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Introduction

Alzheimer’s disease (AD) is an irreversible, progressive, 
neurodegenerative disease characterized by global cognitive 
decline, and behavioral and functional changes, which 
heavily affects the ability of individuals to perform basic 

activities of daily life (1). As therapeutic intervention is 
likely more beneficial in the early stage of the disease, mild 
cognitive impairment (MCI), which has a 10% to 15% risk 
per year to convert into AD compared with normal elderly 
persons (2), has attracted more and more attention. Most 
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existing studies of this issue have mainly focused on the 
classification of NC, MCI and AD using machine learning 
techniques (3,4). However, due to the heterogeneity of the 
MCI, there is still difficulty in identifying those who are 
most likely to convert from MCI to AD, and challenges 
in further predicting the conversion time for effective 
risk estimate, which could lead to efficient intervention of 
pharmacological treatments for early AD (5).

As a non-invasive method to reveal the structure and 
changes of the brain, neuroimaging such as structural 
magnetic resonance imaging (MRI), has been verified to be 
both valid and sensitive for MCI and AD prediction (6,7). 
Beyond that, development of an assistive tool or algorithm 
to identify MR-based imaging data, has always been of very 
interest to clinicians (8). Existing prediction methods could 
be divided into four categories which include regression 
algorithm (9), Bayesian methods (10), support vector 
machine (SVM) (11) and other methods (12). For example, 
Lee et al. (13) applied logistic regression model with fused 
lasso regularization for annual changes prediction from 
MCI to AD in the corpus callosum thickness profile, 
resulting in an accuracy of prediction of 84% in females 
and 61% in males. Young et al. (14) introduced Gaussian 
process (GP) classification to produce naturally probabilistic 
predictions, which showed 74% accuracy and 0.795 area 
under curve (AUC) for predicting AD conversion within 
3 years in a population of 96 stable MCI (sMCI) and 47 
converted MCI (cMCI) subjects. Gavidia-Bovadilla et al. (15)  
predicted the conversion of cMCI to be 1.9 years earlier 
for females (accuracy of 72.5%) and 1.4 years earlier for 
males (accuracy of 69.0%) using residual-based SVM 
modelling, and Ardekani et al. (12) determined the utility of 
hippocampal volumetric integrity (HVI) with an accuracy of 
82.3% in classification between stable and progressive MCI 
patients, using the Random Forest classification algorithm. 
However, these methods had several shortcomings. First, 
most of the machine learning techniques only worked well 
in binary classification, and their performances declined 
sharply when they were extended to multi-classes tasks (16). 
In consequence, a multi-class classification problem was 
normally facilitated as a series of binary classification tasks 
instead of being naturally modeled for diagnosis of AD (10).  
For instance, a progressive two-class proximal support 
vector machine based decision (pTCDC-PSVM) classifier 
was employed to distinguish between AD, and MCI from 
the NC group (17). Second, the conventional prediction 
models required large-scale feature engineering with 
shallow structures and affine data transformation, which 

were time-consuming in feature computation, extraction 
and dimensionality reduction.

Recently, with the accessibility of affordable parallel 
computing resources via graphics processing units (GPUs) 
for computational acceleration, deep learning architectures 
have possibly been turned into advanced learning algorithms 
that extracted high-level features progressively via hidden 
layers of feature representations. Deep convolutional 
neural networks (CNNs), which were inspired by the 
human visual system, have enabled certain properties 
to be encoded and have also reduced hyper parameters 
on the basis of the explicit assumption that raw data are 
comprised of two-dimensional images. The CNNs have 
made substantial advancements in the multi-classification 
of natural images (18), as well as in biomedical applications, 
such as pulmonary nodule detection (19), interstitial lung 
disease classification (20), and AD early diagnosis (4). In 
one study, a deep ensemble learning of sparse regression 
models was reported to classify NC, sMCI, cMCI and 
AD groups (21); the classification accuracies of AD-NC 
was 91.02%, MCI-NC was 73.2%, and sMCI-cMCI was 
74.82%. Based on the MRI and PET images, a multimodal 
stacked deep polynomial network was constructed to extract 
features and the SVM classifier was applied for two-group 
classification between NC, sMCI, cMCI and AD groups (22).  
Similar to this study, MRI, PET and cerebrospinal fluid 
(CSF) biomarkers were considered using a deep sparse 
multi-task learning scheme (23) for feature selection and 
a SVM classifier was explored for discriminative analysis 
on two-group classification for NC, sMCI, cMCI and AD 
groups (AD-NC 95.09%, MCI-NC 78.77%, cMCI-sMCI 
73.04%). The authors also tried three-group and four-group 
classifications and obtained accuracy measures of 62.93% 
for AD/MCI/NC classification, and 53.72% for AD/cMCI/
sMCI/NC classification. A multimodal neuroimaging 
feature learning and fusion method (24) was employed for 
classification and showed a 91.4% accuracy for NC-AD, an 
82.1% accuracy for NC-MCI, and a 53.79% accuracy for 
AD/cMCI/sMCI/NC. A deep belief network was introduced 
for early diagnosis of AD; the accuracy and AUC were 
respectively 0.9 and 0.95 for AD-NC classification; 0.84 
and 0.91 for sMCI-AD classification, 0.83 and 0.95 for NC-
cMCI classification (25). Notably, Liu et al. (26) proposed 
a landmark-based deep multi-instance learning scheme 
for NC, sMCI, cMCI and AD classification and MCI 
conversion prediction. The authors combined landmarks 
extracted by group-level statistical analysis with patches in 
3D CNN models and obtained very promising results.
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Nevertheless, most of the existing studies focus on two-
group classification and the models did acquire good results, 
but they performed poorly in multiple-group classification. 
In addition, MCI conversion prediction still remains to be 
comprehensively investigated. For data-driven learning 
methods, a large quantity of well-annotated datasets with 
representative data distribution characteristics was essential 
to learning more accurate or generalizable models (18). To 
alleviate the problem of limited image data for training, 
data augmentation was proposed to improve the network 
performance by intentionally producing more training data 
from the original data, such as the common methods that 
performed horizontal or vertical flip, rotation or reflection 
and shift on images (27), or the random sampling of a certain 
number of slices of 2D images from the 3D MRI volume of 
each subject (28). Inspired by the image integration method 
of Shin (20), a novel data augmentation strategy which 
selects 3 slices from 3D volume data with a certain interval to 
combine a RGB color image was adopted. This augmentation 
strategy used the information of training data sufficiently, 
so as to meet the requirement of 3-channel input by CNN 
architectures. Furthermore, the transfer learning technique 
that performed unsupervised pre-training on natural images 
and fine-tuning on medical target images by deep learning 
models, was designed and finally proven to overcome limited 
dataset problem. This accomplishment opened up new 
perspectives and possibilities in the medical domain (20).

In this paper, we explored the process for early diagnosis 
of probable AD with multiple states, and further predicted 
the conversion time point from MCI to AD for effective 
risk estimate by using CNN architectures, investigated with 
transfer learning approach. To alleviate the limitation of 
original MRI, a data augmentation strategy using random 
views aggregation was adopted to increase the training 
dataset. It was aimed to provide effective information for 
early therapeutic intervention of patients with probable 
AD and AD-related neurodegeneration. Two CNN 
architectures including CaffeNet and GoogleNet were 
compared and evaluated in discriminative analysis among 

compared groups and prediction of conversion risk of 
patients with MCI.

Methods

Participants

Patients with MCI (n=307) and normal controls (NC) 
(n=150) from the Alzheimer’s Disease Neuroimaging 
Initiative (ADNI) database (http://adni.loni.usc.edu/) were 
followed annually with MR image data, clinical evaluations 
and neuropsychological testing for at least 3 years, and 
clinical dementia rating (CDR) and mini-mental state 
examination (MMSE) were tracked (29). The obtained 
datasets, including standard T1-weighted images, were 
acquired according to the ADNI acquisition protocol (30).  
Scanning from 3 different Tesla scanners, General Electric 
(GE) Healthcare, Philips Medical Systems, and Siemens 
Medical Solutions, were based on identical scanning 
parameters. Anatomical scans were acquired using 
volumetric 3D MPRAGE sequence (TR =2 s, TE =2.63 ms,  
FA =9°, TI =900 ms, FOV =25.6 cm, 256×256×160,  
1 mm ×1 mm ×1.2 mm). All the images were preprocessed 
according to a number of steps detailed under the ADNI 
website (http://adni.loni.usc.edu/methods/mri-analysis/
mri-pre-processing/), which included Gradwarp (geometry 
distortion due to gradient non-linearity), intensity 
inhomogeneity correction due to B1 filed non-uniformity, 
and N3 histogram peak sharpening (reduce intensity non-
uniformity due to the wave or the dielectric effect). We did 
not apply any further preprocessing such as grey matter 
(GM) or white matter (WM) segmentation.

According to whether the MCI subjects were converted 
into AD within 3 years, they were categorized into sMCI 
(keep stable) and cMCI (converted into AD) groups. MRI 
were acquired at 5 time points including the 6th month 
(6m), the 12th month (12m), the 18th month (18m), the 
24th month (24m), and the 36th month (36m). Detailed 
demographic information and clinical status are shown 

Table 1 Demographic data and cognitive scores of subjects

Group Number Male/female Age (years), mean ± SD (range) MMSE CDR

NC 150 80/70 75.61±5.47 (59.9–89.6) 29.29±0.89 (26–30) 0.00±0.10 (0–0.5)

sMCI 150 109/41 75.32±7.82 (54.4–89.3) 27.35±1.79 (24–30) 1.40±0.73 (0.5–4)

cMCI 157 106/51 75.29±6.74 (55.2–88.3) 26.47±1.75 (20–30) 1.78±1.08 (0.5–5)

MMSE, mini-mental state examination; CDR, clinical dementia rating.

http://adni.loni.usc.edu/methods/mri-analysis/mri-pre-processing/
http://adni.loni.usc.edu/methods/mri-analysis/mri-pre-processing/
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in Table 1. There was no significant difference in age and 
gender as revealed via analysis of chi-square test and one-
way ANOVA, respectively (P>0.01).

CNNs

Recently, CNNs have exhibited outstanding image 
classification performance in the ImageNet Large Scale 
Visual Recognition Challenge (ILSVRC). The tremendous 
success of CNNs was attributed to the improved algorithms 
that learned rich mid-level image representations as 
opposed to hand-designed low-level features used in 
other methods. The CNNs primarily were composed of 
convolutional layers, pooling layers, normalization layers 
and fully connected (FC) layers. The convolutional layers, 
specifically, played a major role in the CNN architecture 
with numbers of weights and biases parameters that 
consisted of a set of learnable filters, which computed 
each dot product between its weight and the connected 
input region as neurons output. Furthermore, it updated 
the parameters during the back-propagation optimization 
procedure by optimizing the whole cost function with 
the stochastic gradient descent (SGD) algorithm. The 
calculation of a single output of convolutional layer was:

, , ,( )M N
i j mn i m j n m nm n

h f w x b+ += +∑ ∑ 	 [1]

x was the input, w was one set of shared parameters of size 
M × N, b was the bias, h was the output neuron, m and n 
denoted the parameter indices, and i and j denoted the input 
indices. Generally, an element-wise activation function 
without changing the size of the image volume followed, 
which was named as the rectified linear unit (ReLU)  
layer (31). This significantly accelerated the training phase 
and prevented overfitting, and described as follow:

f (x) = max (0, x)	 [2]

Afterwards, the pooling layers were usually inserted as 
max pooling or average pooling to execute a down-sampling 
operation along the spatial dimensions, in order to simplify 
network hyper-parameters and avoid overfitting. Here, we 
considered the max pooling to reduce vector Hk for a single 
scalar f (Hk), making the output into size P × Q. The down-
sampling function was described as follow:

fp, q (Hk) = max (Hk)	 [3]

Additionally, the normalization layers applied local 
response normalization (LRN) to create a competition 
mechanism of local neuron activity, making the larger 

value of the response relatively larger, and inhibiting other 
neurons with smaller feedback; thus, the generalization 
ability of the model was enhanced. Here was the definition:
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a represented the output after the convolution layer 
(including the convolution operation and the pooling 
operation), b represented the output of normalization, i was 
the ith kernel map, x, y were the indices, n was the number 
of kernel maps that are adjacent to the same location, N was 
the total number of kernels, and k, n, α, β were all hyper-
parameters, which were usually set to k =2, n =5, α =1×e−4, β 
=0.75.

Finally, the FC layers made the last generated feature 
maps link together, and eventually adjusted the output 
nodes numbers to meet the binary class or multi-class by 
classification requirements. The input x and the output y 
were connected by the linear weights WFC that are shown 
in Equation [5]. Meanwhile, the dropout technique that 
stochastically set a number of the input neurons or hidden 
neurons to be zero to reduce the co-adaptations of the 
neurons, was regarded as a kind of regularization inserted in 
FC layers. 

y = WFC • x	 [5]

In this study, we achieved the rapid training of CNN via 
a fast open source deep learning framework called Caffe (31) 
and the NVIDIA DIGITS (deep learning GPU training 
system) tool, based on the operating system of Ubuntu 
14.04, using Dell workstation with Intel Xeon E5-2690 
v4 (central processing unit, CPU), 128 GB random access 
memory and NVIDIA Quadro M4000 (GPU). As described 
in previous studies, deeper CNN architectures with 
different model training parameter values were developed 
to recognize target objects from high volume data, such 
as LeNet-5 (32), AlexNet (ImageNet) (18), ZF Net (33), 
GoogleNet (34), VGGNet (35) and ResNet (36). Among 
them, CaffeNet, an adaptation of the well-known AlexNet, 
and GoogleNet have been commonly used for object 
recognition and classification.

CaffeNet

As a slightly modified version of the typical CNN 
architecture of AlexNet, the CaffeNet demonstrated a 
better performance by switching some layers to reduce the 
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memory footprint and increasing the bias-filter value (31).  
This network with approximately 60 mill ion free 
parameters consists of 5 convolutional layers (conv1 to 
conv5), 3 following pooling layers (pool1, pool2 and pool5), 
3 CF layers (FC6 to FC8), and a softmax (multinomial 
logistic regression) classifier, as shown in Figure 1. In this 
study, the model was set for 400 epochs and initiated for 
SGD with gamma =0.1, momentum =0.9 and base learning 
rate =0.001, which dropped in steps by a factor of gamma 
in each iteration. The final CF layer FC8 was replaced 
by three-output class, and it was initialized with random 
weights and freshly trained in order to accommodate the 
new object categories.

GoogleNet

The GoogleNet model as the current state-of-the-art 
CNN framework proposed for the ILSVRC challenge, 
achieved 5.5% top-5 classification error on the ImageNet 
challenge in 2014, compared to AlexNet’s 15.3% top-5 
classification error. As shown in Figure 2, the architecture 
of GoogleNet is significantly complex and deep, consisting 
of a 22-layer architecture. Despite the improvement 
of accuracy by increasing the size of layers, two major 
issues arose, including the overfitting for the numbers of 
hyper parameters and the increase of interactions with 
computational resources for uniform increases in network 

Figure 1 A schematic view of CaffeNet. 

Figure 2 A schematic view of GoogleNet.
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size. The GoogleNet worked by creating an inception 
architecture as a sparsely connected architecture rather than 
a FC network, which allowed for a noteworthy increase in 
unit amount at each layer through global dimensionality 
reduction prior to costly convolutions with larger patch 
sizes, thus keeping the computational complexity under 
control at later stages. Composed of 6 convolution layers 
and one pooling layer in each module, 9 inception modules, 
together with convolution layers and pooling layers, formed 
the GoogleNet network (Figure 2). The detailed structure of 
inception modules is shown in Figure 3. Also, we employed 
the model with 400 epochs and hyper-parameters of gamma 
=0.1, momentum =0.9 and base learning rate =0.001, and 
step learning rate decreased progressively with a factor of 
gamma from learning rate were employed.

Transfer learning strategy

CaffeNet and GoogleNet can be either learned from 
scratch or fine-tuned from pre-trained models. On account 
of the requirements to a large amount of annotated image 
samples for estimating millions of learning parameters from 
scratch, problems with limited training data prompted the 
emergence of transfer learning, which aimed to transfer 
knowledge between one domain-specific task to another 
analogical task (37). In a practical setting, the CNN 
network was pre-trained on the source task of ImageNet 
for the optimized weights of its layers, and then transferred 
to another target task to avoid the need for large amounts 
of data. It has been proved to be effective for achieving 
state-of-the-art performance in many medical applications 
(20,38-40). Due to the limited data set in this study, this 
technique was employed to learn the appropriate salient 

features for MR-based imaging classification, where all CNN 
layers except for the last were fine-tuned with a learning 
rate using 1/10 of the default learning rate. The last fully-
connected layer was randomly initialized and freshly trained, 
in order to accommodate the new object categories in this 
study. Its learning rate was set to 1/100 of the default value.

Data augmentation

In addition to the initialization parameters with a transform 
learning approach, deep learning also requires a large 
number of training data to fine-tune the complex network 
parameters so as to achieve the best classification accuracy. 
We adopted a novel strategy that combined 3 slices into an 
RGB color image as 3-channel data to meet the requirement 
of the CNN architectures. First, the MR scans with 
Neuroimaging Informatics Technology Initiative (NIfTI) 
format were loaded into the Matlab (version R2013a) 
platform. Then, from among about 160 slices of raw MR 
scans of each subject, we discarded the first and last 15 slices 
without anatomical information, resulting in about 130 
slices for each subject. Next, we selected 48 different slices 
randomly from the remaining slices with the interval of 4, 
and thus generated 16 RGB color images for each subject. 
Third, the selected slices were converted into portable 
network graphics (PNG) format. Finally, all of the RGB 
color images were resized to 256×256 pixels and converted 
to the Lightning Memory-Mapped Database (LMDB) for 
high throughput of the CaffeNet deep learning platform. 
To ensure the robustness of the model, five random datasets 
were created to repeat the training and testing of the CNN 
classifiers (5-fold cross-validation). The flow chart for this is 
shown as in Figure 4.

Figure 3 The detailed structure of inception modules.
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Results

Differential diagnosis of MCI

According to aforementioned data augmentation, all 
baseline MR data were expanded to up to 7,200 slices (4,800 
for training, 2,400 for testing) for 150 NC subjects, 7,200 
slices (4,800 for training, 2,400 for testing) for 150 patients 
with sMCI, and 7,536 slices (5,024 for training, 2,512 for 
testing) for 157 patients with cMCI. During the training 
model, embedded five-fold cross validation was employed 
to train a robust model. The performance of multi-class 
classification is displayed in Figure 5 and Table 2, which 
illustrates that the GoogleNet acquired accuracy scores 
of 97.58%, 67.33% and 84.71% in NC, sMCI and cMCI 
discrimination respectively, whereas the CaffeNet obtained 
high accuracy scores of 98.71%, 72.04% and 92.35% in the 
NC, sMCI and cMCI classification respectively. 

Conversion time prediction of MCI

For the cMCI group, from 157 subject’s data, a total of 
2,512 baseline images were produced and converted from 
NIfTI format to PNG format. These data were divided 
into 368 images for the 6m group, 720 images for the 
12m group, 480 images for the 18m group, 544 images 
for the 24m group and the remaining 400 images were 
placed in the 36m group. Using the similar parameters in 
the aforementioned classification, the traces of training, 
validation loss and validation accuracy of CaffeNet (Table 3,  

Figure 5A) and GoogleNet (Figure 5B) were obtained. 
It exhibits a validation accuracy of more than 95% for 
CaffeNet, and about 85% for GoogleNet. 

In the prediction task, 5-fold validation was also applied 
in 2 CNN models. Prediction accuracy scores and detailed 
predictions of two CNN models are shown in Table 3. 

The conversion time point from MCI to AD on the 
basis of baseline data was predicted with a higher accuracy 
from 95.42% to 97.01% respectively, by CaffeNet and from 
71.25% to 83.25% respectively, by GoogleNet. 

Discussion

In this study, two robust pipelines were explored for 
discriminative analysis between patients with different MCI 
and healthy controls, and further conversion risk estimation 
from MCI to AD. So as to meet the requirement of the 
3-channel input by CNN architectures, an alternative to the 
conventional data augmentation methods (such as flipping, 
rotating and reflecting) was adopted. This novel data 
augmentation strategy selects 3 slices from the 3D volume 
data with a certain interval to randomly create a RGB color 
image. Using this approach, the augmentation could not 
only use information of training data efficiently, but also 
avoid overfitting in the training procedure.

In the 3-way classification of sMCI, cMCI and healthy 
NCs from the ADNI dataset, the overall accuracy scores 
of 87.78% and 83.23% were obtained by CaffeNet and 
GoogleNet respectively. Notably, the CaffeNet acquired 

Figure 4 Flow chart of classification and the conversion time prediction. 
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the highest accuracy of 98.71%, 72.04% and 92.35% in 
NC, sMCI and cMCI classification respectively. With 
regard to the relative low accuracy of sMCI recognition, 
some images belonging to sMCI were incorrectly identified 
as cMCI, whereas a few of images belonging to cMCI were 
misidentified as sMCI, and almost all of images belonging 
to the NC group were identified successfully. These 
misidentifications can be attributed to the similarities of 
brain structure and changes at baseline between sMCI and 
cMCI. As a prodromal stage of AD, sMCI exhibited similar 

structural brain changes with cMCI at baseline (41,42), 
and the differences increased among groups in longitudinal 
studies (43-45). However, the morphological brain features 
of both sMCI and cMCI exhibited significant differences 
with the NC group at baseline. Furthermore, differing 
from the regression analysis of previous studies, a novel 
risk estimation approach was proposed for early prediction 
from cMCI to AD based on two CNN architectures. These 
cutting-edge networks achieved an average accuracy of 
96.18% with CaffeNet and 79.18% with GoogleNet in 
predicting the status of patients in the 3-year follow-up, and 
even predicted the conversion time points effectively, which 
exceeded the cross-validated accuracy of 72% via logistic 
regression models (46). 

In addition, the two CNNs were compared for disease 
classification and progressive prediction. The results 
showed that the CaffeNet with 8-layers was superior to 
the GoogleNet with 22-layers, which was contrary to the 
compared results of pulmonary tuberculosis classification 
on chest radiographs (47). Since both CaffeNet and 
GoogleNet were trained and tested on an abundant number 
of routine images rather than medical images, the two 
networks showed exceptional performance in natural image 
analysis including segmentation and recognition. However, 

Figure 5 Traces of training and validation loss and validation accuracy of CaffeNet and GoogleNet. Val means validation, loss, loss1 and 
loss2 denoted the performances corresponding to the 3 classifiers such as softmax2, softmax0 and softmax1, respectively (see Figure 2). The 
top5 means that the top 5 prediction values with the highest probability were consistent with the labels.
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Table 3 Prediction accuracy scores of conversion time points 

CNN network 6m 12m 18m 24m 36m

CaffeNet 0.9701 0.9542 0.9583 0.9632 0.97

GoogleNet 0.7853 0.8097 0.7125 0.8125 0.8325

Table 2 Classification accuracies 

CNN network NC sMCI cMCI

CaffeNet 0.9871 0.7204 0.9235

GoogleNet 0.9758 0.6733 0.8471
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the limited amount of medical data in this study restricted 
us from exploiting the full advantages of GoogleNet and 
caused difficulties in finding the optimal parameters of the 
network with deep layers.

Although an increased sample amount would improve 
the performance of GoogleNet, it is usually difficult to 
obtain a large amount of medical images, and thus data 
augmentation and transfer learning are instead considered 
in most studies. Another possible alternative is ROI 
(region of interest) selection instead of common patch, 
as the ROI can reveal salient anatomical information and 
facilitate the discriminative analysis for the CNNs; thus, the 
performance might be enhanced through the speeding up of 
the convergence rate or improving accuracy. 

Using data augmentation and transfer learning, we 
were able to train the CNNs with training data of 7,312 
color images in this study. The transfer learning and data 
augmentation techniques were verified to be effective, and 
enhance generality and offer promising potential in clinical 
application.

Finally, although our proposed CNN architectures 
achieved promising results in both MCI multi-classification 
and conversion risk prediction, the work had several 
limitations. First, similar to most of the research in this 
area, the sample size was still too small for deep CNNs; 457 
subjects including 150 NC, 150 sMCI and 157 cMCI were 
investigated. Second, preprocessing such as skull removing, 
tissue segmentation and normalizing was not performed. 
A couple of studies reported that data normalization can 
improve performance, however, the challenge was the 
high complexity and inconsistency due to complicated 
procedures and a large number of control parameters. 
Third, only structural MRI were explored, but PET images 
and other biomarkers such as Tau protein, Aβ protein could 
have provided supplementary information for discriminative 
analysis and development prediction. Finally, the CNN 
architectures were based on patch classification, where the 
anatomical location of the patch was often unknown to the 
network, even though anatomical information is essential to 
focus localization and accurate diagnosis.

In future work, we need emphasize the ROI (region of 
interest) instead of the common patch. In this way, the ROIs 
can be extracted from the group-level statistical analysis, 
which contains the most discriminative ability. These ROIs 
are considered as patches for training and testing in CNN 
models, and can reveal salient anatomical information, 
while providing effective explanation in diagnosis. ROIs’ 
extraction also requires more preprocessing including 

skull removing, tissue segmentation and normalization. It 
remains to be verified if the performance can be enhanced 
through speeding up the convergence rate or improving 
accuracy. In addition, 3D CNN architecture will further 
be explored since it involves three-dimensional topological 
structures, which are discarded in common 2D CNN 
models.

Conclusions

We exploited two different architectures of CNN 
framework, CaffeNet and GoogleNet, to differentiate sMCI 
and cMCI from the NC group, and extensively evaluated 
the conversion risk from MCI to AD. The CaffeNet and 
GoogleNet architectures, using the proposed transfer 
learning strategy, achieved 87.78% and 83.23% average 
accuracy scores in three-way classification respectively. 
Moreover, conversion time point was effectively predicted 
with an overall accuracy of 96.18%. To conclude, these 
findings open up a new perspective in risk assessment 
of patients with MCI in early stages. As they exhibited 
great potential in differentiating 3 groups, and assessing 
the conversion risk at assigned time points of MCI, our 
proposed pipelines could serve as promising algorithms in 
characterizing objective biomarkers.
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