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Introduction 

High resolution imaging is important for accurate 
characterization of pathological abnormalities of biomedical 
specimens. Given the excellent axial resolution in three-
dimensional (3D) imaging (1-4), optical coherence 
tomography (OCT) has been extensively used in retinal 
examination, vascular medicine (5,6), and dermatological 
study (7,8), etc. Axial resolution of the OCT is dependent 
on the spectral bandwidth of the selected light sources; 
while lateral resolution of the OCT is diffraction limited (9).  
In coordination with careful optical designs (10,11) 
and adaptive optics (AO) (12), OCT imaging can be 
implemented at diffraction limit (13). However, quantitative 
OCT imaging is till challenging due to the resolution limit 
to resolve individual cells or even sub-cellular structures. 
In principle, the resolution can be improved by increasing 
the numerical aperture (NA) of optical systems. However, 
the working distance, i.e., imaging depth, of an optical 

instrument can be dramatically reduced as increasing NA. 
Moreover, the available NA is not changeable in some 
situations. For example, retinal imaging is limited by optical 
quality, including the NA which has the maximum ~0.25, 
of the eye. Therefore, alternative strategies have to be 
considered for resolution improvement. Several numerical 
strategies such as deconvolution algorithms (14-17) and 
digital focusing (18) have been explored to improve the 
lateral resolution of OCT. Although digital deconvolution 
has the potential in theory to exceed the diffraction limit 
for OCT imaging (15-17), the accurate estimation of the 
point spread function (PSF) of the OCT system, which is 
required for deconvolution, is practically challenging. So 
far, a feasible strategy of super-resolution OCT imaging is 
still yet to be demonstrated. 

Structured illumination microscopy (SIM) has been 
demonstrated to break through optical resolution limited 
by light diffraction. However, spatially structured wide 
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field illumination is not suitable for scanning laser imaging 
modalities, such as OCT. In theory, an alternative strategy 
to the SIM is to combine spatial and temporal modulations, 
either by spatiotemporal modulation of the scanning laser 
profile (in the illumination path) or the recording light 
profile (in the detection path) (19). However, physical 
implementation of the illumination/detection modulation 
is difficult. So far, experimental validation of the proposed 
spatiotemporal modulation is not yet demonstrated. We 
recently demonstrated a virtually structured detection (VSD) 
based super-resolution scanning laser microscopy (SLM) to 
achieve resolution doubling (20). Without the complexity 
of structured illumination, VSD provides an easy, low-cost 
and phase-artifact free strategy to achieve super-resolution 
imaging. The purpose of this study is to demonstrate the 
feasibility of breaking diffraction-limited resolution in 
OCT imaging through VSD. OCT examination of optical 
resolution target verified resolution enhancement in the 
VSD based imaging. Super-resolution OCT identification 
of individual frog photoreceptors was validated to 
demonstrate the potential of resolution enhancement in 
retinal imaging. We anticipate that further development of 
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Figure 1 Diagram of the super-resolution OCT. OCT, optical 
coherence tomography; SLD, superluminescent diode, wavelength 
λ =830 nm, band width Δλ =60 nm; CO, collimator; BS, beam 
splitter; L1-L3, lenses, focal lengths of lenses L1-L3 are 200, 40 
and 150 mm, respectively; ND, neutral density filter; EOPM, 
electro-optic phase modulator; OB, objective (5×, 0.1 NA). The 
lateral resolution of the system is 5 μm and the axial resolution is  
4 μm.

the VSD based OCT can provide an easy, low cost strategy 
to achieve sub-cellular resolution tomography of the retina 
and other biological systems.

Materials and methods

Experimental setup

Figure 1 shows the diagram of the VSD based super-
resolution OCT. A near infrared superluminescent diode 
(SLD-351, Superlum) with a center wavelength λ =830 nm  
and band width Δλ =60 nm was used to illuminate the 
sample. A dual-axis galvo (GVS002, Thorlabs) was used 
to scan the focused illuminating light across the sample 
in a raster pattern and descan light reflected from sample 
to the light detector. We used a two-dimensional (2D) 
digital camera (Pike F-032B, Allied Vision Technologies) 
to replace the single element sensor in conventional time-
domain OCT. In the reference arm, neutral density filters 
were applied to adjust light intensity. A glass block was 
inserted into the reference arm to compensate for optical  
dispersion (21) of the electro-optic phase modulator 
(EOPM, Model 350-50, Conoptics), which was employed 
to introduce rapid vibration free phase modulation for OCT 
reconstruction (22). Briefly, EOPM shifted reference beam 
light phase by 0, π/2, π and 3π/2 at each scanning position. 
Four corresponding interference patterns were recorded at 
each scanning position for OCT reconstruction. The axial 
resolution of the system was ~4 μm (0.44 λ2/nΔλ, where n 
was the refractive index of the sample, ~1.4). With a 0.1 NA 
5× objective, lateral resolution of conventional OCT was 
theoretically estimated at ~5 μm (0.61 λ/NA). In theory, the 
VSD can improve the resolution by a factor of 2 (19,20,23). 
A virtual pinhole (two times of the Airy disc diameter) was 
applied during reconstruction.

Principle of the VSD based OCT

For simplicity, formulas will be written in one-dimension. 
During the OCT recording, the reference mirror was 
adjusted to a position where the zero delay plane is 
superimposed with the focal plane. First, the standard 
four-frame phase-shifting algorithm is applied to retrieve 
OCT images (24). By ignoring optical magnification, the 
interference pattern (in X direction) recorded by the camera 
at a given scanning position x0 is
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where IS is the intensity distribution of light reflected from 
sample, IR is the intensity distribution of light reflected 
from mirror in the reference arm, θ is the time-invariant 
phase difference distribution between the sampling arm and 
the reference arm, i =1,2,3,4 and δi is the phase modulation 
item:

[2]2/)1( πδ −= ii

According to the standard four-frame phase-shifting 
algorithm (24), we will have
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If we assume the reference intensity profile is spatially 
invariant within the virtual pinhole: 
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and constant coefficients are ignored, the Eq. [3] can be 
simplified as: 
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The second step is to apply VSD to break through 
diffraction limit of lateral resolution. Details of VSD have 
been reported in our recent publication (20). Briefly, a 
digital sinusoidal mask m(x) is applied to multiply with the 
OCT profile map:
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The spatial integral of Eq. [6] yields:
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where hil and hde are PSFs of the illumination beam and 
detection beam, respectively, and s is the reflectance ratio of 
the sample. Fourier transforming Eq. [7] yields:
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We can see that if the carrier frequency of m~  is smaller 
than the cutoff frequency of deh

~ , the convolution in Eq. [8]  
can shift the high frequency of the sample toward the 
lower frequency to pass through ilh

~ , thus to break through 
diffraction limited resolution.

Sample preparation

We used a standard optical resolution target (USAF 1951 
1X, Edmond) and freshly isolated frog (Rana Pipiens) for 
experimental validation of the proposed VSD based OCT 

system. The optical resolution target provided a simple 
sample for technical validation of the OCT resolution. 
In contrast to simple optical target, frog retina had 
relatively complex 3D structures. The diameter of frog 
photoreceptor rod was 5-8 μm and that of cone was about 
1-3 μm (25,26), which provided an excellent model to test 
OCT resolution before (5 μm) and after (2.5 μm) VSD data 
processing. All animal handling procedure was approved 
by the Institutional Animal Care and Use Committee of 
the University of Alabama at Birmingham. Frog used for 
preparing freshly isolated retina was firstly euthanized by 
rapid decapitation and double pithing. Then eyeball was 
detached and moved to Ringer’s solution [containing (27)  
in mmol/L: 110 NaCl, 2.5 KCl, 1.6 MgCl2, 1.0 CaCl2, 
22 NaHCO3, and 10 D-glucose]. After hemisecting the 
eyeball with fine scissors, lens was removed and the retina 
was separated from the eyecup. Dissected retina was then 
moved to a chamber filled with Ringer’s solution for image 
recording. All procedure was conducted in a dark room 
illuminated with dim red light.

Results

Super-resolution OCT imaging of optical resolution target

Figure 2 compares conventional OCT image and the 
VSD based OCT image of the optical resolution target. 
The smallest grating of the optical resolution target had 
a period of 4.4 μm. Since the lateral resolution of the 
conventional OCT system was 5 μm, the smallest grating 
could not be resolved by conventional OCT as indicated 
by the white arrow in Figure 2A. Moreover, it was difficult 
for conventional OCT to differentiate the second smallest 
grating which has a period of 4.9 μm (blue arrow in 
Figure 2A). In contrast, the VSD based OCT was capable 
of resolving both the smallest grating (white arrow in 
Figure 2B) and the second smallest grating (blue arrow in 
Figure 2B). The normalized intensity profile in Figure 2C 
confirmed the resolution enhancement of the VSD based 
OCT. Three clear bumps corresponding to the second 
smallest grating (blue dashed rectangle in Figure 2C) and 
three bumps corresponding to the smallest grating (white 
dashed rectangle in Figure 2C) manifested themselves more 
clearly after VSD reconstruction. 

Super-resolution OCT imaging of freshly isolated retina

After we tested super-resolution OCT using the optical 
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resolution target, we implemented super-resolution OCT 
imaging of freshly isolated frog retina. Figure 3A shows a 
cross-section image of freshly isolated frog retina acquired 
by conventional OCT. With ~4 μm axial resolution, we 
could clearly see retinal layer structure which consisted 
of inner plexiform layer (IPL), inner nuclear layer (INL), 
outer plexiform layer (OPL), outer nuclear layer (ONL) and 
photoreceptor layer (PRL). Enface images were acquired at 
the inner segment of PRL (yellow dashed line in Figure 3A)  
which rendered strong OCT signal and rich structure 
details. Comparing Figure 3B to Figure 3C, we can see that in  
Figure 3C more cellular structures could be observed. For 
example, three individual photoreceptors could be identified 

(three white arrows in Figure 3C), while only a single blur 
structure could be visualized at the same area in Figure 3B. 
Resolution enhancement was also confirmed by comparing 
light intensity profiles. The green and red curves in Figure 3D  
corresponded to normalized intensity profiles along the green 
line in Figure 3B and the red line in Figure 3C, respectively. 
Two individual cells were separated on the red curve (white 
arrows in Figure 3D), while they merged together on the 
green curve. 

Discussion

In summary, we demonstrated that VSD can be implanted 

Figure 2 VSD based super-resolution OCT imaging of optical resolution target. (A) Image of optical resolution target acquired by 
conventional OCT; (B) Image of optical resolution target acquired by the VSD based super-resolution OCT; (C) Normalized intensity 
profiles of optical resolution target. The green curve was the normalized intensity profile from top to bottom of the area specified by the 
green rectangle in (A). The red curve was the normalized intensity profile from top to bottom of the area specified by the red rectangle in (B). 
Abbreviations: VSD, virtually structured detection; OCT, optical coherence tomography.

Figure 3 VSD based super-resolution OCT imaging of freshly isolated retina. (A) B-scan of isolated frog retina. Different retinal layers can 
be observed. From top to bottom they are: IPL, INL, OPL, ONL and PRL. The yellow dashed line indicated the position where enface 
OCT images were acquired; (B) Enface image of isolated frog retina acquired by conventional OCT; (C) Enface image of isolated frog 
retina acquired by the VSD based super-resolution OCT; (D) Normalized intensity profiles of retina. The green curve was the normalized 
intensity profile along the green line in (B). The red curve was the normalized intensity profile along the red line in (C). Abbreviations: 
VSD, virtually structured detection; OCT, optical coherence tomography; IPL, inner plexiform layer; INL, inner nuclear layer; OPL, outer 
plexiform layer; ONL, outer nuclear layer; PRL, photoreceptor layer.
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in OCT imaging to break through the diffraction limit. 
OCT imaging of optical resolution target (Figure 2) and 
frog retinal photoreceptors (Figure 3) showed noticeable 
resolution improvement. Detailed structures that were not 
identified in conventional OCT images could be readily 
resolved in super-resolution OCT images through the VSD. 
Although the VSD based method can be implemented in 
an imaging system with a high magnification objective, 
we selected a relatively low magnification objective (5×) 
in this study for technical validation of super-resolution 
imaging of frog photoreceptors. Since frog retina consists 
of photoreceptors with variable diameters (rods: ~5-8 μm; 
cones: ~1-3 μm) (26,27), it provided an excellent preparation 
to evaluate the OCT resolution before (5 μm) and after  
(2.5 μm) VSD data processing. 

During VSD reconstruction, the virtual pinhole size 
was set to two times of the Airy disc diameter. Within the 
virtual pinhole, we assumed the intensity profile of the light 
from the reference arm was uniform, as shown in Eq. [4].  
However, the actual light intensity attenuated away from 
the center and became weak at the edge of the virtual 
pinhole. In other words, the virtual pinhole was truncated 
by the reference light profile. Therefore, the effective 
pinhole size became smaller. A smaller confocal pinhole 
(i.e., <1 Airy disc diameter) can in theory improve the 
lateral resolution in a confocal system (28). However, with 
a smaller effective pinhole size, some information was lost 
for VSD reconstruction. One method to readily alleviate 
the attenuation of the reference light intensity is to insert 
an aperture at the reference beam. Since the reference 
light beam size is smaller, the diffraction map, which is the 
Fourier Transform of the parallel reference light, becomes 
larger. Therefore, the diffraction profile will become more 
uniform at the center. An alternative solution is to use a 
fiber splitter and feed one port to the sampling arm and 
the other to the reference arm. With this configuration, it 
is possible to focus the sampling light beam to the camera 
while maintaining the parallelism of the reference light 
beam.

The imaging speed of our current super-resolution 
OCT is relatively slow (40 s per frame). The VSD imposes 
a spatially resolved detector to record the diffraction 
profile of each scanning position, which is time-consuming 
and infeasible for in vivo retinal imaging due to possible 
eye movements during the recording. Currently, we are 
integrating a microlens array (MLA) based multifocal 
scanning system (29) to improve the speed of super-
resolution OCT imaging. We anticipate that further 

development of the VSD based OCT can provide a practical 
strategy to achieve super-resolution in in vivo OCT imaging 
of retinal structures.
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