accuracy and image quality. Moreover, 
Yang et al. also presented a CUDA-based algorithm to raise 

Figure 4 Computing 2D FFT of size NX × NY using CUDA’s 
cuFFT library (49). FFT, fast Fourier transform; NX, the number 
along X axis; NY, the number along Y axis.

Figure 3 The plot shows that cumulative articles published for 
GPU, MRI and reconstruction from 2005 to 2016. GPU, graphics 
processing unit; MRI, magnetic resonance imaging.
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the reconstruction efficiency of conventional PROPELLER 
trajectory (25). They developed a reverse gridding algorithm 
to reduce computation complexity. But different from the 
conventional gridding algorithm which generated a grid 
window for every trajectory, their algorithm calculated a 
trajectory window for every grid. The contribution of each 
k-space point in the convolution window was accumulated 
for this grid. Their experiments illustrated that its recon 
speed was 7.5 times faster than that of conventional gridding 
algorithm. Besides, Obeid et al. proposed a modified GPU-
based gridding method to perform gridding using a graphics 
processor (GPU) to achieve up to 29× acceleration for 
three-dimensional gridding (26). Their solution was to allow 
bins to contain a variable number of sample points within 
them, without sacrificing rapid access. Furthermore, an 
image reconstruction GPU-accelerated software toolkit for 
reconstructing data from arbitrary 3D trajectories has been 
released in Ref. (27,28). It is named as the Illinois Massively 
Parallel Acquisition Toolkit for Image reconstruction with 
ENhanced Throughput in MRI (IMPATIENT MRI). 
In their toolkit, they removed computational bottlenecks 
using a gridding method to accelerate the computation of 
data structures by the previous routine. Furthermore, they 
enhanced the capabilities of off-resonance correction and 
multi-sensor PI reconstruction, with speeding up 200 times 
more than before (27). And they gained much efficient 
trajectories for high spatial and temporal resolution in the 
applications (28).

PI 

PI (PMRI) techniques are employed to reconstruct under-
sampled data in k-space by attaining complementary 
information from multiple receive coils. There are a lot of 
PMRI reconstruction techniques that have been proposed (50).  
Currently, among them, the most well-known PMRI 
techniques are mainly SMASH (51), SENSE (52), and 
GRAPPA (53). Most of these techniques require additional 
coil sensitivity maps to remove the artifact’s effect, because 
of acquisition data under-sampled in the k-space. If current 
PMRI methods are simply analyzed, they can be roughly- 
classified into two types (50): one is the reconstruction 
procedure in image space which includes unfolding 
operation and inverse procedure, for example, SENSE (52); 
another is the reconstruction procedure in k-space, which 
has kernel calculation and recovery procedures of missing 
k-space data, for instance, SMASH (51) and GRAPPA (53). 

SENSE and SENSE derivative methods have been 

implemented in GPUs (29-33). For example, the GPU-
based implementations of Cartesian SENSE and k-t 
SENSE have been presented by Hansen et al. in Ref. (29). 
They focused on the inversion problems of SENSE recon 
and solved them for each set of aliased pixels in image-
space or x-f space, since these problems generally were the 
most time-consuming steps in the SENSE and SENSE 
derivative reconstructions. Here, Sørensen et al. presented 
a GPU-based reconstruction algorithm to enable real time 
reconstruction of sensitivity encoded none-Cartesian radial 
imaging (e.g., radial SENSE) (30). They claimed their 
algorithms could be used for real-time recon applications, 
because of using a moving buffer scheme to buffer the 
interval between data acquisition and image display. In 
addition, Sørensen et al. also have further described their 
real-time iterative SENSE GPU-based reconstruction 
to reduce the reconstruction time in the isotropic whole-
heart imaging application, an important protocol in 
simplifying cardiac MRI (31). They have shown that the 3D 
datasets (256 slices) could be reconstructed in 5–6 minutes.  
As an important PMRI method, GRAPPA also has been 
implemented on GPUs. For example, Saybasili et al. 
presented an automatically distributed hybrid (multi-node, 
multi-GPU), low-latency through-time radial GRAPPA 
reconstruction pipeline in Ref. (32). Actually, they proposed 
a combined CPU- and GPU-based computation framework 
to use multi-threaded CPU and GPU programming on 
multiple nodes (32). In their implementation, the master 
node forwards raw data was to each node for partial 
processing, because GRAPPA generally requires using all 
coil data to separately recon coil by coil. Each node could 
distribute the task to its local GPUs, and send its partial 
image results back to the master node after reconstructions. 
After that, all image results were combined and sent to the 
scanner for display. Their implementation claimed their 
reconstruction performances on 32 coils could achieve  
42 ms acquisition time, 11.2 ms reconstruction time for 
under-sampled radial datasets, and their methods could 
be utilized into more challenging reconstruction scenarios 
which have larger numbers of acquisition coils, higher 
acceleration rates, or more GPUs than before. Furthermore, 
Inam et al. proposed an acceleration method for Self-
calibrating GRAPPA operator gridding by using massively 
parallel architecture of GPUs (33). The LUTs were used to 
pre-calculate all possible combinations of gridding weight 
as well as avoid the race condition among the CUDA kernel 
threads. Firstly, they used the LUT-based optimized kernels 
of CUDA to pre-calculate all the possible combinations of 
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2D-gridding weight sets, after that they applied appropriate 
weight sets to shift the radial acquisitions to the nearest 
Cartesian grid locations. They claimed that their GPU-
based method could typically achieve 6× to 30× speed-up 
without compromising the image quality.

Actually, the above methods mainly attempted to transfer 
the classical PMRI methods based on CPUs into the 
GPU-based PMRI recon methods. However, the PMRI 
algorithms based on parallel GPUs should be re-designed 
according to the GPUs’ features. For example, Li et al. 
implemented a GPU-accelerated algebraic reconstruction 
technique (ART) reconstruction in Ref. (34) to apply 
to recover images with radial cardiac cine acquisitions. 
They mainly compared the reconstructed Cine images of 
their radial ART method with filtered back-projection at 
multiple under-sampling levels. Their results illustrated 
that GPU-accelerated ART could get comparable results 
in comparison with conjugate gradient SENSE in parallel 
radial MR imaging, and could also reduce artifacts and 
maintain image sharpness comparing with general filtered 
back-projection methods. Actually, the classical PMRI 
methods are not time-cost iterative methods; there are not 
huge improvements for GPU-based classical PMRI recon 
methods if the scenario is not extreme. However, for some 
nonlinear problems or complex iterative reconstructions 
in PMRI applications, GPU-based recon methods can 
bring lots of improvements if recon methods are designed 
according to the GPUs’ structure features.

CS 

Recently, to solve a minimization problem in MRI 
reconstruction, CS was studied and started to be applied 
into MR applications (54). Because the NVIDIA CUDA 
library is more and more perfect to support for GPU 
computing, the complex sparse reconstruction methods are 
more easily implemented on GPUs without considering 
the hardware constrains on GPUs. Actually, there are 
recently some papers studying CS MR recon methods 
on GPU architectures (35-42). For example, Zhuo et al. 
presented a GPU-accelerated regularization reconstruction 
method with compensations for susceptibility-induced field 
inhomogeneity effects, which are incorporating a quadratic 
regularization term (35). In their experiments, they realized 
a GPU-based spatial regularization with sparse matrices, 
which of the entire procedure is enabled to be performed 
on GPUs and avoid the memory bandwidth bottlenecks 
which are associated with frequent communications 

between GPUs and CPUs. Recently, because of popular 
CS, many studies have applied GPU-accelerated computing 
for fast CS MRI reconstruction, which seemed to be 
ideally suited for CS recon (54). For instance, Smith et al. 
also have presented a GPU-accelerated Bregman solver 
to accelerate 2D CS reconstruction in Ref. (36). They 
demonstrated that their combination of the split Bregman 
method and GPU computing could achieve the rapid 
convergence and massive parallel computation of real-
time CS reconstruction for small-to-moderate size images. 
Their GPU-accelerated iterative reconstruction method 
could reconstruct two-dimensional 1,0242 data matrices 
with a factor of up to 27 and spend about 0.3 seconds or 
less; even there is no available GPU VRAM. Nam et al. also 
proposed a parallelized GPU-accelerated implementation 
of an iterative CS reconstruction algorithm for 3D radial 
data acquisitions in both phantom and in vivo whole-heart 
coronary data sets (37). To reduce the time-cost operations 
of gridding and regridding operations, operations could be 
performed in a parallel manner for every measured radial 
point, suited for CUDA implementation. Comparing with 
the efficacy of the general CPU-implementation, their 
GPU-implemented CS reconstruction could improve 
image recon quality in terms of vessel sharpness and 
suppress noise-like artifacts, and reduce the running time 
of CS reconstruction to 34.3–53.9 times less than CPU-
based C/C++ implementation. In addition, Chang et al. 
presented an efficient GPU-based method for CS-MRI 
reconstruction for 3D multichannel data (38). They built 
a highly-parallelized framework to compute the CS-MRI 
reconstructions of simultaneous multiple-channel 3D-CS 
reconstructions. The results of simulated data and in vivo  
data showed that the proposed efficient method can 
significantly shorten the reconstruction run-time by a factor 
of 30. Even in some clinical applications, the 3D multi-slice 
CS reconstruction of the proposed method allowed to be 
performed in less than 1 second.

Otherwise, there are also some other papers studying CS 
MR recon methods on several parallel architectures of multi-
core CPUs and multi-core GPUs (39-41). They presented 
the huge potential speed-up ability on the architectures. 
For instance, Kim et al. investigated an inexact quasi-
Newton CS reconstruction algorithm on several parallel 
processing architectures that included CPUs, GPUs, Intel’s 
Many Integrated Core (MIC) architecture, etc. (39). They 
have claimed lots of experiments on different parallel 
architectures (multi-core CPUs, GPUs, MIC, etc.). Among 
their experiments (39), their reference implementations on 
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the 4-core Core i7 were able to reconstruct a 256×160×80 
8-channel data of the neuro vasculature with a speedup of 
10× under-sampled data set in 56 seconds; the recon time 
could be reduced further to 32 seconds on the 6-core Core 
i7; the CUDA-based implementation could reduce the 
reconstruction time to 16 seconds on NVIDIA GTX480; 
the recon time even could reduce to 12 seconds on the 
Intel’s Knights Ferry (KNF) of the MIC architecture. All 
their experiments showed that their CS algorithm could 
bring huge benefits from those throughput-oriented 
architectures. Apart from that, Sabbagh et al. studied to 
accelerate the non-linear CS reconstruction problem in 
cardiac MRI solved by iterative optimization algorithms 
and to facilitate the migration of CS reconstruction in the 
clinical applications (40). Their experiments employed 
3D steady-state free precession MRI images from five 
patients, and compared the speed and recon image quality 
on different parallel platforms, such as CPU, CPU with 
OpenMP, and GPU. Their recon results showed that the 
mean reconstruction time was 13.1±3.8 minutes on the 
CPU platform, 11.6±3.6 minutes on the CPU platform 
with OpenMP, and 2.5±0.3 minutes for the CPU platform 
with OpenMP plus GPU (40). And their image qualities 
estimated by image subtraction were very similar, which are 
comparable on different parallel architectures. Otherwise, 
the modern cloud-computing conception also has been 
applied into time-cost MR reconstructions. Cloud-
computing generally needs to support most of modern 
parallel architectures, GPUs are one of them. For example, 
Xue et al. utilized the open source Gadgetron framework to 
support distributed computing for image reconstruction and 
demonstrated that a multi-node version of the Gadgetron 
which could provide nonlinear image reconstruction with 
clinically acceptable latency (41). Actually, their framework 
was a cloud-enabled version of the Gadgetron on three 
different distributed computing platforms ranging from 
a heterogeneous collection of commodity computers to 
the commercial Amazon Elastic Compute Cloud (41). 
They claimed that they could provide nonlinear, CS 
reconstructions of cardiac and neuron imaging applications 
with low reconstruction latency. Besides, Zhuo et al. proposed 
an GPU-implemented reconstruction algorithm with MR 
field inhomogeneity compensation into calculating magnetic 
field maps and its gradients for iterative CG reconstruction 
algorithms on NVIDA CUDA-enabled GPUs (42). If 
comparing with their CPU-based implementations, their 
GPU-based implementations could hugely reduce the 

calculation time, while it could still guarantee acceptable 
accuracy to compensate MR field inhomogeneity.

Deep learning (DL)

Recent developments of DL in NNs have brought lots 
of breakthrough improvements in many areas (55-58). 
Because of the time-cost training and multiple-layer NNs, 
GPUs are very suitable for solving the massive calculation 
problems of DL (55). Although there are several attempts 
at creating fast NN-specific hardware, GPUs brought a real 
cheap way to implement DL in lots of applications. GPUs 
can be employed at not only the fast matrix and vector 
multiplications, but also for NN training, and speeding up 
DL by a factor of 50 and more (55). Currently, GPU-based 
DL started to be applied into some MR applications (43-46) 
as follows to solve the problems of MRI reconstruction.

Wang et al. firstly proposed a DL method to accelerate 
MR reconstruction (43). They built a big dataset of 
existing high-quality images, and trained an off-line 3-layer 
convolutional neural network (CNN) as the complex 
mapping between MR images from zero-filled and fully-
sampled k-space data. Actually, the trained network can 
predict the under-sampled data, when solving an online 
constrained reconstruction problem. Although the off-line 
training can take roughly 3 days, it took less than 1 second 
for every online reconstruction-based GPU. The in vivo 
results illustrated that the proposed method can restore fine 
details and have great potential for effective MR imaging.

Hammernik et al. presented an efficient approach to 
learn a variational network which can remove typical under-
sampling artifacts and restore important image details, such 
as the natural appearance of anatomical structures (44). 
They considered that their trained models were highly 
efficient and are also well-suited for parallel computation on 
GPUs, due to their structural simplicity. And their approach 
illustrated that they achieved superior results than many 
commonly used reconstruction methods.

Lee et al. expressed a novel deep residual learning 
algorithm to recover images from highly under-sampled 
k-space data (45). Here, they formulated a traditional CS 
problem as a residual regression problem, and designed a 
deep CNN to learn the aliasing artifacts. They trained the 
NN using the magnitude of MR images by a stochastic 
gradient descent method with momentum based on the 
MatConvNet toolbox (59) and NVIDIA GTX 1080 GPUs. 
They expressed that their algorithm took only about 30 ms  
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after their deep CNN has been well trained, with much 
better reconstruction performance compared to many 
existing GRAPPA and CS algorithms.

Zhu et al. proposed an automated robust NN as a 
generalized reconstruction framework which can exploit 
the universal function approximation of multi-layer 
perception regression and the manifold learning properties 
demonstrated by auto-encoders (46). They implemented 
a unified reconstruction framework with a deep neural 
network (DNN) feed-forward architecture composed of 
fully-connected layers followed by a sparse convolutional 
auto-encoder. And they built their NN parameters which 
were trained to minimize squared loss and updated by a 
stochastic gradient descent, computed with the Tensorflow 
toolbox (60) and 2 NVIDIA Tesla P100 GPUs. And their 
results show to be over a lot of acquisition strategies, and 
have excellent immunity to noise and artifacts.

With fast developments of GPUs and DL in NNs, an 
exciting epoch of MRI reconstruction has started. Although 
it is still early to say the DL reconstruction approaches will 
replace currently used clinical methods, the development of 
the DL approaches has illustrated huge potential to promote 
the technology developments of MRI reconstruction and 
change these community.

Conclusions

Except the above GPU-accelerated MR reconstructions, 
there are also a few relative applications of unclassical 
reconstruct ions  which  a t tempted to  apply  GPU 
implementation applications. For example, Johnson et al.  
proposed a GPU-based iterative decomposition of water 
and fat with echo asymmetry and least-squares (IDEAL) 
reconstruction scheme (61). They estimated the fat-
water parameters and compared Brent’s method with 
golden section search to optimize the unknown MR field 
inhomogeneity parameter (psi) in the IDEAL equations. 
They claimed that their algorithm was made more robust to 
fat-water ambiguities using a modified planar extrapolation 
of psi method (61). Their experiments show that fat-water 
reconstruction time of their GPU-implementation methods 
could be quickly and robustly reduced with a factor of 11.6 
on a GPU in comparison to CPU-based reconstruction.

Nowadays, GPU has been one of the standard tools in 
high-performance computing (2). More and more GPUs 
have been applied into more and more applications because 
of their parallel computing ability and low cost. Among the 

GPU-based applications of MRI reconstruction, they have 
been gradually recognized and widely applied. Although 
the early GPU programming was constrained and not 
friendly, the developments of GPU programming have 
provided more easy-to-use libraries and frameworks for 
programmers. GPUs have played more and more important 
roles in medical imaging, image reconstruction and image 
analysis in the clinical applications. Despite lots of successful 
applications have been performed in the recon community 
of GPU-based medical imaging, there still remains long-
standing unsolved solution problems. 

Firstly, GPUs’ parallel architectures require re-designing 
the pipeline of the reconstruction algorithms. Although 
there are many libraries to assist people to employ GPUs, 
the algorithms pre-optimized before GPU programming 
still can bring huge improvements than any easy-to-use 
libraries. It is better to consider the parallel structures in 
any custom-designed algorithms for GPU computing. In 
addition, the hybrid architectures based on GPU computing 
and traditional ×86 CPU-based high-performance 
computing clusters are more and more popular, even the 
cloud computing appears in industry. While software and 
hardware trends are not the primary problems of medical 
image computing, the ability that is efficiently employing 
more sophisticated algorithms as faster technology emerges 
is still an important driving force, largely precluding any 
kind of convergence in algorithms (47). 

In the future, the computing efficiency of the custom-
designed optimized algorithms, especially MRI reconstruction 
based on GPUs and DL, should be synthetically considered 
as the sequential and parallel procedure, and the low-cost 
Internet computation and storage services should be seriously 
considered.
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