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Introduction

Glioblastomas (GBMs) are the most aggressive and lethal 
brain tumors. Lower grade gliomas [based on the 2007 World 
Health Organization (WHO) grading scale] have an average 
relative 2-year survival rate of 80%, while the relative 2-year 
survival rate for grade IV gliomas drops to only 30% with 

a median overall survival rate of 12–15 months (1,2). The 

incidence of malignant gliomas is about 17,000 per year 

or 5 in 100,000. Overall, about 65% are grade IV which 

results in a mortality rate of over 10,000 deaths per year (3).  

These poor outcomes stem from the uncooperative, 

heterogeneous nature of GBMs where some develop and 
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progress from lower-grade gliomas while others develop as 
primary tumors (4). Much like other solid tumors, GBMs 
develop a very heterogeneous pattern of mutations (5). Only 
recently have there been studies showing the predictive and 
prognostic power of genetic characterization of GBM (6,7) 
and expression data correlated with response to treatments 
(5,8,9). Even so, the genetic and molecular heterogeneity 
of GBMs still poses a significant hurdle to developing novel 
therapies and clinical decision making (10). Thus, there is 
a significant unmet need in accurate characterization and 
classification of these high-grade (HG) and low-grade (LG) 
gliomas to select proper treatment options to improve the 
outcomes of these patients.

In recent years, to circumvent the complexities of intra-
tumoral and inter-patient tissue characterization of GBM 
through sample limited biopsies (11), various imaging 
modalities have been used to characterize the phenotypic 
expression of various tumors through the radiomic approach 
(12-14). With these radiomic approaches, correlations to 
clinical outcomes have been observed in the breast (15), 
brain (16), and head and neck (17) by different modalities 
like computed tomography (CT), positron emission 
tomography (PET), and magnetic resonance imaging (MRI). 

Brain tumor patients typically undergo extensive MRI scans 
to classify the tumor type, determine the tumor grade, and 
monitor the treatment response and tumor recurrence (18).  
Unlike histopathologic analysis of tumor tissue samples 
collected from biopsies, which cannot reveal intra-tumoral 
heterogeneity due to sampling limitations, or surgical 
resection, with its difficulty to repeat, MRI examinations 
with different imaging techniques can be performed 
frequently, repetitively, and non-invasively to provide both 
morphological and physiological information of the tumor 
with high spatial resolution and tissue characteristics. 
Among the methods widely used for brain tumors MRI, 
dynamic susceptibility contrast enhanced (DSC) MRI 
follows signal intensity changes associated with the passage 
of intravenously (i.v.) injected paramagnetic contrast agent 
(e.g., gadopentetate dimeglumine, Gd) through the vascular 
system to investigate the hemodynamic properties of 
tissues, such as permeability of the tumor vasculature and 
blood supplies to the tumor, based on the empirical models 
of tracer kinetics.

The purpose of this work is to improve the tissue 
classification of the highly heterogeneous GBMs by taking 
advantage of: (I) the hemodynamic features that can be 
derived from DSC MRI data; (II) the delta-radiomic 
features showing the change in radiomic features over the 

course of the DSC MRI and/or versus the normal tissue; (III) 
the random forest machine learning approach which splits 
observations with similar response variables. This method 
aims to be able to extract “hidden” delta-radiomic features 
from DSC MRI data, select and apply the most salient 
features, and train a random forest to classify HG or LG 
GBMs with cross validations.

Methods

The proposed classification method used in this study is 
described as in Figure 1. First, MRI images of patients are 
acquired, registered, and contoured. Then radiomic features 
are extracted. Afterwards, feature selection is applied to get 
the most salient features, followed by using random forest 
decision trees to train and test the classification method. 
Finally, the performance is evaluated and optimizations are 
applied.

Image acquisition

Patient data
Image data from clinical brain tumor MRI exams of 25 
patients who had biopsy or tumor resection after MRI 
exams for pathology were selected for retrospective analysis. 
The use of these MRI data was approved by the Emory 
institutional review board (IRB) with written informed 
consent obtained from the study subjects. Among 25 
patients, 12 were pathology confirmed HG gliomas, GBMs, 
and 13 were LG gliomas with tumors located mostly in the 
frontal or temporal regions of the brain. The tumor grades, 
classified based on the 2007 WHO grading scale at the 
time, were determined based on histopathological analysis 
and none of the cases were recurrent or primary tumors 
before treatment. Among 25 cases, 17 were assessed with 
tumor proliferation MIB-1 index based on the Ki-67 assay. 

MRI protocol
All patients underwent MRI exams on a 3T MRI scanner 
(Magnetom Tim/Trio; Siemens, Germany) with a routine 
brain tumor protocol which included the following 
MR sequences: pre- and post-contrast enhanced T1-
weighted axial, sagittal, and coronal spin-echo imaging, 
T2-weighted (axial) fluid-attenuated inversion recovery 
(FLAIR), diffusion-weighted imaging (DWI), and DSC 
MRI. Axial T2 FLAIR images, which were used for the 
segmentation of the tumor, were obtained using the 
following parameters: repetition time/echo time (TR/TE) 
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=6,000/93 ms, flip angle =130°, inversion time =2,030 ms, 
slice thickness =3 mm, FOV =128×128 mm2, and 25 axial 
slices (thickness =1.875 mm).

DSC MRI data were acquired using a single-shot echo 
planar sequence with TR =45 ms, TE =2,000 ms, with 
50–70 time points, field of view (FOV) of 22 cm, matrix of 
128×128. A bolus of 0.05–0.15 mmol/kg gadolinium (Gd) 
contrast agent was injected at a rate of 3 mL/s at 20 s after 
starting the dynamic data acquisition. 

Image registration and contouring
First, the time series DSC images of each patient were 
performed first using rigid registration by Velocity AI 
3.2.1 (Varian Medical Systems, Palo Alto, CA, USA) and 
then manually adjusted for the small mismatch. They were 
registered to the corresponding T2 FLAIR image given 
its superior resolution and tissue contrast. Once all images 
were registered, the tumor was contoured on the T2 FLAIR 
images. In order to derive delta-radiomic features, we 
exported the contours as Matlab matrices and flipped the 
contours contralaterally to obtain normal tissue contours 
to contrast against the tumor. Once flipped, these contours 

were translated to best match the anatomical features of 
the opposing hemisphere. The contralateral contours from 
normal tissue were trimmed according to the anatomy, e.g., 
if any part of the contralateral contour was outside of the 
brain, crossed the midline, or crossed into the tumor, it was 
contoured out. After contours of both tumors and normal 
areas were drawn and shaped to satisfaction, they were 
applied to the entire volumes of DSC MRI time course data 
for feature extraction. Figure 2 shows an example of one 
set of tumor contour, normal tissue contour, and contour 
trimming from a LG glioma patient.

Radiomics

Feature extraction
After contouring the images and selecting the features to 
extract, a total of 1,689 different features were extracted 
for each image using IBEX (Imaging Biomarker Explorer), 
an open-source radiomics tool (19). These features were 
defined as those spatially local and global image features 
extracted from IBEX. Handcrafted features from IBEX 
were chosen because they were designed with prior 

Figure 1 The flowchart of our proposed classification method. FLAIR, fluid-attenuated inversion recovery; T1W, T1-weighted.
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knowledge to balance accuracy and computational efficiency 
with attention to specific issues in computer vision and 
image classification like variations in image scale and 
intensities (20). Deep features from the data itself was 
considered but not chosen due to concerns of overfitting 
to the small dataset. Once all features were extracted, 
following feature transformation methods were applied to 
calculate delta-radiomic features and normalize the data. 
While contemporary papers define delta-radiomics as those 
radiomic features that change over time, usually pre- and 
post-treatment features, our paper more broadly defines 
delta-radiomics as those features that change over time or 
are different to the normal tissue. To extract delta-radiomic 
features, we used three methods to derive delta-radiomic 
features: (I) subtraction (absolute difference) to the tumor 
baseline or feature change over time; (II) absolute difference 
between tumor features and normal tissue features; and (III) 

normalization (relative difference) to normal tissue features. 
These subtraction and normalization derived a matrix of 
delta-radiomic features, features that change over the DSC 
image as well as the features that are different than the 
normal tissue, that were used to create our feature lists (FLs) 
which were then optimized to our classification method 
via feature selection. Additional normalization methods 
were applied to: (I) observe if normalization of features 
improved our classification method and (II) reduce inter-
patient feature variances. Table 1 summarizes a list of the 
final feature transformations used in the further analyses, 
corresponding descriptions of these features and how they 
were derived.

Feature selection
Feature selection was applied once all features were 
extracted. It is a procedure commonly applied in radiomic 

Figure 2 Tumor and normal tissue contours. A side by side view of the tumor contour (A) and the contralateral normal tissue contour (B). 
On the bottom, a side by side view of two image slices (C,D) where the normal tissue contour (red) was trimmed to fit the patient anatomy 
resulting in a smaller contour than the tumor (green).

A B

C D
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and machine learning studies to reduce redundant variables, 
extract the most informative features and maintain 
efficiency of computation. The first part of our feature 
selection was to extract features that showed a significant 
difference between HG and LG gliomas as well as a 
preliminary reduction of features. We used a combination 
of LASSO (least absolute shrinkage and selection operator) 
and two sample t-test (2Samp) to achieve this. LASSO is a 
commonly used statistical regression analysis that is used 
to increase the prediction accuracy of statistical models by 
selecting unique and significant predictors (21,22). A two-
sample t-test is a statistical test used to determine if two 
population means are equal. 

In this case, HG patients and LG patients were 
considered as two sample populations to select features 
that are significantly different at the 0.05 significance level 
and then the first round of LASSO was used to further 
select and reduce features. After both feature selections 
were finished, only those features that were selected to be 
significant by both tests, LASSO and 2Samp (L2S), were 
chosen to be used in further processes. Once the most 
significant features have been selected, redundant features 
were removed using a correlation-matrix-based selection 
with variable correlation thresholds. 

Finally, an additional positive-feature selection was 
performed after initial performance evaluations. These 
positive-features were defined as those features that were 
added with each increasing correlation limit that positively 
affected the outcome of overall prediction accuracy. This 
positive-feature selection was applied with the expectation: 

(I) that it would improve prediction accuracies by removing 
features that reduced the accuracy of our method; (II) 
reduce the computational load by significantly reducing the 
number of features used to train and test the model; (III) 
extract and observe radiomic and delta-radiomic signatures, 
combinations of features, and feature groups that are the 
most informative in classifying tumors for different grades.

Machine learning

Random forest
After feature selection, a random forest machine learning 
method was used to classify the selected gliomas. Recent studies 
have used random forests to train the classification or regression 
model, due to its efficacy in tackling medical image processing 
(23-26). Random forests train a bag of decision trees, each of 
which is provided with a random subset of training data and 
trained independently from the others. This generally yields 
favorable error rates and are robust to noise (27).

Specifically, we chose to use the Matlab function, fit 
ensemble, with a semi-optimized template tree without 
internal cross validation due to the low number of patients 
and the nature of the patient data, each patient’s DCS 
volumes being read as “one input”. Since the whole volume, 
from the start to end volumes of DSC MRI, is treated as 
“one input”, a class voting method such as random forests, 
support vector machines, or other methods are useful to 
obtain a majority vote classification. Although some time 
point volumes within the DSC MRI may be classified 
incorrectly, ideally the majority of the volumes will be 
classified correctly with sufficiently informative features 
obtained through feature selection. However, support 
vector machines inherently solve for binary or two-class 
problems which doesn’t allow future testing of our method 
in multi-class problems such as classifying tumors by their 
grades, grades 1–4. Additionally, while other classification 
methods have a tendency to overfit at low training sizes, 
random forests are robust against it and are simpler to train 
and tune (28). At each correlation limit, the corresponding 
features and labels (of HG or LG patients) for each method 
were supplied to the random forest to train and test it, 
resulting in various performance metrics such as prediction 
accuracy (predicted label), prediction confidence (score), 
and receiver operating characteristic (ROC) curves.

Performance evaluation

To evaluate the performance of our classification method 

Table 1 Table of final feature lists (FLs)

Feature list name Feature list description

FL 1 Raw tumor features

FL 2 Delta radiomic features via subtraction of 
tumor baseline features

FL 3 Delta radiomic features via subtracting 
normal tissue from tumor features

FL 4 Delta radiomic features via dividing tumor 
features by normal tissue features

FL 5 FL 3 normalized by subtracting the 
baseline

FL 6 FL 3 normalized by dividing with the 
baseline

FL 7 FL 4 normalized by dividing with the 
baseline
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to the larger population and reduce the overfitting bias, we 
chose to use a leave-one-out cross validation on the random 
forest. This allowed our method to be trained and tested 
over multiple iterations, each with a new test patient. After 
the leave-one-out cross validation testing, we evaluated the 
performance of our machine-learning based classification 
method by calculating the accuracy of our predictions, 
and calculating the area under the ROC curve (AUC) 
while stratifying these values by confirmed HG or LG 
patients. Once each individual FLs were evaluated on its 
performance, a majority voting method based on the various 
normalization methods was applied to minimize the strong 
bias produced from the binarization of a few approaches 
in the final result. Our results were compared to similar 
studies and are discussed.

Results

The result for each FL is first provided in. In Table 2. The 
best result is defined as the correlation threshold at which 
that FL gave the best average classification accuracy. In 
Table 3, the results were obtained from positive features 
derived from the full range of the correlation thresholds to 
achieve the presented values.

Finally, with the use of our best-majority voting 

combination method, the best resulting accuracies were 
0.902±0.191, 0.950±0.091, and 0.850±0.255 for all, HG, and 
LG patients, respectively, with an AUC of 0.938.

Results across correlation limits

In comparing the various methods of feature manipulation, 
namely subtraction, absolute difference, and normalized 
delta-radiomic features, as well as correlation limits, we 
observed a few trends. For example, the first two feature 
transformation lists, 1 and 2, show that peak performances 
occur at lower correlation limits at 28.75% and 13.75%, 
respectively, while other features showed peak performances 
at higher correlation limits (Figure 3). Additionally, we found 
that the delta-radiomic features derived from the differences 
between the tumor and normal tissue, normalized or not, 
performed better than those that were not.

Looking at the peak accuracies for all transformed FLs, 
we derived an accuracy heatmap by stratifying the accuracies 
by patients and by FLs as shown in Figure 4. In most 
cases, the method performed well except for one patient, 
LG patient 1 (LG_1), where all lists were consistently 
performing poorly at an average accuracy of 0.068. This 
leads to two likely conclusions: that either this patient 
was not classified correctly by histopathology or that our 

Table 2 Table of best results for each feature list

Variables
Leave-one-out best

FL 1 [71] FL 2 [24] FL 3 [522] FL 4 [87] FL 5 [679] FL 6 [159] FL 7 [526]

Average accuracy 0.758 0.784 0.744 0.810 0.821 0.776 0.741

HG accuracy 0.775 0.816 0.698 0.830 0.949 0.861 0.784

LG accuracy 0.740 0.750 0.794 0.789 0.682 0.684 0.694

AUC 0.822 0.314 0.737 0.835 0.797 0.676 0.766

HG, high-grade; LG, low-grade; AUC, area under the curve; FL, feature list.

Table 3 Table of results for each feature list using positive features

Variables
Leave-one-out positive-features only

FL 1 [277] FL 2 [331] FL 3 [326] FL 4 [96] FL 5 [384] FL 6 [275] FL 7 [256]

Average accuracy 0.688 0.593 0.718 0.789 0.720 0.760 0.713

HG accuracy 0.747 0.684 0.707 0.793 0.838 0.835 0.771

LG accuracy 0.624 0.494 0.731 0.784 0.592 0.678 0.650

AUC 0.810 0.641 0.763 0.822 0.725 0.811 0.802

HG, high-grade; LG, low-grade; AUC, area under the curve; FL, feature list.
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Figure 3 Performance of selected features. Graphs of accuracy across correlation thresholds of different feature lists. As shown in the graph, 
FL 5 has the best average accuracy at 0.821. FL, feature list.

Figure 4 Best accuracy heatmap. An accuracy heatmap for best performance of each feature list. On the y-axis, the blue and red represents 
HG and LG patients, respectively. HG, high-grade; LG, low-grade; FL, feature list.
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classification method might suffer with this specific type of 
LG patient. While histopathological grading of gliomas is 
the current clinical standard, it is associated with significant 
inter-observer variability (29) that may account for the 
wrong classification of this patient. Furthermore, the data 
provided to the study only included the 2007 WHO glioma 
grading standards and may miss out on the more intricate 
classification available in the 2016 WHO glioma grading 
standard such as the incorporation of GBM IDH-wildtype 
and IDH mutant. Additionally, while we have not observed 
any factors that make patient LG_1 outliner among LG or 
all patients in general, there may be underlying factors or 
features that make this patient uniquely difficult to classify 
and are currently waiting on the cross examination of this 
specific patient.

Another observation is that features normalized to 
the tumor baseline versus not normalized HG and LG 
accuracies are different. For LG patients, the difference 
between accuracies of delta-radiomic features (lists 3 and 4), 
versus normalized-delta-radiomic features (lists 5, 6, and 7), 
were significantly different 0.792±0.003 and 0.687±0.005, 
respectively. While it was not as significant, accuracies of 
HG patients between the two different conditions were 
different as well with 0.764±0.066 and 0.865±0.068 for 
delta-radiomic and normalized-delta-radiomic features, 

respectively. These results suggest that normalizing delta-
radiomic features increase the accuracy of HG patient 
classifications at the cost of significantly reducing the 
accuracy of LG patients.

As shown in Figure 5, the AUC values indicated that the 
performance of the normalized raw features was very poor 
at an AUC of 31.36%, worse than pure random, 50% with 
more false positives than true positives. However, other 
methods, including raw features, had good performances 
with an average AUC of 0.772±0.054.

Results of using positive features

Figures 6,7 show the heatmap and ROC curves for each 
FL using the positive features. As seen on the results 
summarized in Tables 2,3, there is no significant difference 
between the peak performing correlations for each feature 
transformation method and positive features with a change 
in average accuracy, HG accuracy, LG accuracy, and 
AUC of −0.065±0.059, −0.048±0.049, −0.083±0.080, and 
0.061±0.123, respectively. However, using positive features 
significantly increased the ROC of FL 2 from 0.314 to 
0.641. One explanation of the reduction of average accuracy 
in the positive features is the way that positive features 
were calculated. Positive features were calculated to be any 
added features that increased the overall accuracy of the 
classification over the full correlation limit range. However, 
the peak performances of many FLs were less than the full 
range of correlation limits tested, resulting in redundant or 
confounding features being added into the positive feature 
set as seen in Tables 2,3, reducing the performance slightly.

Discussion

In our literature search, there were no studies we could 
make direct comparisons of our results. However, similar 
papers using DSC MRI or radiomic features to classify 
gliomas or GBMs were used to compare our method’s 
performance. Qin et al. (30) and Reza et al. (31) have shown 
that radiomic features on multiple MRI sequences could 
be used to grade gliomas and combined to achieve an AUC 
performance of 0.943 and 0.88 respectively. Our method 
is comparable to these state-of-the-art methods and could 
provide functional information such as calculated perfusion 
and permeability values (32) that could be applied to 
increase our accuracy.

One of the limitations of this work was the number of 
patients. Unfortunately, only a limited number of patients 

Figure 5 Best ROC curves. ROC curves for each feature list’s best 
performing correlation. FL 2 has the worst ROC curve with an 
AUC of 0.314. ROC, receiver operating characteristic; AUC, area 
under the ROC curve; FL, feature list.
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Figure 6 Positive feature accuracy heatmap. A heatmap for each feature list using its positive features. Compared to Figure 4, the overall 
average accuracy, especially LG patients, suffers. HG, high-grade; LG, low-grade; FL, feature list. 
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Figure 7 Positive feature ROC curves. Receiver operating 
characteristic curves for each feature list using its positive features. 
With positive features, the ROC of FL 2 significantly improves at 
the cost of some classification accuracy. ROC, receiver operating 
characteristic; FL, feature list.
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Receiver operating characteristic curve were available for the study within the inclusion criteria. 
Only 25 patients had FLAIR and DSC MRI images as 
well as having either biopsy or tumor resection with 
histopathological analysis. To alleviate the problems that 
comes with a small sample size, our study used a rigorous 
supervised feature selection to allow only significant features 
corresponding to the database. While making our study 
more robust to the small sample size, we are expecting and 
are planning to add more patients to this study as more data 
becomes available.

Out of the seven FLs, the FL with the best overall 
accuracy was FL 5 (82.12%), a normalized delta-radiomic 
FL. However, considering the disparity between HG 
and LG accuracies, we consider FL 4 (81%), a relative 
delta-radiomic feature method, to be better overall for 
its relatively high accuracy in both HG and LG patient 
classification. Moreover, by using the best-majority voting 
method, our method can take advantage of the differences 
in the seven FLs to achieve a better final result as seen in 
the increase from 0.821 to 0.902 and 0.797 to 0.938 for 
overall accuracy and AUC respectively.

When comparing FLs and the number of features 
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Table 4 Table of commonly used features and feature groups

Number of 
lists used

Feature groups Feature

6 feature 
lists

GLCM (2D) InverseVariance [2]

GLCM (3D) InverseVariance [1]

5 feature 
lists

GLCM (2D) InformationMeasureCorr2 [2]

InverseVariance [6]

MaxProbability [2]

GLCM (3D) Correlation [1]

InverseVariance [3]

Intensity direct 60Percentile [1]

Intensity 
histogram

5PercentileArea [1]

4 feature 
lists

GLCM (2D) Contrast [2]

Correlation [7]

InformationMeasureCorr1 [2]

InformationMeasureCorr2 [1]

InverseDiffMomentNorm [1]

InverseVariance [1]

MaxProbability [4]

GLCM (3D) ClusterProminence [2]

Contrast [2]

Correlation [6]

Homogeneity2 [2]

InverseVariance [4]

MaxProbability [4]

SumEntropy [1]

GLRLM (2D) HighGrayLevelRunEmpha [1]

Intensity direct GlobalMax [1]

LocalStdMedian [1]

5Percentile [1]

Range [1]

Intensity 
histogram

5Percentile [1]

60Percentile [1]

Range [1]

Neighbor intensity 
difference (2D)

TextureStrength [1]

Neighbor intensity 
difference (3D)

Contrast [1]

GLCM, gray-level-cooccurrence-matrix; GLRLM, gray-level run 
length matrix.

used for each method, we observed that normalizing 
features to itself, especially through division (lists 2, 4, 
and 6), significantly reduced the number of features used 
for our classification method than their non-normalized 
counterparts. This is observed in lists 1 and 2 (71 vs. 24 
features), lists 3 and 4 (522 vs. 87), and lists 5 and 6 (679 vs. 
159). For each pair of FLs compared, overall performance 
parameters did not change significantly but reduced the 
number of features as well as computational load.

The most commonly used feature groups in all FLs are 
shown in Table 4. We can see that of the 69 features used 
in at least 4 feature transformation methods, 56 are gray-
level-cooccurrence-matrix (GLCM), textural, features (30 
derived from 2D slices and 26 from a 3D image matrix). 
Overwhelmingly, over 80% of the strong and common 
features used in our methods are textural features as 
described by Haralick et al. (33) in 1973 and later confirmed 
for the use in radiomic applications by Ravanelli et al. (34) 
in 2010 for non-small cell lung cancer (NSCLC) and Aerts 
et al. (13) in 2014 for a more general application. These 
commonly used features may be the radiomic signature, or 
finger print, for classifications of GBMs using DSC MRI 
data and could allow future studies to test with and against 
these features to develop a robust classification or predictive 
model.

Adding time and/or sequential information as features 
were considered as well. However, those features were 
not included in this study for the following reasons: (I) 
sequential features would be eliminated during the t-test of 
the feature selection process since there are no significant 
differences in the sequential order of DSC MRIs based 
on patient GBM grade; (II) time information would be 
arbitrary based on when the MRI was taken and also 
eliminated during the t-test for significance between the 
high and LG patients. In future studies, our method should 
involve either multi-class labeling or require a feature 
selection method that preserves the sequential and time 
information.

Conclusions

In conclusion, our method using delta-radiomic features 
of DSC MRI performed well in classifying HG and LG 
GBMs based on the DSC MRI data with an average of 90% 
accuracy. This study shows that delta-radiomic features of 
DSC MRI, specifically GLCM and other textural features, 
are highly correlated with tumor grades that may further 
elucidate the underlying tumor biology and response to 
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therapy. The radiomic analysis assisted by machine learning 
as demonstrated in this study can be generalized to a 
broader set of diseases and imaging modalities. Our method 
derived several delta-radiomic features using the difference 
in DCS MRI between the normal and disease tissue as well 
as the change in features from the baseline. However, it is 
the combination of these features and reducing individual 
biases that gave us the best results. This method will be 
tested further as more patients are included and clinical 
outcome information becomes available such as testing 
our method’s ability to stratify even LG gliomas. With 
future advances in imaging, machine learning, and radiomic 
analysis, a more robust, accurate and validated classification 
or predictive model will be widely available to assist future 
oncologists deliver better and more personalized treatments.
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