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Background: Pre-treatment liver tumor localization remains a challenging task for radiation therapy, 
mostly due to the limited tumor contrast against normal liver tissues, and the respiration-induced liver 
tumor motion. Recently, we developed a biomechanical modeling-based, deformation-driven cone-beam 
CT estimation technique (Bio-CBCT), which achieved substantially improved accuracy on low-contrast 
liver tumor localization. However, the accuracy of Bio-CBCT is still affected by the limited tissue contrast 
around the caudal liver boundary, which reduces the accuracy of the boundary condition that is fed into 
the biomechanical modeling process. In this study, we developed a motion modeling and biomechanical 
modeling-guided CBCT estimation technique (MM-Bio-CBCT), to further improve the liver tumor 
localization accuracy by incorporating a motion model into the CBCT estimation process.
Methods: MM-Bio-CBCT estimates new CBCT images through deforming a prior high-quality CT 
or CBCT volume. The deformation vector field (DVF) is solved by iteratively matching the digitally-
reconstructed-radiographs (DRRs) of the deformed prior image to the acquired 2D cone-beam projections. 
Using the same solved DVF, the liver tumor volume contoured on the prior image can be transferred onto 
the new CBCT image for automatic tumor localization. To maximize the accuracy of the solved DVF, MM-
Bio-CBCT employs two strategies for additional DVF optimization: (I) prior-knowledge-guided liver 
boundary motion modeling with motion patterns extracted from a prior 4D imaging set like 4D-CTs/4D-
CBCTs, to improve the liver boundary DVF accuracy; and (II) finite-element-analysis-based biomechanical 
modeling of the liver volume to improve the intra-liver DVF accuracy. We evaluated the accuracy of MM-
Bio-CBCT on both the digital extended-cardiac-torso (XCAT) phantom images and real liver patient 
images. The liver tumor localization accuracy of MM-Bio-CBCT was evaluated and compared with that of 
the purely intensity-driven 2D-3D deformation technique, the 2D-3D deformation technique with motion 
modeling, and the Bio-CBCT technique. Metrics including the DICE coefficient and the center-of-mass-
error (COME) were assessed for quantitative evaluation. 
Results: Using limited-view 20 projections for CBCT estimation, the average (± SD) DICE coefficients 
between the estimated and the ‘gold-standard’ liver tumors of the XCAT study were 0.57±0.31, 0.78±0.26, 
0.83±0.21, and 0.89±0.11 for 2D-3D deformation, 2D-3D deformation with motion modeling, Bio-CBCT 
and MM-Bio-CBCT techniques, respectively. Using 20 projections for estimation, the patient study yielded 
average DICE results of 0.63±0.21, 0.73±0.13 and 0.78±0.12, and 0.83±0.09, correspondingly. The MM-Bio-
CBCT localized the liver tumor to an average COME of ~2 mm for both the XCAT and the liver patient 
studies. 
Conclusions: Compared to Bio-CBCT, MM-Bio-CBCT further improves the accuracy of liver tumor 
localization. MM-Bio-CBCT can potentially be used towards pre-treatment liver tumor localization and 
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Introduction

The incidence rate of primary liver cancer is on the 
rise both in the United States and worldwide (1). Liver 
is also an organ highly susceptible to metastasis from 
other primary cancers (2). Radiation therapy has become 
increasingly popular in primary liver cancer and liver 
metastasis management, especially with the advent of 
highly-focused stereotactic body radiation therapy (SBRT) 
(3,4). However, the normal liver tissue has long been known 
for its low tolerance to radiation. The resulting radiation-
induced liver disease (5) is very difficult to manage and 
often progresses to liver failure and death. The effort of 
optimizing the therapeutic ratio of liver radiotherapy, by 
escalating the tumor dose while minimizing the radiation 
damage to surrounding normal liver tissues, is challenged 
by the motion of liver and liver tumor (6,7). Distinct from 
other motion-affected sites such as lung, the localization 
of moving liver tumors is further complicated by the low 
contrast of liver tumors against the liver parenchyma for 
X-ray cone-beam computed tomography (CBCT) imaging 
(8,9), the technique widely used for on-board patient 
setup and treatment position verification in radiation 
therapy. Iodinated X-ray contrast, though frequently 
applied in radiotherapy simulation for liver tumor contrast 
enhancement, is rarely used in on-board CBCT guidance 
due to the additional workload, the timing uncertainty of 
contrast administration/imaging, and the potential toxicity 
of the contrast itself. The lack of a reliable, accurate on-
board imaging technique for liver tumor localization 
necessitates large radiotherapy treatment margins to be 
added beyond the true extension of the disease. A margin 
up to 1.5 cm is usually added to account for the imaging and 
setup uncertainty, leading to over-irradiation of surrounding 
normal liver tissues and preventing further dose escalation 
to maximize the benefit of radiation therapy.

To improve the liver tumor localization accuracy, 
recently we developed a biomechanical modeling-guided 

CBCT estimation technique (Bio-CBCT) (10,11) on 
the basis of the 2D-3D deformation technique (12,13). 
Instead of directly reconstructing CBCT images from 
cone-beam projections, Bio-CBCT estimates the CBCT 
images by deforming a prior high-quality CT/CBCT 
image. The deformation vector field (DVF) is iteratively 
solved by matching 2D cone-beam projections to digitally-
reconstructed-radiographs (DRRs) of the deformed 3D 
prior image. Through this approach, the tumor volume 
contoured on a prior simulation CT or a prior CBCT can 
be simultaneously propagated to the new CBCT image by 
the solved DVF for automatic liver tumor localization, even 
if manual tumor localization could be visually challenging. 
Incorporating prior information also helps to improve the 
CBCT image quality, and reduce the number of cone-
beam projections need to be acquired for new CBCT to 
reduce imaging dose. Compared with the traditional 2D-
3D deformation technique (12,13), the core advantage 
of Bio-CBCT is that it incorporates the finite-element-
analysis based biomechanical modeling (14-16) to optimize 
the intra-liver DVF. For the traditional 2D-3D deformation 
technique, the intra-liver DVF is usually poor in accuracy 
due to the limited intra-liver tissue contrast. Bio-CBCT 
does not rely on the intra-liver tissue contrast for DVF 
optimization. Instead, it uses biomechanical modeling to 
discretize the liver into small, connected finite elements. 
The movements of these elements (intra-liver DVFs) 
are collectively solved through finite-element-analysis 
under specified liver material properties and boundary  
conditions (17), which is a physics-driven process that has 
been validated in solving accurate DVFs at low-contrast 
regions (18). For the boundary condition, Bio-CBCT 
uses the DVF at the liver boundary solved by the 2D-3D 
deformation technique. Compared to intra-liver motion, the 
motion of the liver boundary, especially its cranial boundary 
(which has prominent contrast against the lung), can be 
accurately solved by intensity-driven 2D-3D deformation. 
The caudal boundary of the liver, on the other hand, is less 

intra-treatment liver tumor location verification to achieve substantial radiotherapy margin reduction.
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differentiable from the surrounding organs. Its motion, as a 
result, is more difficult to solve from limited 2D cone-beam 
projections (12). It may introduce errors into the boundary 
DVF, which will be further propagated into the intra-liver 
DVF by the finite-element-analysis based biomechanical 
modeling. 

To further boost the DVF accuracy at the caudal 
liver boundary, in this study we introduced principal-
component-analysis (PCA) based motion modeling to 
model the liver boundary motion from patient-specific 
4D-CT imaging sets (19,20). By motion modeling, we 
introduced another constraint to improve the accuracy of 
the caudal liver boundary DVF, by exploiting its implicit 
correlation with the DVF at the cranial liver boundary.  The 
combined motion modeling and biomechanical modeling-
guided CBCT estimation technique (MM-Bio-CBCT), 
was compared with the traditional 2D-3D deformation 
technique, the 2D-3D deformation technique with motion 
modeling, and the Bio-CBCT technique. We performed 
simulation studies using both the extended-cardiac-torso 
(XCAT) phantom images and real liver patient images. 
Quantitative metrics including the DICE coefficient (21) 
and the center-of-mass-error (COME) (20) were evaluated 
to gauge the performance of different techniques. Motion 
variations were simulated in the XCAT study to evaluate 
the robustness of MM-Bio-CBCT towards motion 
pattern changes between motion modeling and actual 
CBCT acquisition (22). Different numbers of cone-beam 
projections were also used in the patient study to evaluate 
the potential of MM-Bio-CBCT in imaging dose reduction. 

Methods

General workflow of MM-Bio-CBCT

The MM-Bio-CBCT technique is developed on the 
basis of the traditional 2D-3D deformation technique, 
sharing the core idea of estimating a new CBCT volume 
from deforming a prior CT/CBCT volume based on 2D 
projection matching. The MM-Bio-CBCT technique, 
however, substantially augments the traditional 2D-3D 
deformation technique by introducing motion modeling 
and biomechanical modeling. The general workflow of the 
MM-Bio-CBCT technique is shown in Figure 1. Note that 
the workflow applies to both 3D-CBCT and 4D-CBCT 
estimations. For 4D-CBCT, the CBCT image and the DVF 
of each phase are solved independently in the same way 
as 3D-CBCT, using phase-sorted cone-beam projections. 
Details of the 2D-3D deformation, motion modeling and 
biomechanical modeling steps are described below.

2D-3D deformation 

The 2D-3D deformation technique uses an intensity-driven 
approach to solve the DVFs. It optimizes the DVFs such 
that the 2D DRRs of the deformed 3D prior CT/CBCT 
volume will match the acquired 2D cone-beam projections 
(Figure 2). In this study we used the sum-of-squared-
differences metric to measure the similarity between the 
DRRs and the cone-beam projections. Correspondingly, the 
DVF is solved via a dual-direction optimization scheme as 
shown in Eq. [1]:

Figure 1 General workflow of the MM-Bio-CBCT technique. CBCT, cone-beam computed tomography.
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v denotes the forward DVF which deforms the CT/
CBCTprior volume (uprior) to estimate the new CBCT. It 
will also deform the prior liver tumor contours onto the 
new CBCT for automatic liver tumor localization. vinv, on 
the other hand, denotes the inverse DVF which deforms 
the new CBCT back to the CT/CBCT prior volume. We 
also need to solve this inverse DVF, since the liver boundary 
DVF extracted from vinv will serve as the boundary 
condition for the biomechanical modeling step. vinv and v are 
inherently connected and could be solved jointly through 
multiple approaches (23,24). In this study we took a simple 
but effective approach by setting vinv = –v. A and Aprior denote 
the cone-beam projection ray-tracing matrices for the 
acquired cone-beam projections (P) and the simulated cone-
beam projections (Pprior) of μprior, respectively. We defined  
A = Aprior since Pprior can be simulated at arbitrary angles. The 
deformation energy term (19), E(*), regularizes the DVF 
smoothness for stable and fast convergence. The weighting 
factors for the deformation energy term, ω, was empirically 
set to 0.025 (11). The gradient of the objective function 
defined in Eq. [1] can be explicitly computed to feed into 
convenient optimization routines such as the conjugate-
gradient optimization scheme (13,19), which was employed 
in this study.  

The 2D-3D deformation technique is built purely on 
projection intensity matching for DVF optimization. For 
regions with limited intensity variations such as intra-liver 
regions or caudal liver boundaries, the DVFs may not be 
accurately solved. In addition, the number of unknown 

DVF variables is three times the number of the CBCT 
image voxels. Such a great amount of unknowns leads to an 
ill-posed optimization problem that can be easily trapped at 
local optima, and necessitates further dimension reduction 
and regularization. 

Motion modeling 

To improve the DVF accuracy at low-contrast caudal liver 
boundaries, and to reduce the number of unknowns in the 
DVF optimization, we introduced motion modeling into 
the MM-Bio-CBCT estimation scheme. Compared with 
the traditional 2D-3D deformation technique, motion 
modeling views the DVF as a linear combination of several 
extracted motion modes (19,20,25). Instead of solving the 
whole DVF voxel-by-voxel, it solves the linear coefficients 
of several known motion modes to achieve substantial 
dimension reduction. In this study, we used a similar PCA 
based motion modeling strategy as that employed in (19,20). 
The general workflow of the motion modeling step has been 
depicted in Figure 3. In detail, for each liver patient, MM-
Bio-CBCT learns a liver boundary motion model from his/
her own prior 4D-CT/4D-CBCT imaging set. In radiation 
oncology, 4D-CT is frequently acquired for liver patients 
during treatment simulation to study the liver and liver 
tumor motion to customize motion management strategies. 
On each phase image of a selected 4D-CT/4D-CBCT, we 
manually contoured the whole liver volume and density-
overrode the liver to a high Hounsfield Unit number to 
enhance the contrast of its boundary against surrounding 
normal tissues/organs, especially for the caudal boundary, 
to allow boundary-focused motion modeling. Using one 
phase as the reference phase (usually the end-inspiration or 
the end-expiration phase due to their relative stability and 
limited motion artifacts), we deformed the reference phase 

Figure 2 General scheme of the intensity-driven 2D-3D deformation technique. Data fidelity between the 2D DRRs and acquired cone-
beam projections is defined through the sum-of-squared-differences metric. DRR, digitally-reconstructed-radiograph.
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image to all the other phase images to reveal the motion 
patterns of the liver volume, via the Demons deformable 
registration algorithm (26). Note that since the motion 
model is built on the reference phase, all the following 2D-
3D deformation and biomechanical modeling steps should 
also use the same reference phase volume as the prior image 
for the deformation-driven CBCT estimation. 

The resulting inter-phase DVFs obtained from the 
deformable registration are subsequently processed through 
the PCA (25) to train a motion model that represents 
the key liver motion modes, especially at the caudal liver 
boundary. The motion model can be mathematically 
expressed as:

10 ave 0j
N
j

jv v w v== +∑ 
	 [2]

Same as Eq. [1], v denotes the forward DVF that 
deforms the prior image to the new CBCT image. The 
motion model, however, decouples v into several sub-
components, including v0 ave and 0

jv . By principal component 
analysis,  v0 ave is the mean DVF of all inter-phase DVFs. 

0
jv  denotes the extracted principal components ranked by 

their relative importance. N denotes the total number of 
principal components used to construct the motion model. 
Same as the previous studies (19,20), we used N=3 as 3 
principal components prove sufficient to capture the motion 
patterns, and using more components could adversely affect 
the modeling accuracy by introducing more noises and 
local DVF errors. Correspondingly, wj (j=1, 2, 3) are the 
weightings for each principal motion mode 0

jv . Replacing 
the term v in Eq. [1] by Eq. [2] reduces the number of 
unknowns to 3*3 (Note that wj is a vector denoting three 

canonical directions, x, y and z) and allows fast DVF 
optimization using the same conjugate-gradient algorithm 
as the 2D-3D deformation.

In the above motion modeling framework, the liver 
boundary motion is successfully captured by manual liver 
contouring, density-overriding, and deformable registration. 
An implicit correlation has been established between the 
cranial and caudal liver boundary motion for each patient in 
the extracted motion modes. When MM-Bio-CBCT applies 
the learnt patient-specific motion model to estimate a DVF 
using Eq. [2], the implicit correlation between cranial and 
caudal liver boundary motion will generate more accurate 
DVFs at the caudal liver boundary, even if the deformation 
is mainly driven by the high contrast region in the cranial 
liver boundary. 

However, the motion modeling step is only a coarse 
estimation of the overall liver volume motion with 
poor intra-liver DVF accuracy. Based on the motion 
modeling-derived DVF, further 2D-3D deformation and 
biomechanical modeling are needed to fine-tune the overall 
DVF especially for that within the liver. 

Finite element analysis-based biomechanical modeling  

There are multiple models for soft tissue biomechanical 
modeling and currently no ‘gold-standard’ exists (14,27,28). 
To model the liver, we used the Mooney-Rivlin material 
model, a hyper-elastic biomechanical model often applied 
towards modeling biological soft tissues (14,29). The 
deformation of the Mooney-Rivlin material is governed by 
the strain energy density function:

( ) ( ) ( )2
1 1 2 23 3 0.5 1SE c I c I K J= − + − + − 

	
[3]

In Eq. [3], the first two terms quantify the change of the 
Mooney-Rivlin material’s shape towards stress. The third 
term quantifies the change of the material’s volume towards 
stress. 1I , 2I  and J are DVF derivatives, and c1, c2 and K 
denote the corresponding material parameters for them. 
We use c1 = c1 = 0.135 kPa and K = 27 kPa as the material 
parameters, which were empirically determined from a 
previous study (11). 

As shown in Figure 4, the biomechanical modeling of 
liver involves a three-step process: (I) liver model generation 
from the prior image at the reference phase; (II) boundary 
condition and material property assignment; and (III) 
finite-element-analysis for intra-liver DVF optimization. 
For (I), we extracted the 3D liver contour, generated a 

Figure 3 Workflow of the motion modeling scheme. Motion 
models are learnt from inter-phase DVFs by PCA. As shown, 
liver is density-overridden to enhance its boundary contrast for 
boundary-focused motion modeling. PCA, principal-component-
analysis.
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corresponding liver surface mesh and subsequently modeled 
the whole liver volume as small, connected tetrahedral 
elements. For (II), we used the DVF solved from the 
motion modeling step as an initial start (Eq. [2]), fine-tuned 
it by 2D-3D deformation (Eq. [1]), and extracted the liver 
boundary DVF as the boundary condition. For (III), we 
solved the intra-liver DVF as a finite element problem using 
the open-source finite-element-analysis package FEBio (17).

In summary, MM-Bio-CBCT uses motion modeling to 
derive a coarse DVF with enhanced accuracy at the caudal 
liver boundary, and fine-tunes the DVF with an alternating 
scheme between 2D-3D deformation and biomechanical 
modeling (Figure 1). We found a total of 10 iterations are 
sufficient for the alternating scheme to achieve convergence, 
and used it as the convergence criteria.

Evaluation 

We used both the digital XCAT phantom and real liver 
patient images to evaluate the MM-Bio-CBCT technique, 
and to compare its accuracy with that of the traditional 
2D-3D deformation technique, the 2D-3D deformation 
technique with motion modeling, and the Bio-CBCT 
technique. 

Using the XCAT phantom, we simulated a liver patient 
4D-CT set as the prior information, and inserted a 3 cm-
diameter spherical liver tumor that moves along with the 
liver volume. The motion of the XCAT phantom follows 
a diaphragm curve of 2 cm peak-to-peak amplitude, which 
controls the superior-inferior motion of all organs and 
tissues. It also follows a chest wall curve of 1.2 cm peak-

to-peak amplitude, which controls the phantom’s anterior-
posterior motion. We used the 10% phase of the 4D-CT 
as the reference phase (Figure 1) for motion modeling as 
well as for the deformation-driven CBCT estimation. To 
evaluate the robustness of the MM-Bio-CBCT technique 
towards motion variations between prior and new image 
acquisitions, we simulated different motion scenarios of the 
to-be-solved new CBCT images. In detail, three different 
amplitudes were used for the diaphragm motion curve (1, 
2 and 3 cm) as well as for the chest wall motion curve (0.6, 
1.2 and 1.8 cm) to simulate new ‘gold-standard’ 4D-CBCTs 
of different motion scenarios. From these simulated ‘gold-
standard’ new 4D-CBCTs, we generated 20 phase-specific 
cone-beam projections at different respiration phases 
(20%, 50%, 70%, 90%), using the Siddon’s ray-tracing  
technique (30). The cone-beam projections covered a 
full 360° scan angle, and contained 512×384 pixels per 
projection, with each pixel spanning 0.776 mm × 0.776 mm 
in dimension. With the prior CT image at the reference 
phase (10%), the derived motion model from the prior 
4D-CT set, and the simulated cone-beam projections, we 
applied the MM-Bio-CBCT technique to estimate CBCT 
images at different phases of different motion scenarios, 
and compared the resulting image quality and accuracy with 
those of other techniques. To evaluate the accuracy of using 
the solved DVFs for automatic liver tumor localization, 
we contoured the ‘gold-standard’ liver tumors from the 
simulated ‘gold-standard’ CBCT images via intensity 
thresholding, and calculated the DICE coefficient and the 
COME metrics between these ‘gold-standard’ contours and 
DVF-propagated liver tumor contours. 

Figure 4 Workflow of the liver biomechanical modeling. In this study we used the Mooney-Rivlin material model for liver, which is a hyper-
elastic biomechanical model often applied towards biological soft-tissues with large deformations.
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The Vdef symbol denotes the deformed liver tumor 
contour propagated by the solved DVFs and the VGS symbol 
denotes the liver tumor contoured on the ‘gold-standard’ 
image. A larger DICE coefficient indicates better match and 
higher tumor localization accuracy, with the optimal value 
being 1.

( ) ( ) ( )2 2 2Def GS Def GS Def GSCOME x x y y z z= − + − + − 	 [5]

As shown in Eq. [5], COME calculates the Euclidean 
distance between the center-of-mass of the propagated 
liver tumor and that of the ‘gold-standard’ liver tumor, 
an important metric gauging the accuracy of using the 
automatically-localized tumor contour for radiotherapy 
treatment guidance.  

In addition to the XCAT study, we performed additional 
simulation studies using real liver patient 4D-CT images. 
Three liver patient images were obtained from the open-
access ITK medical image open library (http://midas.
kitware.com/community/view/47). All of the 4D-CTs 
were contrast-enhanced, such that the liver tumors can be 
manually contoured as the ‘gold-standard’ to evaluate DVF-
propagated liver tumor contours. For the real liver patient 
images, we applied the ‘leave-one-out’ strategy by dividing 
the 10-phase 4D-CT of each patient into two groups: one 
of nine phases (10–40%, 60–100%) as a subset for motion 
modeling, and the remaining one phase (50%) was used 
as the new ‘gold-standard’ CBCT image for evaluation. 
Similar to the XCAT study, we used the 10% phase image 
from the sub-4D-CT-set as the reference phase for motion 
modeling and deformation-driven CBCT estimation. 
For the patient study, different numbers of limited-
view projections were simulated [5,10,20] to evaluate the 

potential of MM-Bio-CBCT in imaging dose reduction.

Results

Liver boundary deformation accuracy evaluation

Figure 5 compares the liver boundary deformation accuracy 
between Bio-CBCT and MM-Bio-CBCT techniques. The 
cranial liver boundaries, as marked by the upper dashed line, 
matched well between Bio-CBCT, MM-Bio-CBCT and 
‘gold-standard’ CBCT images. The finding demonstrates 
that with high-contrast intensity information at the cranial 
liver boundary, the boundary DVF can be accurately solved 
by intensity-driven techniques. However, tracing down 
inferiorly, it becomes evident that the lower liver boundary 
is not well deformed by Bio-CBCT, as pointed out by the 
markers and indicated by the dashed lines. The results show 
that the limited contrast at the caudal liver side failed to 
deform the liver boundary accurately by intensity-based 
techniques. Using motion modeling, MM-Bio-CBCT 
improves the deformation accuracy at the caudal liver side, 
as shown in Figure 5, which helps to further improve the 
accuracy of biomechanical modeling in solving intra-liver 
DVFs. 

CBCT image comparison

Figure 6 compares the reconstructed/estimated CBCT 
images and the ‘gold-standard’ CBCT images. The 
zoomed-in display focuses on the tumor area to compare 
the accuracy of DVF-propagated liver tumors. It is evident 
that using only 20 cone-beam projections, the CBCT 
images reconstructed by the clinical Feldkamp-Davis-
Kress (FDK) algorithm (31) contain excessive artifacts 
and the tumor information has been smeared out. The 
deformation-driven techniques, on the other hand, preserve 

Figure 5 Comparison between the prior image (without deformation), the CBCT estimated by Bio-CBCT, the CBCT estimated by MM-
Bio-CBCT and the gold-standard CBCT for one patient case. The image estimations used 5 cone-beam projections. Compared with Bio-
CBCT, MM-Bio-CBCT used motion modeling, which further improved the caudal liver boundary deformation accuracy. CBCT, cone-beam 
computed tomography.

MM-Bio-CBCTBio-CBCTPrior Gold-standard
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the high-quality HU information from the prior image with 
no streak artifacts. Nonetheless, based on pure projection 
intensity matching, the 2D-3D deformation technique fails 
to deform the intra-liver tumor to its correction location. 
The 2D-3D deformation technique with motion modeling 
also fails to correctly localize the low-contrast liver tumor. 
Using biomechanical modeling to boost DVF at low-
contrast regions, the Bio-CBCT technique generates better 
matched liver tumors to ‘gold-standard’, however not as 
accurate as the MM-Bio-CBCT technique. MM-Bio-
CBCT technique deforms the low-contrast liver tumor to 
well match with the ‘gold-standard’, by combining motion 
modeling with biomechanical modeling. 

Figure 7 shows multi-phase images solved by MM-Bio-
CBCT for the XCAT study, with corresponding ‘gold-
standard’ multi-phase CBCT images shown as reference. 
The solved tumor motion trajectory by MM-Bio-CBCT 
matches well with that in the reference images.

Quantitative evaluation results

Figure 8 presents the quantitative evaluation results for 
the XCAT study. Each boxplot contains 12 data points, 
featuring the three simulated motion scenarios, and the 
four CBCT phases (20%, 50%, 70%, 90%). The average 
(± SD) DICE coefficients for 0 DVF (no deformation), 

Figure 6 Comparison between reconstructed/estimated CBCT images of the (A) XCAT study, (B) patient study—patient 1 and (C) patient 
study—patient 2. The first row of each sub-figure shows the axial view and the second row shows the coronal view. The arrows are pointing 
to the tumor region. All reconstructions/estimations used 20 cone-beam projections. Clinical FDK CBCT: the CBCT reconstructed by the 
current clinical Feldkamp-Davis-Kress algorithm (31). MM, motion modeling; CBCT, cone-beam computed tomography.
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2D-3D deformation, 2D-3D deformation with motion 
modeling, Bio-CBCT and MM-Bio-CBCT techniques 
were 0.49 (±0.33), 0.57 (±0.31), 0.78 (±0.26), 0.83 (±0.21) 
and 0.89 (±0.11), respectively. The corresponding average 
(± SD) COMEs were 12.7 mm (±10.4 mm), 9.5 mm  
(±8.0 mm), 4.5 mm (±5.8 mm), 3.5 mm (±4.7 mm) and 
2.2 mm (±2.1 mm), respectively. In Figure 8, two outliers 
exist for the MM-Bio-CBCT results, one for phase 50% 
(DICE: 0.61, COME: 7.9 mm) and the other for phase 
70% (DICE: 0.77, COME: 4.6 mm). Both cases are from 
the motion scenario of relatively large diaphragm curve 
amplitude (3 cm) and chest wall curve amplitude (1.8 cm). 
These two cases are particularly challenging, since the liver 
tumor volume in the prior image is far apart the liver tumor 
volumes in the ‘gold-standard’ new CBCT images after the 
large increase of motion amplitudes, with center-of-mass 

distance reaching ~3 cm and with minimum volume overlap 
(DICE ~0). 

As shown in Table  1,  MM-Bio-CBCT provides 
consistently more accurate DVFs to propagate the prior 
liver tumor contours to match the best with the ‘gold-
standard’. Increasing the number of projections generally 
improves  the accuracy of automatic liver tumor localization, 
especially for the 2D-3D deformation technique and the 
Bio-CBCT technique. For 2D-3D deformation with motion 
modeling, and for MM-Bio-CBCT, the improvements are 
not substantial. It is caused by the use of motion modeling, 
which achieves substantial parameter dimension reduction 
to allow DVF optimization by using only a few projections. 
Thus, increasing the number of projections will not 
substantially improve their results. For 2D-3D deformation 
with motion modeling, even though the motion modeling 

Figure 7 CBCT images at different phases for the XCAT study. The first row shows the coronal view of the ‘gold-standard’ CBCTs at 
phase 20%, 50%, 70% and 90%. The second row shows the corresponding MM-Bio-CBCT images. All MM-Bio-CBCT estimations used  
20 cone-beam projections. CBCT, cone-beam computed tomography.
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Figure 8 (A) DICE coefficients and (B) COME results for the XCAT phantom study by using different techniques. Each boxplot contains 
12 data points (3 motion scenarios by four different CBCT phases). Twenty cone-beam projections were used for all CBCT estimations. 
MM, motion modeling. COME, center-of-mass-error; XCAT, extended-cardiac-torso; CBCT, cone-beam computed tomography.
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step establishes a good estimate of the DVF, the technique 
fails to further improve the DVF accuracy at intra-liver 
regions as the MM-Bio-CBCT technique does. 

Discussion

Liver tumor localization has been a challenging task for 
radiotherapy, even after the substantial developments and 
improvements of X-ray-based imaging guidance techniques 
in past decades. The radiotherapy treatments usually have 
to rely on surrogates to localize the liver tumor, either 
a high-contrast anatomical structure close to tumor (for 
instance, diaphragm, or a liver cyst), or several implanted 
high contrast fiducial markers (6). However, these 
surrogates suffer from either the lack of motion correlation 
with the liver tumor, or from invasiveness and potential 
surrogate migrations, or both. In this study, we took a 
different approach to localize the liver tumor. Instead of 
directly locating the tumors on the X-ray image via visual 
clues, we developed a new CBCT estimation technique 
to solve DVFs to morph a prior high quality CT/CBCT 
image to the new CBCT image, which naturally transfers 
the liver tumor contours from the prior image to the new 
image for automatic liver tumor localization. The developed 
MM-Bio-CBCT technique combines 2D-3D deformation, 
principal-component-analysis based motion modeling, 
and finite-element-analysis based biomechanical modeling 
to solve DVFs of high accuracy for tumor localization. 
The use of motion modeling not only achieves substantial 
parameter dimension reduction for fast optimization, but 

more importantly solves accurate DVFs at the caudal liver 
boundary where the image contrast could be insufficient to 
drive accurate DVF optimization (Figure 5). The accurate 
liver boundary DVF, input as the boundary condition for 
finite-element-analysis based biomechanical modeling, 
further improves the intra-liver DVF to accurately localize 
the liver tumor. Both the motion modeling and the 
biomechanical modeling steps are needed to achieve the 
best liver tumor localization accuracy, as evidenced in the 
study results comparing different techniques (Figure 6,  
Figure 8, Table 1). Using as few as 5 projections, the MM-
Bio-CBCT technique can achieve an average tumor 
localization accuracy of ~2 mm, which allows substantial 
margin reduction to reduce the toxicity of current liver 
radiotherapy. It also opens up an avenue for further 
dose escalation to explore the full potential of advanced 
treatment techniques like liver SBRT. Though developed 
for liver, the MM-Bio-CBCT technique can also be applied 
towards other sites where accurate tumor localization might 
be challenging, such as the kidney. 

By altering the amplitudes of the motion curves, the 
XCAT study evaluates the robustness of different techniques 
towards motion variations. The MM-Bio-CBCT technique 
remains the most accurate technique, with the lowest 
localization errors among all. However, when the motion 
variation causes significant deformations of the new CBCT 
compared to the prior image, the localization error of MM-
Bio-CBCT also increases considerably. It could be caused by 
the limitation of motion modeling, which works on a prior 
4D imaging set and may fail to predict new motion patterns 

Table 1 DICE coefficient/COME results of the deformed liver tumor contour for the patient study 

Patients
No. of 

projects
Prior w/o 

deformation (mm)
2D-3D deformation 

(mm)
2D-3D deformation 

with MM (mm)
Bio-CBCT (mm)

MM-Bio-CBCT 
(mm)

P1 5 0.52/11.6  
(DICE/COME)

0.61/9.8 0.84/3.1 0.86/2.5 0.91/0.3 

10 0.63/9.3 0.85/3.0 0.88/1.7 0.92/0.7 

20 0.80/4.6 0.86/2.5 0.88/1.7 0.91/0.9 

P2 5 0.49/8.3 0.59/7.0 0.73/4.3 0.76/3.2 0.81/2.3 

10 0.60/6.7 0.74/4.2 0.80/2.6 0.82/2.2 

20 0.70/4.6 0.75/4.0 0.82/2.2 0.83/2.1 

P3 5 0.39/7.1 0.39/7.1 0.59/4.4 0.55/4.9 0.74/2.2 

10 0.39/7.1 0.59/4.4 0.56/4.6 0.74/2.2 

20 0.39/7.1 0.60/4.3 0.65/3.7 0.74/2.1 

Varying numbers of projections (5, 10 and 20) were used for CBCT estimation. MM, motion modeling. COME, center-of-mass-error; CBCT, 
cone-beam computed tomography.
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much different from the prior motion patterns. To solve 
this problem, we could use patient breathing coaching or 
abdominal compression, to regularize the patient breathing 
motion to achieve shallower, more reproducible liver motion 
such that the motion model will remain valid throughout the 
treatment course. A more robust motion modeling technique 
that is able to account for large motion variations will also 
be investigated in future. Another interesting finding, as 
shown in Table 1, is that the accuracy of MM-Bio-CBCT is 
less dependent of the number of projections used in CBCT 
estimation. The use of motion modeling allows us to use a 
limited number of projections for DVF optimization, since 
there are only 9 unknowns to be solved in the motion model 
(Eq. [2]). If the motion pattern is similar between different 
image acquisitions, we can use an extremely limited number 
of projections, potentially just one single projection (32), 
to achieve real-time liver tumor localization for treatment 
monitoring and tumor tracking. 

The motion modeling steps of MM-Bio-CBCT, 
including the liver density overriding, the Demons 
registration and the principal component analysis, are 
streamlined and fully automatic. The other steps including 
2D-3D deformation, biomechanical modeling and finite 
element analysis are also fully automatic. The liver 
segmentation step of this study is manually performed on 
4D-CT sets. It is an off-line process that can be done any 
time after the 4D-CT acquisition and does not take patient 
on-line treatment time. In addition, there are many studies 
on automatic liver segmentation with very encouraging 
results (33-36). By introducing automatic liver segmentation 
into our algorithm, MM-Bio-CBCT can be made fully 
automatic to remove the needs of human input and satisfy 
the clinical needs of convenience and efficiency. Currently, 
for MM-Bio-CBCT we used a semi-graphic processing unit 
(GPU)-accelerated scheme, which takes ~20 minutes when 
using 5 projections for estimation. Further acceleration is 
warranted in future studies to render the algorithm more 
clinically applicable.

In this study, we simulated the cone-beam projections 
from the XCAT phantom images and real patient images 
using the ray-tracing technique, an approach widely applied 
in previous studies (12,13,19). Using simulated images 
for evaluation allows us to have the ‘gold-standard’ for 
quantitative evaluation. In future studies, a more realistic 
simulation scheme like the Monte-Carlo approach should 
be used instead to further evaluate the robustness of the 
MM-Bio-CBCT technique in the presence of degrading 
signals including scatter, noise and other imaging artifacts 

(11,37). There are multiple previous studies investigating 
different techniques to reduce these signals (38,39), and 
one of our recent developments by using convolutional 
neural networks also demonstrated encouraging results 
in removing these degrading signals (40). Real clinical 
projections are also warranted to be evaluated, provided that 
adequate ‘gold-standard’ can be obtained for evaluation. 
For instance, we can use implanted radiopaque fiducial 
markers near the tumor as the ‘gold-standard’ to cross-
evaluate the MM-Bio-CBCT technique, provided that the 
markers are sufficient in number to reduce the effects of 
marker migration, and they are fairly close to the tumor to 
demonstrate actual tumor motion.

In this study, we used prior 4D-CT sets to provide 
the information to establish motion models. However, 
sometimes the 4D-CT or 4D-CBCT image quality can 
be low with artifacts in the abdominal region that may 
negatively impact clinical applications. The motion 
modeling algorithm employed in this study is to some 
extent robust to the image quality issues, since the motion 
model is derived from density-overridden 4D liver volumes. 
By density-overriding, intra-liver artifacts can be removed. 
In addition, the motion model is intended to capture the 
liver boundary motion and the inherent motion correlation, 
thus artifacts exterior to the liver boundary may not pose 
significant issues either. Nonetheless, cautions should still 
be taken when selecting the reference phase image from 
4D-CT/4D-CBCT for motion modeling and deformation-
driven CBCT estimation, since imaging artifacts may be 
passed along from this prior image onto the estimated 
CBCT images. Thus, it is recommended to select the end-
inspiration or the end-expiration phase as the reference 
phase due to their relative stability and limited motion 
artifacts. For scenarios where the patient breathing is very 
irregular that substantially degrades the image quality of 
even the end-inspiration and end-expiration phases, we 
could use coaching or audio-visual feedback systems to 
regularize patient breathing (41).

In radiotherapy, 4D-CT is often acquired for liver 
patients to assess their motion to customize the motion 
management techniques. For some patients, for instance 
those receiving breath-hold radiotherapy treatments, 
a prior 4D-CT/ 4D-CBCT may not be available for 
motion modeling. Future studies are warranted to develop 
techniques to tailor to these patients, where an atlas-based 
approach or a generalized motion model might be used 
instead to improve the DVF accuracy at the caudal liver 
boundary. 
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